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Abstract 
 

Background: Learning to perform new movements is usually achieved by following visual 

demonstrations. Haptic guidance by a force feedback device is a recent and original technology 

which provides additional proprioceptive cues during visuo-motor learning tasks. The effects of 

two types of haptic guidances - control in position (HGP) or in force (HGF) – on visuo-manual 

tracking (“following”) of trajectories are still under debate. 

Methodology/Principals Findings: Three training techniques of haptic guidance (HGP, HGF or 

control condition, NHG, without haptic guidance) were evaluated in two experiments. 

Movements produced by adults were assessed in terms of shapes (dynamic time warping) and 

kinematics criteria (number of velocity peaks and mean velocity) before and after the training 

sessions. Trajectories consisted of two Arabic and two Japanese-inspired letters in Experiment 1 
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and ellipses in Experiment 2. We observed that the use of HGF globally improves the fluency of 

the visuo-manual tracking of trajectories while no significant improvement was found for HGP or 

NHG. 

Conclusion/Significance: These results show that the addition of haptic information, probably 

encoded in force coordinates, play a crucial role on the visuo-manual tracking of new trajectories.  

 

Introduction 

 Learning to perform new movements is usually achieved by following visual 

demonstrations [1]. Haptic guidance by a force feedback device is a recent and original 

technology that provides additional proprioceptive cues during visuo-motor learning tasks. 

Virtual simulators, in which haptic and visual cues are provided, seem to be an efficient way to 

teach complex movements [2-5]. Two well-known robotic haptic guidances have been currently 

implemented: The first one uses spatial coordinates (HGP) - position information - of the 

trajectory to learn, whereas the second one (HGF) uses forces generated by a teacher to control 

the student's task (Figure 1). 

 Haptic guidance in position (HGP) mostly uses a proportional derivative controller i.e. 

following point-per-point the visual representation of the target trajectory. Based on this 

technology, Solis et al. [6] had developed a Japanese calligraphy system using reactive robot 

technology. Unfortunately, this study mainly focused on the technical aspects. In the same vein, 

Henmi et al. [7] also designed a Japanese calligraphy system using a “record and playback” 

strategy: The authors recorded positions and forces applied by a human teacher and displayed 

them to the students. However, in these two studies, no behavioral data was reported. Gillespie et 

al. [8] developed a virtual teacher based on a proportional derivative position controller to help 

students to properly move a simulated crane. This pilot study with 24 participants showed that 
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their implementation of the virtual teacher concept did not significantly improve the learning of 

oscillating curves. More recently, Palluel-Germain et al. [5], in a pilot study, analyzed the effects 

of using HPG to train the fluency of writing cursive letters in kindergarten children. Fluency of 

handwriting (analyzed by kinematics parameters such as average velocity, number of velocity 

peaks, and number of breaks during the production) was tested before and after the training 

sessions (either visuo-haptic or control). Letters were computer generated to control the dynamics 

by changing the distance between successive points of a discrete trajectory. Results showed that 

the fluency of handwriting for all letters was higher after the visuo-haptic training session than 

after the control training session: The movements of the hand were faster, exhibited less velocity 

peaks and the children lifted the pen less frequently during handwriting. Finally, other studies in 

adults [2, 4] confirmed the positive effect of visuo-haptic training sessions using proportional 

derivative position controller but most of them mainly describe the technical aspects. In these 

studies, the analysis of kinematics criteria remained rather unexplored.  

