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Abstract. We present a review of coherent-vortex dynamics obtained thanks
to large-eddy simulations (LES) associated with simple and effective vortex-
identification and animation techniques. LES of a large class of constant-density
or weakly compressible three-dimensional flows have been carried out. In isotropic
turbulence, we present the formation and evolution of spaghetti-type vortices,
seen thanks to Q, vorticity and pressure, together with the time evolution of the
kinetic energy, enstrophy and skewness. In a spatially growing boundary layer
on a flat plate, one observes during transition big Λ vortices lying on the wall
(with very well correlated oblique induced low- and high-speed streaks) shedding
smaller hairpin vortices around their tips. In the developed boundary layer, we
show animations of the purely longitudinal low- and high-speed streaks, as well as
animations of low-pressure regions. In a backwards-facing step, we examine the
influence of upstream conditions upon the flow structure, by comparing two inflow
conditions: a white noise superposed on a mean velocity profile and a realistic
turbulent boundary layer. The latter three-dimensionalizes the flow downstream
of the step and reduces the reattachment length. In both cases big staggered
arch vortices form, impinge the lower wall and are carried away downstream.
In a two-dimensional (2D) square cavity, spanwisely oriented vortices are shed
behind the upstream edge, and impinge the downstream edge, transforming into
arch vortices very similar to the back-step case. These arch vortices are also found
behind a 2D rectangular obstacle with wall effect. We discuss the relevance of
the vortices found with respect to reality. All these eddies are very important in
terms of drag and noise reduction in aerodynamics and aeroacoustics.

PACS numbers: 47.27.Eq, 47.27.Gs, 47.27.Nz, 47.32.Ff
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1. Introduction

This work is a review of recent large-eddy simulations (LES) of constant-density or weakly
compressible turbulent flows carried out in Grenoble. Emphasis is put mainly on the dynamics
of coherent vortices which are observed within these LES. It will be seen that the vortices found
have a universal character, in the sense that the various types of structure encountered are not
numerous.

The flows considered will be either of uniform density (decaying isotropic turbulence,
incompressible backward-facing step), or weakly compressible (boundary layer developing on
a flat plate, back-step, two-dimensional (2D) square cavity and 2D rectangular obstacle with
wall effect).

In isotropic turbulence, thanks to LES one recovers the spaghetti-type vortices which were
first found in the direct numerical simulations (DNS) of Siggia [1] (who called them bananas).
The origin of these vortices as resulting from a Kelvin–Helmholtz type instability of vortex sheets
formed during an initial stage of evolution is not obvious in our LES.

In detached flows, we see spiral Kelvin–Helmholtz vortices very clearly, which are realigned
into big longitudinal vortices which travel with the flow. Here, LES are a good tool of study,
since instabilities controlling these processes are of an inviscid type, and not very much affected
by the subgrid eddy viscosity if the latter is not sensitive to the large-scale shears. This is the
case of subgrid models chosen in the following simulations. In boundary layers, we find with
LES thin quasi-longitudinal vortices, as in DNS and laboratory experiments.

2. Decaying three-dimensional isotropic turbulence

It is well known that coherent vortices exist in developed three-dimensional (3D) isotropic
turbulence (both forced and freely decaying), in the form of thin randomly orientated tubes
where vorticity has concentrated. Their length is approximately the turbulence integral scale.
As already mentioned, they were first discovered in forced DNS (at low Reynolds number) by
Siggia [1], and their existence was confirmed still with DNS at higher Reynolds number by She
et al [2], Vincent and Ménéguzzi [3] and Jimenez and Wray [4]. Métais and Lesieur [5] found
them in LES of decaying turbulence at zero molecular viscosity, and checked there was some
correlation between high-vorticity tubes and low-pressure ones. Here, the pressure is a ‘macro-
pressure’ P , which is the filtered pressure corrected to account for the trace of the subgrid-stress
tensor, and is eliminated from the filtered momentum equation with the aid of the filtered
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Figure 1. Animation of low-macro-pressure isosurfaces from t = 0 to 15 initial
large-eddy turnover times, ki = 4, 1283 modes.

continuity equation. Experimentally, similar vortices were found by Cadot et al [7]. A very
simple argument to explain the low-pressure/high-vorticity correlation (see [6] and [7]) is that,
in a frame linked to a fluid parcel assumed to wind around a coherent vortex, the parcel is
approximately in balance between centrifugal and pressure-gradient forces, and therefore the
vortex centre will be a pressure trough. Let us also mention that Robinson [8] used pressure to
characterize vortices in boundary layers.

