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Abstract. Multiple sequence alignment is a key process in today’s biol-
ogy, and finding a relevant alignment of several sequences is much more
challenging than just optimizing some improbable evaluation functions.
Our approach for addressing multiple sequence alignment focuses on the
building of structures in a new graph model: the factor graph model.
This model relies on block-based formulation of the original problem,
formulation that seems to be one of the most suitable ways for capturing
evolutionary aspects of alignment. The structures are implicitly built by
a colony of ants laying down pheromones in the factor graphs, according
to relations between blocks belonging to the different sequences.

1 Introduction

For years, manipulation and study of biological sequences have been added to
the set of common tasks performed by biologists in their daily activities. Among
the numerous analysis methods, multiple sequence alignment (MSA) is probably
one of the most used. Biological sequences come from actual living beings, and
the role of MSA consists in exhibiting the similarities and differences between
them. Considering sets of homologous sequences, differences may be used to
assess the evolutionary distance between species in the context of phylogeny. The
results of this analysis may also be used to determine conservation of protein
domains or structures. While most of the time the process is performed for
aligning a limited number of thousands bp-long sequences, it can also be used at
the genome level allowing biologists to discover new features that could not be
exhibited at a lower level of study [E] In all cases, one of the major difficulties is
the determination of a biologically relevant alignment, performed without relying
explicitly on evolutionary information like a phylogenetic tree.

Among existing approaches for determining such relevant alignments, one of
them rests on the notion of block. A block is a set of factors present in several
sequences. Each factor belonging to one block is an almost identical substring. It
may correspond to a highly conserved zone from an evolutionary point of view.
Starting from the set of factors for each sequence, the problem we address is the
building of blocks. It consists in choosing and gathering almost identical factors
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common to several sequences in the most appropriate way, given that one block
cannot contain more than one factor per sequence, that each factor can belong
to only one block and that two blocks cannot cross each other. For building such
blocks, we propose an approach based on ant colonies. This problem is very close
to some classical optimization issues except that the process does not use any
evaluation function since it seems unlikely to find a biologically relevant one.
As such, it also differs notably from other works in the domain setting up ant
colonies for computing alignments for a set of biological sequences [E,E]

The following section details the proposed graph model. Sect. E goes deeper
into the ant algorithm details. Finally, Sect. E studies the behavior of the algo-
rithm with examples.

2 Model

There exist many different families of algorithms for determining multiple se-
quence alignments, dynamic programming, progressive or iterative methods,
motif-based approaches... However, if the number of methods is important, the
number of models on which these methods operate is much more limited. In-
deed, most algorithms use to consider nucleotide sequences either as strings or
as graphs. In any case however, the problem is formulated as an optimization
problem and an evaluation function is given. Within this paper, we propose an-
other approach based on a graph of factors, where the factors are sub-sequences
present in, at least, two sequences. Instead of considering these factors individu-
ally, the formulation considers that they interact with each other when they are
neighbors in different sequences, such that our factor graph may be understood
as a factor/pattern interaction network. Considering such a graph, a multiple
sequence alignment corresponds to a set of structures representing highly inter-
acting sets of factors. The original goal may be now expressed as the detection of
such structures and we propose to perform such a task with the help of artificial
ants.

2.1 Graph Model

An alignment is usually displayed sequence by sequence, with the nucleotides
or amino acids that compose it. Here the interest is given to the factors that
compose each sequence. So each sequence of the alignment is displayed as a list
of the factors it is composed of. Fig. EI illustrates such a representation, where
sequences are displayed as series of factors.