 Haptic guidance in force (HGF) is an alternative control method, which is congruent with 

two well-known psychophysical principles [9, 10, 11]: The homothety principle which states that 

the trajectory keeps its shape characteristics whatever its size, and the isochrony principle which 

states that the velocity for tracing increases as function of its size. Hemni et al. [7] compared the 

effects of HGF and HGP on a handwriting task in addition to visual cues. Preliminary results 

showed both techniques to be equally effective. Srimathveeravalli et al. [12] introduced a new 

paradigm providing the closest possible replication of an expert’s skill. The authors proposed that 

if the nature of forces generated by the teacher and by the student were the same, then their 

trajectories would be similar. Force profiles of the teacher were then used to guide the motion of 

the student. Demonstration of its efficiency was shown by comparing this method with other 

classical haptic training methods in terms of shape matching with an unfamiliar Tamil (Indian) 

letter. Results confirmed the authors' hypothesis and showed that a “record-and-playback” 
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training method with force information was more efficient than training method with only 

position control. Unfortunately, this study mainly focused on a shape matching score and did not 

examine kinematics criteria. Recently, Morris et al [13] explored the use of haptic feedback for 

teaching a sequence of forces. Results showed that adults are able to learn sensory-motor skills 

via visuo-haptic training. This result would allow us to better understand the positive effects of 

HGF during training session of handwriting observed by Srimathveeravalli [12].  

 In the present study, we have investigated with adults whether the two types of haptic 

guidance - control in position (HGP) or in force (HGF) – based on psychophysics laws of 

movement production, would improve visuo-manual tracking of Arabic and Japanese-inspired 

letters (Experiment 1) and untrained ellipses (Experiment 2). The effects of HGP on kinematics 

would then be tested, in extension of Palluel-Germain et al. [5] study. Moreover, the effects of 

HGF on kinematics criteria (fluidity) were considered as a complement of Srimathveeravalli [12] 

study. In both experiments three training sessions were conducted, which differed according to 

the haptic guidance used: HGP, HGF or no haptic guidance (NHG). We proposed that the 

addition of haptic cues to training session would improve the performance of subjects. 

Movements were evaluated in terms of shapes (dynamic time warping) and kinematics criteria 

(number of velocity peaks and mean velocity). Progress was assessed from the difference of 

performances before (pre-test) and after (post-test) the training session. We hypothesized that 

haptic guidance of both types would improve the performance of the subjects in comparison to 

the control training session.  

 

Experiment 1: Japanese and Arabic letters 
 

The goal of Experiment 1 was to explore whether the two types of haptic guidance - control 

in position (HGP) or in force (HGF) – improved the visuo-manual tracking of unfamiliar letters 
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in terms of shape and kinematics aspects of handwriting. To test this goal, 23 adults were asked 

to learn to track visuo-manually two unfamiliar Arabic and two unfamiliar Japanese-inspired 

letters. 

 

Method 

 

Participants 

Participants were 23 right-handed Caucasian adults, with no significant language, motor or 

neurological dysfunction. They were students from University of Grenoble and their age ranged 

from 18 to 26 years. The present study was conducted in accordance with the Declaration of 

Helsinki. It was conducted with the understanding and the written consent of each participant 

which was obtained and was approved by the local ethic committee. 

 

Experimental Setup 

The present experimental setup was similar to the “WYSIWYF” interface proposed by 

Yokokohji et al. [14]. We used a PHANToM™ Omni device (Sensable Technology). The 

modified PHANToM’s stylus (Figure 2.a) served as a pen and a simple flat screen, mounted 

under the force feedback device, served as a paper. Figure 2.c shows a user writing with the 

virtual interface. The Chai3D Framework [15] was used to develop the application (Figure 2.b), 

on a classical personal computer (Pentium IV, 3.2 Ghz, 2Go Ram, NVIDIA Quadro Fx). Efforts 

have been made in the design of the physical setup to put the user in a situation, as close as 

possible to the usual handwriting task. The maximal depth from the virtual drawing and the real 

PHANToM’s stylus is 0.5mm (height of the protective glass on the screen). Calibration between 
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the force feedback device and the screen was done by triangulation at the beginning of each 

experiment. This resulted in co-location of the stylus and the virtual trace which provided a 

natural feeling of handwriting. 