Dubief and Delcayre [9] compared in DNS of decaying isotropic turbulence various criteria
to identify coherent vortices, including high vorticity modulus and low pressure, and also found
a good correlation, although the low-pressure tubes are fatter and involve larger scales than their
vorticity-based counterparts. But, up to now, no animation of these vortices has been published
in a regular journal.

In [10], various LES of decaying 3D incompressible isotropic turbulence using the spectral-
dynamic model [11] starting with an initial Gaussian velocity field (of kinetic-energy spectrum
decreasing exponentially at high k) and without molecular viscosity were developed, with
emphasis put on the large-scale and infrared kinetic-energy and pressure statistics. For this
purpose, the initial kinetic-energy infrared spectral exponent s0, such that the initial energy
spectrum E(k, 0) ∝ ks0 as k → 0, was varied, and the energy peak was put close to the cut-off
wavenumber kC . Confirmation of the infrared k4 energetic spectral backscatter was provided,
as well as a time-decaying k2 infrared pressure spectrum. In the present work, we rather focus
on coherent-vortex dynamics, studied in a LES using the same subgrid model. We take s0 = 4.
We will start with simulations involving 1283 collocation points, and initial spectral peak of
ki = 4 (the minimum wavenumber being kmin = 1), which means in physical space that the
most energetic initial forcing waves have a length scale of one quarter of the box size.

Let us define the initial large-eddy turnover time as Tin = 1/(vki), where (1/2)v2 is the
initial kinetic energy. Let v0 = v/

√
3 be the rms velocity fluctuation in any direction of space.

We will examine the formation and evolution of coherent vortices from t = 0 up to about 10Tin.
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Figure 2. Animation of Q-isosurfaces at a given positive threshold; same
conditions as in the animation of figure 1.

The recognition of vortices will be based upon three criteria:

(i) isosurfaces of positive Q, where Q is the second invariant of the filtered velocity-gradient
tensor (see [9]), equal here to ∇2P/2ρ for a uniform-density flow;

(ii) isosurfaces of the vorticity-vector norm and

(iii) isosurfaces of low macro-pressure P .

Our pressure is in fact of zero average, so that low pressure corresponds to negative values. The
reader is referred to Dubief and Delcayre [9] for a review of certain vortex identification criteria
in various flows without and with shear.

In the three animations to be presented now, the lower and left sides of the computational
box are coloured by the value of the associated quantity on this side. In the pressure animation
(see figure 1), the pressure threshold is fixed in time and chosen equal to −2.1v2

0 (pressure is
divided by density). The threshold values for P, Q and the vorticity are chosen empirically to
give the best visual representation of vortices. The pressure animation starts with a few big
low-pressure structures, in the form of sorts of billows and even bubbles, some of which seem
to be attached to the billows. These structures are associated with the initial non-divergent
Gaussian field. These big Gaussian structures evolve and interact in a complicated manner
which is difficult to follow, in such a way as to become thinner and thinner. At t = 7 they have
nearly totally disappeared, at least as far as the particular threshold is concerned. Notice on the
left-hand side of the box an initial low-pressure peak (due to initial conditions), whose intensity
diminishes, then grows again at about t = 2, then decreases. In the animation of figure 2, where
the threshold is Q = 300(v0kmin)2, nothing is seen at the initial instant. Then the animation
displays the progressive formation of tubes (much thinner than the pressure tubes) which have
filled the space at t = tc = 4. After this time, one sees the rapid appearance of small-scale
turbulence which seems to be due to the breakdown of larger-scale tubes in some regions of
the flow, and is finished at t = 5. Afterwards, one observes a superposition of large-scale and
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Figure 3. Animation of the vorticity modulus; same conditions as in the
animation of figure 1.