There exists a relation between factors (named 1, 2 and 3 in Fig. ) as
soon as there are almost identical. Indeed, two identical factors on different
sequences may be aligned. Such an alignment aims at creating blocks. Together
with factors, these relations can be represented by a graph G = (V| E). The set
V' of nodes represents all the factors appearing in the sequences, and edges of
FE link factors that may be aligned. These graphs are called factor graphs. A
factor graph is a complete graph where edges linking factors attending on the
same sequence are removed. Indeed, a given factor f may align with any other



sequence 1 1 2 3
sequence 2 2 1 3

sequence 3 2 1 3 3

Fig. 1. This is a set of three sequences. Common subsequences of these sequences
which are repeated are labeled. After the conversion, each sequence of the align-
ment is displayed as a list of factors. Here sequence 1 = [1,2,3], sequence 2 =
[2,1,3] and sequence 3 = [2,1,3,3]. Thin lines link factors that may be aligned
together.

identical factor f’ provided f’ does not belong to the same sequence. In Fig. m,
thin links between factors illustrate the possible alignments between them.

From a graph point of view the sequential order ”sequence by sequence” has
no sense. The alignment problem is modeled as a set of factor graphs. So as to
differentiate the different factors, they are given a unique identifier. Each factor
is assigned a triplet [z,y, 2] where = is an identifier for the pattern, y is the
identifier of the sequence the factor is located on and z is the occurrence of this
pattern on the given sequence. For instance, on Fig. EI, the bottom right factor
of the third sequence is identified by the triplet [3, 3, 2]. Namely, it is the pattern
73”7, located on the sequence 3 and it occurs for the second time on this sequence,
given the sequences are read from left to right.

Using that model the sequences are not ordered as it is the case when con-
sidering progressive alignment methods. Fig. E illustrates such graphs according
to the representation of Fig. m

2 [ 1 o
2 3 1 3
2 3 1 o

3 3
Fig. 2. The alignment seen in Fig. |1| displayed as a set of factor graphs.

From each factor graph a subset of factors may be selected to create a block.
If the block is composed of one factor per sequence, it is a complete block, but
if one sequence is missing the block is said partial. Not all block constructions
are possible since blocks crossing is not allowed and the selection of one block
may prevent the construction of another one. For instance, from Fig. m one can
observe that a block made of factors “1” may be created. Another block with
factor “2” may also be created. However, both blocks cannot be present together
in the alignment. These blocks are said incompatible. A group of blocks is said
to be compatible if all couples of blocks are compatible.



Another relation between potential blocks can be observed in their neigh-
borhood. Indeed, a strong relevance has to be accorded to potential blocks that
are closed to one another and that do not cross. If two factors are neighbors
in many sequences, there is a high probability for these factors to be part of a
bigger factor with little differences. Such relations are taken into account within
our approach and are called friendly relations. An example of friendly relation
in the sample alignment can be observed sequences 2 and 3 between factors “1”
and “27.

The factor graphs are intended to represent the search space of blocks accord-
ing to the set of considered factors. However, they do not capture compatibility
constraints and friendly relations between blocks. For that purpose, we first con-
sider G’ = (V', E’) dual graph of G = (V, E), G being the graph composed of the
entire set of factor graphs. The set V' of G’ corresponds to the set E of G. Each
couple of adjacent edges e1,es € E corresponds to one edge in E’. Moreover,
in order to represent compatibility constraints and friendly relations two new
kinds of edges have to be added to this graph: namely F,. for compatibility con-
straints and E for friendly relations. We call relation graph (Fig. E) the graph
G.=(V',E'UE;U E,).
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Fig. 3. The relation graph G, based on the dual graph of G with additional edges
corresponding to compatibility constraints, represented by thick plain edges, and
friendly relations, represented by dashed links.

Our approach makes use of both graphs. Ants move within the factor graphs,
but their actions may also produce some effects in remote parts of the factor
graphs, according to relation graph topology as explained in Sect. E



2.2 Ants for Multiple Sequence Alignment

Ant based approaches have shown their efficiency for single or multiple criteria
optimization problems. The central methodology being known as Ant Colony
Optimization [ﬂ] Ants in these algorithms usually evolve in a discrete space
modeled by a graph. This graph represents the search space of the considered
problem. Ants collectively build and maintain a solution. Actually, this construc-
tion takes place thanks to pheromone trails laid down the graph. The search is
led both by local information in the graph and by the global evaluation of the
produced solutions.