 

Tested and Trained trajectories:  Arabic and Japanese-like letters 

Trajectories were chosen to be “biologically and culturally possible” but also unfamiliar for 

participants (criterion used to select the participants). We explored two Arabic letters (fig. 3.a and 

3.b) and two Japanese-inspired letters (fig. 3.c and 3.d). These trajectories were generated from 

several expert productions. Moreover, they were chosen to provide different difficulty levels 

defined by the number of “brutal change” of direction (> 45°) in the shape (letter 1: one 90° 

change; letter 2: one 180° change; letter 3: three changes; letter 4: four changes). It should be 

noted that theses changes of direction in shape imply large changes in the kinematics. The 

Japanese letters were modified in order to avoid lift up from the stylus by orthographically 

projecting the aerial path in the 2-dimensional reference of the letter. 

 

Pre-test and post tests 

Participants were assessed before and after the training sessions in order to measure the 

visuo-manual tracking of letters. Participants were asked to trace with their right hand visually 

presented letters with the stylus as accurately and as promptly as possible. No feedback was 

given by the experimenter. Each participant executed five trials for each letter in pseudo random 

order (two identical consecutive letters never occurred). In total, there were therefore 20 trials in 

the pre and post-tests. 
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Movement analysis 

Three main criteria were used to evaluate the movement: Number of velocity peaks, mean 

velocity and shape matching score. The positions and time stamps of each trial were recorded and 

pre-processed to compute these measures. The PHANToM device allowed us to record the 

position of the tool tip at about 1 KHz, which resulted in over sampling. To avoid long 

computation time and due to the frequency range of information, data could be reasonably 

sampled at 200Hz. This is equivalent to applying a low-pass filter to avoid high frequency noise 

due to hardware imprecision in time sampling. 

1. Number of Velocity Peaks 

The number of velocity peaks is a criterion to estimate the fluidity of the movement. A 

small number of velocity peaks, with no regression of the shape quality (shape matching 

criterion) indicates a “good” fluidity. To compute these peaks, the velocity was low-pass filtered 

using a 6-order Butterworth filter (cut-off frequency = 50Hz). Attention was paid to avoid 

distortions. Then, we computed the acceleration from these filtered data and counted the sign 

inversions for the acceleration. This value gave us the number of velocity peaks. 

2. Mean Velocity 

The mean velocity also is a criterion to estimate the fluidity of the movement. A high mean 

velocity, with no regression of the shape quality (shape matching criterion), indicates a good 

fluidity of handwriting production. 

3. Shape matching 

Dynamic time warping (DTW) algorithm [13, 16] computes a cost corresponding to a 

match between a reference trajectory and a subject recall trajectory. DTW constructs a global cost 



Haptic guidance - 8 
 

matrix by aligning the two temporal series. Then, a minimal path through the matrix is 

determined and the final value of this minimal path provides a representative cost for the warping 

of the two trajectories, i.e. the similarity between the two shapes. This algorithm was 

implemented for each axis (X and Y of the unit table) separately. The cost function in this case 

was the Euclidean distance between two points. This criterion gives a score of shape matching: A 

low score means a good match in shape. 

 

Training Sessions 

Each subjects participated in three training sessions (Haptic guidance in position - HGP, 

haptic guidance in force – HGF, and no haptic guidance – NHG). The order was given by a 

Latin-square plan. Participants were asked to move a stylus with their right hand to follow a 

visually presented trajectory. There were 20 test trials (5 trials x 4 letters) in each training 

session.   

1. Haptic Guidance in Position (HGP) 

Position Proportional-Derivative control is well known in automatism. It consists in 

minimising the trajectory error during the training. This type of control can be thought of as a 

spring, attached to the trajectory points, pulling the stylus' tip to the next point (Figure 1.a). The 

proportional and derivative gains were derived from [12] and experimentally tuned (with pilot 

studies) to 0.4 N/mm and 0.2 Ns/mm. 