fine-scale tubes, as well as other small scales not organized into tubes. Turbulence seems to be
more intermittent in the sense that coherent structures occupy a smaller fraction of space. The
animation of figure 3 shows in the same conditions the evolution of the vorticity modulus (at
a threshold 30v0kmin) up to t = 10. One sees hardly any difference when comparing with Q,
and the formation of vortex sheets which by roll-up would generate the coherent vortices is not
obvious. On the left-hand side of the box, and in contrast to the amplitude of pressure troughs,
the intensity of high vorticity increases continuously during several turnover times.

One notices that the critical time tc discussed above is not far from the ‘catastrophe’ time
t∗ arising in statistical theories of 3D isotropic turbulence, based on two-point closures of the
eddy-damped quasi-normal Markovian (EDQNM) type: in the limit of zero molecular viscosity,
the kinetic energy is conserved before t∗, and decays at a finite rate above. Still in this limit, the
enstrophy blows up and becomes infinite at t∗, while a k−5/3 kinetic-energy spectrum extending
to infinity at high wavenumbers forms (see [6, 12, 13]). Figure 4 presents in our LES the time
evolution of resolved kinetic energy and enstrophy. Here, energy starts dissipating slightly before
2, while the enstrophy peaks at t ≈ 4.5. This is due to the fact that we are in a LES, and was
also noticed by Ackermann and Métais [14]. Such a behaviour is easily understandable in the
framework of a typical spectral-eddy viscosity-based LES. Indeed, let us consider the resolved
(for k ≤ kC) kinetic-energy spectrum evolution equation in the LES as

∂

∂t
E(k, t) = T<kC

(k, t) − 2νt(k|kC)k2E(k, t), (1)

where νt(k|kC) is the spectral eddy viscosity, proportional to
√

E(kC , t)/kC , and T<kC
(k, t)

the resolved kinetic-energy transfer, which is energy conservative in the sense that
∫ kC

0
T<kC

(k, t) dk = 0. We recall that no molecular viscosity is present in these simulations.
The typical time evolution of the kinetic-energy spectrum may be split into three stages:

(i) a first ‘inviscid’ period where the spectrum spreads out towards high wavenumbers while
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Figure 4. Time evolution of kinetic energy and enstrophy in the run ki = 4, 1283

modes. Time is given in initial large-eddy turnover times Tin.

Figure 5. Time evolution of pressure variance and skewness in the run ki = 4,
1283 modes. Time is given in initial large-eddy turnover times Tin.

E(kC) remains negligible in such a way that the eddy viscosity is not active, energy is
conserved and enstrophy grows;

(ii) a second period where the energy spectrum at kC starts piling up to form a spectral range
not too far from k−5/3, which increases the enstrophy, while the eddy viscosity becomes
active and energy decays;

(iii) a final stage where both the energy and enstrophy decay.

Figure 5 shows the time evolution of the pressure variance in the same run, together with
minus the resolved skewness factor of the velocity derivative, a quantity which will be called
here the skewness. The pressure variance starts decreasing slightly, then peaks at t = 2, which
seems to indicate the time of formation of large pressure tubes. The resolved skewness peaks at
about 0.55 for t ≈ 0.9, then decreases to 0.35, a value comparable to 0.4 found experimentally
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in grid turbulence. More precisely, one has to clarify this notion of resolved skewness. Let us
multiply equation (1) by k2 and integrate from 0 to kC . One obtains for the resolved enstrophy

d

dt
D(t) =

∫ kC

0

k2T<kC
(k, t) dk − 2

∫ kC

0

νt(k|kC)k4E(k, t) dk. (2)

One can thus relate this expression to the resolved skewness s̄(t), defined here as the skewness
factor of −∂ū1/∂x1, u1 being any component of the velocity. Indeed, and in analogy with what
is done in the general theory of isotropic turbulence, we have