The model issued in the previous section proposed a graph model that raises
local conflicts and attractions that may exist in the neighborhood of the fac-
tors in the alignment. For this, the model may handle the local search needed by
classical ACOs. However, providing a global evaluation function for this problem
is unlikely. Indeed, defining a relevant evaluation function for MSA is in itself
a problem since the evaluation should be aware of the evolutionary history of
the underlying species, which is part of the MSA problem. Molecular biologists
themselves do not all agree whether or not one given alignment is a good one.
Popular evaluation functions like the classical sum of pairs [m] are still debated.
As a consequence, instead of focusing on such a function, our approach con-
centrates on building structures in the factor graphs according to the relation
graph. These structures correspond to compatible blocks. The building of blocks
is made by ants which behavior is directly constrained by the pheromones they
laid down in the graph and indirectly by the relation graph since this graph has
a crucial impact on pheromone deposit location.

The global process can be further refined by taking into account the size of
the selected factors, as well as the number of nucleotides or amino acids located
between the factors of two neighbor blocks. These numbers are called relative
distances between factors in the sequel. Thus, the factor graphs carry local in-
formation necessary to the ant system and acts like the environment for ants.
Communication via the environment also known as stigmergic communication
[E] takes place in that graph; pheromones trails are laid down on the edges ac-
cording to ants move, but also according to the relation graph. A solution of the
original problem is obtained by listing the set of compatible blocks that have
been bring to the fore by ants and revealed by pheromones.

3 Algorithm

The proposed ant-based system does not evaluate the produced solutions, in this
way it is not an ACO. However, the local search process remains widely inspired
from ACOs. The general scheme of the behavior of the ant based system follows
these rules:

— Ants perform walks into the factor graphs.
— During these walks each ant lay constant quantities of pheromones down on
the edges they cross.



— This deposit entails a change in pheromone quantities of some remote edges
according to the relation graph G, as described in Sect. .

— Ants are attracted by the pheromone trails already laid down in the envi-
ronment.

Finally a solution to the problem is a set of the most pheromone loaded edges of
the factor graph that are free from conflicts. In the following section pheromone
management is more formally detailled.

3.1 Pheromone Trails

Let 7;; be the quantity of pheromone present on edge (i,5) of graph G which
links nodes ¢ and j. If 7;;(¢) is the quantity of pheromone present on the edge
(¢,7) at time ¢, then Ar;; is the quantity of pheromone to be added to the total
quantity on the edge at the current step (time ¢+ 1). So:

7ij(t +1) = (1 — p).7i;(t) + A5 (1)

Note that the initial amount of pheromone in the graph is close to zero and
that p represents the evaporation rate of the pheromones. Indeed, the modeling
of the evaporation (like natural pheromones) is useful because it makes it possible
to control the importance of the produced effect. In practice, the control of this
evaporation makes it possible to limit the risks of premature convergence of the
process.

The quantity of pheromone Ar;; added on the edge (i,7) is the sum of the
pheromone deposited by all the ants crossing the edge (i,j) with the new step
of time. The volume of pheromone deposited on each passage of an ant is a
constant value Q. If m ants use the edge (¢, j) during the current step, then:

Aty =mQ (2)

3.2 Constraints and Feedback Loops

Generally speaking, feedback loops rule self-organized systems. Positive feedback
loops increase the system tendencies while negative feedback loops prevent the
system from continually increasing or decreasing to critical limits. In this case,
pheromone trails play the role of positive feedback loop attracting ants that will
deposit pheromones on the same paths getting them more desirable. Friendly
relationship found in the G, graph may also play a positive feedback role. Indeed,
more pheromones are laid down around friendly linked blocks. On the other side,
conflicts between blocks act as negative feedback loops laying down ’negative’
quantities of pheromone.

Let consider an edge (4,7) that has conflict links with some other edges.
During the current step, the ¢ ants that cross edges in conflict with edge (7, )
define the amount of negative pheromones to assign to (7, j): ATZ-CJ-O"f tict — Q.