2. Haptic Guidance in Force (HGF) 

According to the hypothesis proposed by Srimathveeravalli et al. [12], similar force 

profiles lead to similar trajectories (Figure 1.b). The handwriting task has been modelled as a 

force needed to move a mass on a surface with a constant friction value. To compute the forces 
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from computer generated trajectories, a simple lumped model, described in previous studies [12], 

was used. This model is described in Equation (1). 

F = m.a + c.v + k.x   (1) 

where F is the force, m  is the mass of the system (hand + stylus), a is the acceleration, c is the 

damping coefficient and k is the spring constant. According to this simple model, we were able to 

compute the force profile for the previously generated trajectories. The mass, the damping 

coefficient and the spring constant used for the method were theoretically estimated and were set 

equal to 0.1Kg, 0.5Ns/mm and 0.1Ns/mm respectively. This force profile was then used as a 

reference for a proportional derivative control with visual tracking. Even if visual matching errors 

could occur during the movement, the haptic sensations felt by the user would be similar to what 

the expert felt during his interaction with the model. The proportional and derivative gains used 

were theoretically estimated and were set to 0.5N/mm and 0.1Ns/mm respectively. 

3. Control session without haptic guidance (NHG) 

To replicate learning through observation and manual repetition, no haptic assistance was 

provided to the participants during the training session. This task was similar to pre and post tests 

in which no haptic guidance was added. 

 

Results  

Preliminary analysis of variance (ANOVA) showed that the order of training sessions had 

no effect and did not interact with any other factors (all p> .25). Then, for each criterion, 

ANOVA was performed with test (pre and post tests), and letter (L1: Arabic Letter 1, L2: Arabic 

Letter 2, L3: Japanese-inspired Letter 3 or L4: Japanese-inspired Letter 4) as within factors and 

training mode (HGF, HGP or NHG) as independent factors. Summary of raw data can be found 

in Table 1. 
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1. Number of velocity peaks 

The main effect of letters was significant (F(3,66)=11.20; p<.05). Pre-planned contrasts 

showed (all p<.05) that the number of velocity peaks increased with the type of letters: Letter 1 

(m=8.77), Letter 2 (m=9.27), Letter 3 (m=11.03) and Letter 4 (m=10.02). This factor did not 

interact with training mode. The interaction between training session and period factors was 

significant (F(2,44)=5,01; p<.05). Post-hoc analyses (Tukey test; p<.5) revealed a significant 

decrease of the number of velocity peaks for only HGF mode. However, no significant difference 

was observed for both HGP and NHG modes. Finally, the interaction between training mode and 

letter factors was not significant (F(6,102)=1,15; p>.25).  

We have performed additional analysis in order to asses the effects of training mode on 

each test of letter type: 

-Arabic Letter 1 and Japanese-inspired Letter 3: No significant interaction between training mode 

and test. 

-Arabic Letter 2: The interaction between training mode and test was significant (F(2,44) = 6.14; 

p<.05). Post-hoc analyses (Tukey test; p< .05) revealed a significant decrease for HGF (Pre-test: 

m=9.42; post-test m=7.06) mode and no significant difference for NHG and HGP modes. 

-Japanese-inspired Letter 4: The interaction between training mode and test was significant 

(F(2,44) = 3.79; p<.05). Post-hoc analyses (Tukey test; p< .05) revealed a significant decrease for 

HGF (Pre-test: m=11.12; post-test m=8.86) mode (p<.05) and no significant differences for NHG 

and HGP modes. 

2. Mean velocity 

The main effect of letters was significant (F(2,66)=13.577; p<.05). This factor did not 

interact with training mode. The interaction between training mode and test was significant 
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(F(2,44)=11.09; p<.05). Post-hoc analyses (Tukey; p<.05) revealed a significant increase of the 

mean velocity for only HGF mode. By contrast, no significant difference was observed for both 

HGP and NHG mode. 