〈

ω̄iω̄j
∂ūi

∂xj

〉

=

(

98

135

)1/2

s̄(t)D3/2. (3)

The resolved enstrophy evolution equation can be easily written in physical space as

d

dt
D(t) =

〈

ω̄iω̄j
∂ūi

∂xj

〉

+ eddy − visc . . ., (4)

in which ‘eddy − visc . . .’ means the eddy-viscous contributions. Comparison with
equations (2) and (3) permits us then to evaluate the eddy-viscous contributions as

−2
∫ kC

0
νt(k|kC)k4E(k, t) dk, and to obtain

d

dt
D(t) =

(

98

135

)1/2

s̄(t)D3/2 − 2

∫ kC

0

νt(k|kC)k4E(k, t) dk, (5)

with

s̄(t) =

(

135

98

)1/2

D(t)−3/2

∫ kC

0

k2T<kC
(k, t) dk. (6)

It is probable that for t small enough, the resolved skewness converges towards the actual
skewness of Navier–Stokes in the limit of zero molecular viscosity. The sharp initial growth of
the skewness is encouraging in terms of finite-time singularities. Indeed, Lesieur ([6, pp 190–
191], has shown a theorem stating in the Euler limit that, if the skewness grows from zero,
then decays up to strictly positive values, the enstrophy blows up at a finite time. We mention
that the EDQNM study of Lesieur and Ossia [13] shows that, in the limit of zero viscosity, the
skewness grows to a maximum value of 1.132, reached at t = 4.1, then abruptly drops to a
plateau of 0.5 corresponding to a self-similar behaviour of the energy spectrum in inertial and
dissipative scales.

We present now LES with ki = 2 and 1283 Fourier modes. We display in figure 6 (left)
the kinetic-energy and normalized-enstrophy D(t)/D(0) time evolution in units of Tin, with a
comparison to the ki = 4 case. The kinetic energy is conserved up to slightly later than 2, and
the enstrophy peaks now at t = 5.5Tin instead of 4.5. The maximal relative enstrophy is 45%
higher, which shows that vorticity stretching is more efficient in this case, due to the longer
available ultraviolet range in Fourier space. Figure 6 (right) presents the same data in units of
time D(0)−1/2, which are an alternative way of measuring time3. Figure 7 is the equivalent of
figure 6 for the skewness and pressure variance. The skewness peaks now at ≈0.8 reached at a
time slightly higher than Tin, then drops, slightly oscillates and saturates at ≈0.4. The pressure
variance has a marked peak at 3Tin. It is not clear yet whether the skewness drop at t ≈ Tin

in both cases ki = 2 and 4 is due to the spectral-cut-off effects of the LES, or is inherent to
Navier–Stokes equations in the limit of zero viscosity.

3 We note for instance that in the constant-skewness model based on equation (5) where the eddy-viscous term is
neglected, the enstrophy blows up at a time of D(0)−1/2/(0.425s0), where s0 is the value of the constant skewness
(see [6, p 189]). This yields 5.9D(0)−1/2 for s0 = 0.4, and 6.7D(0)−1/2 for s0 = 0.35.
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Figure 6. Compared time evolution of kinetic energy and relative enstrophy for
runs (ki = 2, 1283) and (ki = 4, 1283). Units of time are Tin (left) and D(0)−1/2

(right).

Figure 7. Compared time evolution of skewness and pressure variance for runs
(ki = 2, 1283) and (ki = 4, 1283). Units of time are Tin (left) and D(0)−1/2

(right).