Besides, an edge (i, ) with some friendly relations will be assigned positive
pheromones according to the f ants that cross edges in friendly relation with
(i,7) during the current step : ATZ-];”e"dly = fQ.

Finally, the overall quantity of pheromone on one given edge (i,j) for the
current step defined in equation E is modified as follow:

Arij = Aryj + Arfyiendts _ pgeontict 3)

3.3 Transition Rule

When an ant is on vertex i, the choice of the next vertex to be visited must be
carried out according to a defined probability rule.

According to the method classically proposed in ant algorithms, the choice
of a next vertex to visit is influenced by 2 terms. The first is a local heuristic
based on local information, namely the relative distance between the factors (d).
The second term is representative of the stigmergic behavior of the system. It is
the quantity of pheromone deposited (7).

Remark 1. Interaction between positive and negative pheromones can lead on
some edges to an overall negative value of pheromone. Thus, pheromones quan-
tities need normalization before the random draw is made. Let max be an upper
bound value computed from the largest quantity of pheromones on the neigh-
borhood of the current vertex. The quantity of pheromone 7;; between edge i
and j is normalized as max — 7.

The function N (i) returns the list of vertices adjacent to ¢ (its neighbors).
The next vertex will be chosen in this list. The probability for an ant being on
vertex ¢, to go on j (5 belonging to (N (7)) is:

a B
P(ii) = [mazlf'rij i ] 4
(if) = SO (4)

ZsEN(i) [mazf'ris tdis ]

The parameters a and § make it possible to balance the impact of pheromone
trails relatively to the relative distances.

4 Analysis

First experiments on real sequences have been performed. Fig. Ecompares some
results obtained by the proposed structural approach and the alignment provided
by ClustalW. This sample shows that the visible aligned blocks can be regained
in the results given by ClustalW. However, results are still to be evaluated.
Indeed, it may happen that some blocks are found by our method while they are
not detected by ClustalW. Anyway, we are aware of the necessity of additional
analyses and discussions with biologists in order to validate this approach.



1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1
GAGGCTTCTGGATTCT -GTCAGGGAAGGCTGTGAAGCTGGC-ATGGGATTCCAAGA----- - - - TGTT

ClustalW GAGGACTCTGGATCGT -ATCAATTAAAACTG - - AAGATAGC-AT - -GATTTGATGA - - -ATTTAGGAG
GAGGACTCTGGATTTTTGTCAACTAACTCTGTGAACATAGCCATCAGATTTGATGAGGAACTTAGGAG

1 1 1 1 1 1 1 1 1 1 1

------ TCTGGATtctgtcagggaagg -CTGTGAAgc tggcatgggattccaa - --------------
GAGGACTCTGGATcgtatcaattaaaactgaagatagcat------ GATTTGATGAat ---TTAGGAG
ApPProach s AGGACTCTGGAT t t t tgtcaac taac tOCTGTGAAca tagccatcaGATTTGATGAggaac TTAGGAG

Structural

Fig.4. Alignment of 3 sequences of TP53 regulated inhibitor of apoptosis 1
for Homo sapiens, Bos taurus and Mus musculus. Comparison of the alignment
given by ClustalW and our structural approach. The red uppercase nucleotides
on the structural approach are the blocks.

5 Conclusion

In this paper was proposed a different approach, for the problem of multiple
sequence alignment. The key idea was to consider a problem of building and
maintaining a structure in a set of biological sequences instead of considering an
optimization problem. Preliminary results show that the structures built by our
ant-based algorithm can be informally compared, on a pattern basis, with the
results given by ClustalW.

The outlook for the project is now to prove the efficiency and the relevance
of the method, in particular, an important chunk of future work will concern the
comparison of the differences between conserved regions provided by ClustalW
and other well-known multiple sequence alignment methods and our approach.
The second perspective focuses on the performance of the method. Indeed, the
way blocks are built and intermediate results allow us to consider a kind of divide-
and-conquer parallel version of this tool. Most recent results and advances will
be made available on www.litislab.eu.
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