We have performed additional analysis in order to asses the effects of training mode on 

each test of letter type: 

-Arabic Letter 1:  The interaction between training mode and test was significant 

(F(2,44)=8.734;p<.05). Post-hoc analyses (Tukey; p<.05) revealed a significant decrease for HGF 

mode  

 

-Arabic Letter 2: The interaction between training session and period factors was significant 

(F(2,44)=13.135;p<.05) Post-hoc analyses (Tukey test; p<.05) revealed a significant increase for 

HGF  

-Japanese-inspired Letter 3: The interaction between training mode and test was significant 

(F(2,44)=11.559;p<.05). Post-hoc analyses (Tukey test; p<.05) revealed a significant increase for 

HGF mode and no significant differences for NHG and HGP modes 

-Japanese-inspired Letter 4: The interaction between training mode and test was significant 

(F(2,44)=7.744;p<.05). Post-hoc analyses (Tukey test; p<.05) revealed a significant increase for 

HGF mode and no significant differences for NHG and HGP modes.  

3. Shape Matching Score 

The main effect of letters was significant (F(3,66)=277.01; p<.05). This factor did not 

interact with training mode factor. The interaction between training mode and test was not 

significant (F(1,22)=0.61; p>.25). Complementary analyses per letters were then performed to 
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precise the specific effect of training mode on each letter after training sessions and no significant 

effect was observed (all p>.25). 

 

Discussion 

The main results of this experiment revealed a significant reduction of the number of 

velocity peaks (for two among the four letters) and a significant increase on mean velocity 

through all the tested letters with HGF training. The results are concordant with our hypotheses, 

even though this type of haptic guidance appeared to be sensitive to the trajectories tested. 

Contrary to our hypotheses, no major effect on the number of velocity peaks and the mean 

velocity was found for HGP. It appears that HGP has no significantly beneficial effect on the 

fluidity of movements (even if trends of improvement were observed). No effect of NHG training 

was found on all criteria. Finally, none of the training modes effected shape matching criterion. 

Differences between our and previous results from literature could be explained by the different 

types of trajectories used. Moreover, it is possible that same trajectories for the training and the 

test could have weakened the power of the results. To test this hypothesis, we have investigated 

this relation in a more detailed experiment with specifically chosen trajectories. Moreover, we 

added variability in trajectories by changing the experimental protocol (tested and trained 

trajectories were not the same). 

 

Experiment 2: Untrained ellipses 

The goal of the second experiment was to explore whether training on one set of 

trajectories with the two haptic guidances - HGP or HGF – improve the visuo-manual tracking of 

another set of similar trajectories in terms of shape and kinematics aspects. In Experiment 1, HGP 

did not show any overall improvement on performance. We have proposed shape variability of 
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stimuli to improve the training sessions. Generation of a range of trajectories required a highly 

defined base trajectory. The ellipse, a “two-parameter” trajectory (well-known in psychophysics 

studies) was chosen. Twenty-four adults were asked to track three visually presented ellipses. 

Psychophysics studies showed that there is an unambiguous relationship between letter 

production and movement kinematics. The shape of the trajectory determines the movement 

kinematics (so called "the two-thirds power law") [9, 10, 11]. The trajectory and dynamics of the 

drawing movement are mutually constrained by this law. Viviani et al. [9] found that this law can 

be taken as an explanation of steady-state adult performances of handwriting skills. The “two-

third” law was used to generate trajectories for this Experiment in order to prevent any 

dependence of the teacher’s specific way of tracing a trajectory. We introduced shape variability 

in the trained trajectories. They were similar to the pre and post test trajectories but never the 

same. Because this variability of required movements with haptic guidances generated a 

variability in the sensorial feedbacks (visual and proprioceptive), we hypothesized an increase of 

performances to track new (but closed) movements. 

 

Method 

 

Participants 

Participants were 24 right-handed adults, with no significant language, motor or 

neurological dysfunction. They were students from University in Grenoble and their age ranged 

from 18 to 28 years. The present study was conducted in accordance with the Declaration of 

Helsinki. It was conducted with the understanding and the written consent of each participant 

which was obtained and was approved by the local ethic committee. 
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Experimental Setup 

The experimental setup was the same as in Experiment 1. 