3. Boundary layer developing on a flat plate

We present here LES using the filtered structure function model of a quasi-incompressible
(M∞ = 0.3) boundary layer (without pressure gradient) of an ideal gas developing spatially
over an adiabiatic flat plate with a low level of upstream forcing, as a continuation of the work
of [15]. The numerical methods are MacCormack-type finite differences (second order accurate
in time, and fourth order in space for the nonlinear terms). Periodicity is assumed in the
spanwise direction, and non-reflective boundary conditions are prescribed in the vertical open
boundaries. Free-slip boundary conditions are assumed on the upper horizontal plane of the
computational domain, which is rejected to infinity thanks to a proper mapping. The upstream
Reynolds number based on the displacement thickness is Rδ1 = 1000. The resolution at the wall
is y+ = 1. The upstream conditions are generated from nonlinear parabolized stability expansion
(PSE) methods [16] thanks to a code provided by Airiau et al [17]. On this upstream state, one
superposes a 3D white noise of amplitude 0.2 times the amplitude of the PSE perturbation. One
can thus reach harmonic (K-type) or subharmonic (H-type) upstream fields. The animation
of figure 8 presents the transition for these two cases. There are in fact big Λ vortices lying
on the wall and travelling with the flow, inducing low- and high-speed streaks extremely well
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(a) (b)

(c) (d)

Figure 8. u′ and Q in the animation of the transition in the spatial boundary layer
over a flat plate at Mach 0.3 ((a) harmonic forcing animation, (b) subharmonic
forcing animation, (c) zoom with Q = 0.01 animation, (d) zoom with Q = 0.02
animation).

correlated with the vortices (see below). These streaks are not longitudinal since they follow the
Λ’s legs. Downstream of ≈440δi, the streaks become purely longitudinal. This is accompanied
by the fast shedding of small hairpin vortices ejected from the tip of the Λs, as indicated by
Q-isosurfaces. A change of threshold shows for these hairpins a very complex structure, since
they seem to originate from both sides of the big Λ vortex. Similar patterns have been observed
experimentally by Christensen and Adrian [18].

We have checked that the rms longitudinal velocity component at a downstream distance
such that Rδ1 = 1670 is in between the DNS results of Spalart [19] at Reynolds numbers of
1000 and 2000. The animation of figure 9 shows both transition and developed turbulence in the
same simulation (harmonic forcing). During transition, we see isosurfaces of u′ (figure 9(a)), with
high-and low-speed streaks very well correlated with the big Λ’s legs, isosurfaces of longitudinal
vorticity (figure 9(b), with ‘anti-vorticity’, that is vorticity of opposite sign, close to the wall,
due to the no-slip condition at the boundary) and isosurfaces of fluctuating spanwise vorticity
(figure 9(c)). The latter is proportional at the wall to the drag-coefficient fluctuation. The
animations of figures 9(d) and (e) show respectively high- and low-speed streaks and low pressure
in the developed turbulence further downstream. The low-speed streaks are lifted by what seems
to correspond to the passage of quasi-longitudinal vortices which are well known to exist in
boundary layers and in channels (see [9] in the channel case). The pressure displays only the
tips and some branches of these vortices.
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(a) (b)

(d)(c)

(e)

Figure 9. Animation of the spatial boundary layer over a flat plate at Mach
0.3 (harmonic forcing); transition ((a) u′ animation, (b) ω′

x animation, (c) ω′

z

animation); developed turbulence region ((d) u′ animation, (e) P ′ animation.)

4. Backward-facing step

The same compressible LES code as for the above boundary layer is now used to simulate the
flow above a straight backward-facing step (see [20] for more details). The Reynolds number
based on the step height H is U0H/ν = 5100 (where U0 is the incoming velocity at the top of the
domain) as in the incompressible DNS of [21]. The domain dimension is 18H × 6H × 4H. The
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(a) (b)

Figure 10. Perspective view of the back-step: left animation, noisy upstream
velocity; right animation, realistic upstream velocity.

(a) (b)

Figure 11. Side view of the back-step: left animation, noisy upstream velocity;
right animation, realistic upstream velocity.

momentum thickness of the boundary layer upstream of the step is 0.13H. The first grid point
in the direction normal to the wall is at a distance of 1.3 wall units relative to the upstream
turbulent boundary layer. The Mach number is 0.3. Periodicity is assumed in the spanwise
direction, and the boundary condition at the top of the domain is non-reflective. This makes an
important difference with respect to the uniform-density DNS of [21] when free-slip conditions
are taken there. The total number of grid points is 670 000. The animations of figures 10 and 11
show Q isosurfaces (threshold 0.6U2

0 /H2) for two classes of upstream conditions modelling the
boundary layer upstream of the step:

(a) a mean velocity profile corresponding to Spalart’s boundary-layer DNS [19] perturbed by a
3D white noise of intensity 1.5U0 and

(b) a precursor calculation, with a more realistic time-dependent velocity field generated
through an extension to the compressible case of the method developed in [22]. In this
case, one can see on the right of figures 10 and 11 quasi-longitudinal vortices propagating
before the step.