 

Pre-test and post tests 

Participants were assessed before and after the training sessions in order to measure the 

visuo-manual tracking of letters. Participants were asked to trace with their right hand visually 

presented ellipses with the stylus as accurately and as promptly as possible. No feedback was 

given by the experimenter. Each participant followed 18 ellipses presented in pseudo random 

order. In total, there were therefore 18 trials in the pre test and 18 trials in the post-test. 

 

Characteristics of test Trajectories 

In the pre and post tests, three target trajectories were derived from a base ellipse. Contrary 

to the Record-and-playback strategy [12], where the base trajectories were recorded from a 

teacher, we have designed elliptical paths by controlling each parameter (size, velocity profile, 

number of points...). The shape of each ellipse varied from 6 to 2 cm in width and in height. The 

generation of these trajectories was made by a Scilab™  (www.scilab.org) routine. Stimuli used 

for this experiment were composed of 1000 points (X,Y). Their velocity profiles followed the 

two-third power law [10, 11], (i.e., velocity V is proportional to the radius of curvature r of the 

trajectory: v = k * r-1/3; equivalent to angular velocity A is proportional to the curvature c of the 

trajectory: A = k * c2/3). Our generated trajectories were in adequacy with a trained-level 

movement skill. The untrained tested trajectories are shown (red curves) in Figure 4. 

 

http://www.scilab.org/
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Movement analysis 

Three main criteria (number of velocity peaks, mean velocity and Shape matching) used to 

analyse the movements were the same as in Experiment 1. 

 

Training Sessions 

Three training sessions - HGP, HGF and NHG - were proposed to each participants (the 

order was given by a Latin-square plan). There were 24 test trials in each training session. The 

trajectories used during the pre and post test were never encountered during the training sessions. 

This was done to provide variability during the training session. Ellipses used in training were 

generated using the same procedure as trajectories used in tests (cf. § Characteristics of Test 

Trajectories). Eighteen ellipses have been chosen around the three tested ones (see Figure 4). 

They appeared randomly during the training session. In total, each participant performed 72 

trials. The three haptic guidance modes and parameters were similar to those found in Experiment 

1 except for HGP, where the proportional and derivative gains were experimentally tuned to 0.6 

N/mm and 0.2 Ns/mm for smoother sensations. 

 

Results 

Preliminary analysis of variance (ANOVA) showed that the order of training sessions had 

no effect and did not interact with any other factors (all p> .25). Then, for each criterion, 

ANOVA was performed with test (pre and post tests), and ellipse (E1, E2 or E3) as within factors 

and training mode (HGF, HGP or NHG) as independent factors. Summary of raw data can be 

found in Table 2. 
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1. Number of velocity peaks 

The main effect of tested ellipses was significant (F(2,46)=16.342; p<.05). Pre-planned 

contrasts showed that the number of velocity peaks was lower for the circle (E2: m=9.3) than the 

horizontal (E1: m =13.2) and vertical (E2: m=14.1) ellipses (F(1,23)=19.67; p<.01) This factor 

did not interact with training mode factor. The interaction between training mode and test was 

significant (F(2,46)=8.86; p<.05). Post-hoc analyses (Tukey test; p<.05) revealed a significant 

decrease of the number of velocity peaks for both HGP and HGF mode. By contrast, no 

significant difference was observed for NHG mode. 

2. Mean velocity 

The main effect of tested ellipses was significant (F(2,46)=19.321; p<.05). Pre-planned 

contrasts showed that the mean velocity was lower for the circle (E2: m=4.70 cm/s) than the 

horizontal (E1: m=5.86 cm/s) and vertical (E2: m=5.77 cm/s) ellipses (F(1,23)=30.53; p<.05) 

This factor did not interact with training session factor. The interaction between training mode 

and test was significant (F(2,46)=13.22; p<.05). Post-hoc analyses (Tukey test; p<.05) revealed a 

significant increase of mean velocity for only HGF mode. However, no significant difference was 

observed for both HGP mode and NHG mode.  