In figure 10 left, one sees the regular shedding of straight quasi-2D Kelvin–Helmholtz vortices,
which appear at a distance of 1.5–2H downstream of the step. They undergo helical pairing, and
transform into big Λ vortices which impinge the lower wall and are carried away from the step.
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Figure 12. Animation of the flow above a 2D square cavity; vertical section of
vorticity norm and pressure at the wall; 3D map of Q; zoom of Q in the cavity.

Figure 10 right shows qualitatively the same events, but vortices appear very close to the step,
and the flow is much more 3D. Helical pairing seems to be triggered by the passage of upstream
longitudinal vortices passing above the step. The side views of figure 11 confirm that the flow
reattaches sooner in this case than in the noisy case. This is confirmed by the determination
of the reattachment length, which is 5.80H for (a) and 5.29H for (b). The latter value is quite
different from the value of ≈6.1H found by [21] with equivalent upstream conditions. We think
that this discrepancy may be attributed to the differences in the boundary conditions above
and downstream of the computational domain. Indeed, non-reflective boundary conditions pose
problems at low Mach numbers, since incoming characteristics should not be cancelled. This
creates pressure blockage which is certainly responsible for the error in the reattachment length.
However, we think that the LES gives qualitatively here the right vortex dynamics, which is
dominated by inviscid instabilities such as Kelvin–Helmholtz and helical pairing. Let us mention
that analogous big Lambda-shaped vortices can be found in a lot of separated flows.

5. Two-dimensional square cavity

Here, one studies a weakly compressible flow (Mach 0.1) above a flat plate, passing over a
square cavity. The latter is infinite in the spanwise direction. The Reynolds number based on
the velocity at infinity U0 and the cavity depth H is 270 000. The geometric configuration is seen
at the beginning and the middle of the animation presented in figure 12. The spanwise extent of
the cavity is 2H, and periodicity is assumed in the spanwise direction. The total number of grid
points is 688 000. The grid is refined close to the wall and in the region of strong shear between
the edges. The upstream conditions correspond to a mean velocity of a turbulent boundary layer
upon a flat plate given by a power law of the form u/U0 = (y/δ)1/7 (see [23]). The total stress
τ0 is defined by Blasius’ empirical relation

τ0

ρU2
0

= 0.0225

(

ν

U0δ

1

4

, (7)

which allows us to define the friction velocity. To this profile is superposed close to the wall a
white noise of intensity 5%. We have δ = 0.4H. The numerical methods are the same as in
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10H

1H

15H

6H

3H

0.2H

5H

Figure 13. The 2D rectangular obstacle.

the compressible situations studied above. The animation of figure 12 presents first a vertical
section of the vorticity norm, together with the pressure signal on a line y = 0 (that is, on the
upstream and downstream walls and the line joining the two edges of the cavity). The vorticity
norm reveals the passage of Kelvin–Helmholtz type vortices shed behind the first back-step and
impinging the second edge of the cavity. The pressure signal at the wall has a high frequency
associated with these vortices, and a much lower one which is certainly due to the recirculation
of the flow within the cavity. One can observe the four kinds of interaction proposed by [24],

• vortices escaping completely from the cavity (complete escape),

• vortices escaping partially from the cavity (partial escape),

• vortices completely captured by the cavity (complete clipping) and

• vortices partially captured by the cavity (partial clipping),

which is an argument in favour of the reality of our ‘LES vortices’.
The second part of the animation deals with a perspective view of Q, confirming the gener-

ation of quasi-2D vortices behind the first edge. Since the length to travel is short, they do not
have time to three-dimensionalize much. When impinging the second edge, they transform into
very coherent big Λ vortices which become arches by raising their tips, due to self-induction.
The third part of the animation is a zoom of Q inside the cavity. One sees on the top Kelvin–
Helmholtz vortices passing by. In fact, the recirculation in the cavity produces a lot of longi-
tudinal vortices and turbulence, maybe through Görtler instability due to the curvature of the
flow in the cavity. These longitudinal structures have also been observed experimentally in [25].

6. 2D rectangular obstacle with wall effect

We present now a LES of a weakly compressible flow of Mach 0.2 around a 2D (infinite in
the spanwise direction) rectangular obstacle of thickness H, length 10H, parallel to a wall and
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Figure 14. Animation of longitudinal velocity in a vertical plane parallel to the
mean flow.

Figure 15. Instantaneous vertical section of longitudinal velocity, with this
velocity at the altitude y = 0.1H.

located at a height of 0.2H above it. In fact periodicity is assumed in the spanwise direction.
The Reynolds number based on the velocity at infinity U0 and H is 165 000. The geometric
configuration is presented in figure 13. The spanwise width of the domain is 3H. The numerical
compressible methods are still the same. The upstream velocity is identical to that for the above
2D square cavity, with δ = 0.1H.

The grid of 1542 000 points is split into four subdomains. The first point above the upper
wall is at y+ = 15, which is not too bad but is of course insufficient to properly resolve the
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Figure 16. Animation of vorticity norm in a vertical plane parallel to the mean
flow.

Figure 17. Instantaneous vertical section of the vorticity modulus, still with
u(y = 0.1).

turbulent upstream boundary layer. However, the flow upstream will be dominated by a ‘rising-
march effect’, and might not be very appropriate to a proper description of the upstream
turbulent boundary layer. On the other hand, boundary layers developing above the upper
and downstream walls are much thicker than a classical boundary layer on a flat wall without
pressure gradient, which might justify the chosen resolution.

The animations show the main characteristics of the flow very well. The animation of
figure 14 is a cut, in the vertical middle plane parallel to the mean velocity, of the instantaneous
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Figure 18. Animation of Q and longitudinal vorticity.

Figure 19. Q and longitudinal vorticity.

longitudinal velocity, together with the same velocity on a line y = 0.1H. This is in the middle
of the slot between the body and the ground. An instantaneous image is presented in figure 15,
at a time whose choice will be made explicit later. The animation of figure 16 is a cut of
the vorticity norm in the same plane, still with the longitudinal velocity close to the ground.
Figure 17 is an image of this animation, corresponding to the same time as figure 15. The
animation of figure 18 is a global view of the flow, and represents iso-Q surfaces coloured by
longitudinal vorticity (positive, red; negative, blue). Figure 19 is an instantaneous view of this
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animation at the same time as above. These animations show clearly the main stages of the
upstream–downstream flow evolution.

(A) The fluid impacts the rising step.

(B) A big recirculation bubble is created on the upper side of the plate, as in the experiments
of [26].

(C) Kelvin–Helmholtz type vortices are shed from the leading edge made by the upstream ridge
and undergo dislocations, transforming into big Λ vortices.

(D) These vortices reattach on the upper wall thanks to the downflow generated by the
recirculation bubble.

(E) They detach on the trailing edge made by the downstream ridge and impinge the ground.

(F) Afterwards they keep on their way downstream, as in the reattached arch eddies already
seen above for the back-step and 2D cavity cases.