3. Shape Matching Score 

The main effect of tested ellipses was significant (F(2,46)=12.482; p<.01). Pre-planned 

contrasts showed that the mean DTW shape matching score was lower for horizontal ellipse (E1: 

m=20.13) and the circle (E2: m=20.18) than vertical (E2: m=27.53) ellipses (p<.05). This factor 

did not interact with training mode. The interaction between training mode and test was not 

significant (F(2,46)=0.45; p>.25). 
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General Discussion 

 The present study examined whether two well-known types of haptic guidance - HGP or 

HGF - improve the visuo-manual tracking of trajectories. The number of velocity peaks and mean 

velocity were the two criteria used to estimate the fluidity of movements. The results of 

Experiment 1, in which trained and tested movements were identical, showed that HGF mode 

reduced the number of velocity peaks for only two among four letters and increased mean 

velocity. These results were consistent with our hypotheses and within previous literature [12, 

13]. The other two modes, HGP and NHG, had no significant effect on these two performances 

criteria. Detailed analysis revealed similar effects of training modes, independent of the type of 

the letter: HGF improved performances whereas HGP and NHG showed no significant 

improvement. The lack of effect of HGP was not consistent with our hypotheses and results 

observed by Feygin et al. [2] or Teo et al. [4]. The efficiency of haptic guidances with different 

difficulty levels of trajectories could be discussed in relation to the choice of parameters 

(proportional and derivative gains) because their respective influence is not clearly established.  

In the second experiment, results showed that both HGF and HGP reduced the number of 

peaks during visuo-manual tracking of the test ellipses. These results were in concordance with 

our hypotheses and extended the results of Palluel-Germain et al. [5] with children. In the control 

group (NHG), it seems that visual feedback alone was not enough to improve the performance. 

However, only HGF mode increased the mean velocity on test ellipses in contrast to NHG and 

HGP modes. This showed that HGF better improved the fluidity of movements than HGP. 

Contrary to our results, Palluel-Germain et al. [5] observed that HGP increased mean velocity 

with children. This suggests that HGP may be less suitable for adults since adults would have 

better knowledge of the shape they had to draw and better kinesthetic control of their upper 

limbs. The global superiority of HGF over HGP suggested that learned information for this 

specific motor activity could be stored as internal inverse model and encoded in force coordinates 
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as suggested by Krakauer [17]. This suggests taking into account the type of feedback 

information included in these internal models because the effects of visual, position or force 

information were non equivalent. Thus, kinematics information could be encoded in reference to 

force coordinates rather than spatial Cartesian coordinates. We could also discuss these results 

with respect to different internal representation stages of motor knowledge, which evolve from 

children to adults (creation of internal representation - internal inverse models [18] or generalized 

motor plan - or adjustment of this knowledge). Moreover, our results could be explained by the 

generalization of shapes during training session that helped to integrate these trajectories. By 

providing several training trajectories, adjustment of internal representations could be more 

involved and thereby improved. This proposes that a motor learning task (as drawing) would be 

improved by variability of required movements as evidenced in sports [19]. Further questions 

remain unanswered: As human handwriting production is variable by nature, would a 

handwriting training with variability in letters be efficient? In which way can we introduce 

variability in letters? Could variability within the letters be a set of several letters produced by 

experts? Further theoretical definition of variability needs to be investigated. 

 Finally, Dynamic Time Warping (DTW) score gives a score (level) of shape matching 

between two trajectories: Expected and recorded trajectories. This criterion was used in previous 

studies [12] to assess the effect of haptic training on the shape of a trajectory. In both 

experiments, no effect of training modes on the shape matching criterion was found. These 

former results did not confirm the effect on shape matching observed by Srimathveeravalli et al 

[12]. The lack of improvement could be explained by a “ceiling effect” on the shape matching 

criterion, due to expert ability of adults and by different experimental designs (the authors [12] 

hide the model trajectory during recall phase, thereby suppressing any visual help).  

 In conclusion, we found a positive global effect of the HGF mode on the fluidity of 

movements in the two experiments. The superiority of this type of haptic guidance suggests that 
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position information is mainly given by visual modality (no improvement of shape by adding 

haptic guidance) and kinematics information is given by haptic modality, probably encoded in 

force coordinates. Moreover, this study explored the use of variability in learning sessions: 

knowledge extracted from a set of trajectories (elliptical paths) during the training period of 

haptic guidance can be applied to unfamiliar trajectories of the same type, suggesting a 

generalization process.  
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Figure Legends 

 

Figure 1 –  Schematic view of haptic guidances: (a) Haptic guidance in position (HGP); the 

force felt by the user at time t is proportional to displacement between the current user position 

and the theoretical position on the model trajectory; (b) Haptic guidance in force (HGF); the force 

felt by the user at time t is the same as the force existing for the theoretical trajectory at the same 

time. 

 

Figure 2 – System overview: (a) The modified stylus pen; (b) The graphic User Interface 

displayed to the subject; (c) A subject undergoing training on the WYSIWYF interface.  

 

Figure 3 –  Letters proposed in experiment 1:  Letters 1 and 2 are Arabic and letters 3 and 4 

are “Japanese-like” letters. 

 

Figure 4 – All ellipses used in experiment 2:  In red, the three references trajectories used 

before and after each training session; In green and blue, the trajectories used during the training 

sessions, equidistant in the choice of their diagonals (eccentricity).  

 

 



Haptic guidance - 24 
 

Table 1 – Summary of raw data of Experiment 1 (mean ±  SE).  

Note: * means a significant difference given (post-hoc Tukey test; <.05).  

 
 
 
 Number of velocity 

peaks 
Sig. Mean Velocity (cm/s) Sig. DTW Sig.

 Pre-test 
M 

± SE 

Post-test 
M 

± SE 

 Pre-test 
M 

± SE 

Post-test 
M 

± SE 

 Pre-test 
M 

± SE 

Post-test 
M 

± SE 

 

NHG 9.87 
± 1.43 

9.99 
± 1.42 

 5.8 
± 0.5 

5.6 
± 0.45 

 45.77 
± 2.21 

45.09 
± 1.57 

 

HGP 10.17 
± 1.37 

9.21 
± 1.05 

 5.40 
± 0.43 

5.69 
± 0.43 

 45.38 
± 2.34 

46.39 
± 2.6 

 

HGF 10.82 
± 1.16 

8.58 
± 1.16 

* 4.97 
± 0.4 

6.34 
± 0.52 

* 45.29 
± 1.83 

45.90 
± 2.14 
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Table 2 – Summary of raw data of Experiment 2 (mean ± SE).  

Note: * means a significant difference given (post-hoc Tukey test; <.05).  

 

 

 Number of velocity 
peaks 

Sig. Mean Velocity Sig. DTW Sig. 

 Pre-test 
M 

± SE 

Post-test 
M 

± SE 

 Pre-test 
M 

± SE 

Post-test
M 

± SE 

 Pre-test 
M 

± SE 

Post-test
M 

± SE 

 

NHG 11.36 
± 1.89 

13.80 
±  2.37 

 5.66 
± 0.55 

5.14 
± 0.61 

 23.85 
± 2.77 

21.18 
± 1.75 

 

HGP 14.48 
± 2.37 

10.19 
± 1.58 

* 5.13 
± 0.63 

5.88 
± 0.52 

 20.83 
± 1.48 

20.39 
± 1.23 

 

HGF 14.19 
± 1.91 

9.20 
± 1.38 

* 4.62 
± 0.48 

6.23 
± 0.54 

* 22.84 
± 2.9 

21.99 
± 1.43 
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