The animation of figure 20 is a front view of Q and longitudinal vorticity. It corresponds
to figure 21. One sees very clearly strong longitudinal hairpins shed from time to time above
the upper edge. In fact, the particular time of the preceding figures was chosen in order to
outline this phenomenon. These hairpins are the source of perturbations which destabilize
further downstream Kelvin–Helmholtz vortices shed behind the upstream edge. The animation
of figure 22, corresponding to figure 23, is a zoom of positive Q isosurfaces in the back-step region
(stage (D) above). The flow resembles the back-step and cavity in the reattachment region. One
sees vortices passing by as a flight of big migratory birds. They also look like quasi-longitudinal
vortices observed in boundary layers on a flat plate without pressure gradient, but are much
bigger. We note also in the animation of figure 22 the fact that the flow downstream of the slot
collides close to the wall with the upstream flow coming from the recirculation bubble behind
the back-step, and rises. We show now in figures 24–28 temporal and spanwise averages of the
following quantities: longitudinal velocity, rms longitudinal velocity, vertical velocity, pressure
and rms pressure. They indicate the existence of a large recirculating zone behind the leading
edge, where kinetic energy is maximum and pressure minimum. On the other hand, pressure is
maximum on this edge. It is also very high at the entrance of the slot under the obstacle. We
have determined the position of recirculation bubbles, drawing the lines of zero-mean longitudinal
velocity in figure 29. One clearly sees the small recirculation zone upstream of the rising step,
visible also in figure 24 and the animation corresponding to figure 15. One also sees the big upper
recirculation zone of length 7H. It is obvious that the recirculation zone behind the back-step is
much reduced with respect to a simple back-step, since the reattachment point is approximately
3.4H downstream of the step (instead of 6–7H for a regular step). Notice also between the
back-step and this recirculation zone the existence of a second recirculation pocket due to the
existence of a flow in the slot. Remark finally in the figure 14 animation a sort of exchange
between these downstream instantaneous recirculation pockets (seen as blue regions). Figure 30
displays the average eddy viscosity, which is very important in the recirculation pocket above
the obstacle, and quite significative behind the back-step. This confirms a proper behaviour
of our subgrid model, since the eddy viscosity should dissipate efficiently in regions of strong
kinetic energy, otherwise there would be an excessive local accumulation of energy which might
yield blow-up of the numerical simulation.

We have put in the computational space 63 × 30 numerical probes recording the various
signals as a function of time. They correspond to 63 positions in the plane x, y, which are
sketched in figure 31 and are recorded in the 30 z-planes of the domain. At these points, we
have determined the time–frequency spectra of pressure and velocity, averaged in the spanwise
direction. Figure 32 represents a perspective view of 22 of these pressure spectra (normalized
by the highest value), in which the vertical axis has been stretched. We recall that these
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Figure 20. Animation of the front view of Q and longitudinal vorticity.

Figure 21. Instantaneous view of figure 20 animation.

spectra are just proportional to the spectrum of the aerodynamic noise emitted by the body.
One sees that these pressure spectra start growing within the recirculation pocket above the
obstacle (positions 25, 25), together with the formation of big Λ vortices. One sees in fact
three marked peaks at point 25, then two at point 26 and one dominant frequency at point
27 corresponding to the reattachment point of the recirculation bubble. At point 28 there is a
strong attenuation of spectra. Further downstream (at the same elevation) spectra are quickly
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Figure 22. Animation of zoom of Q behind the back-step.

Figure 23. Instantaneous view of the animation of figure 22.

damped. Closer to the bottom wall, spectra are important at points 45 and 40 (just behind the
back-step), where they are much more monochromatic, then decay rapidly downstream. This
shows without ambiguity that the noise emitted is associated with the presence of coherent
vortices in the immediate neighbourhood of the wall. Velocity spectra are not shown here, but
they are fairly well correlated with pressure spectra.
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Figure 24. Mean longitudinal velocity.
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Figure 25. Rms longitudinal velocity.
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Figure 26. Mean vertical velocity.

7. Conclusion and perspectives

While biologists decipher the structure of the human genome, decisive progresses concerning
the structure of turbulence and of vortices it contains have been made thanks to deterministic
numerical solutions of the Navier–Stokes equation. Simple and effective algorithms allow us to
visualize coherent vortices and follow their evolution in time. In this respect, the Q criterion turns
out to be a robust and efficient vortex analysis tool, together with the vorticity vector modulus.
A considerable advance has been made in the last ten years with the recourse to LES, where
small-scale fluctuations are filtered out and modelled with the aid of intelligent dynamic eddy
viscosities and diffusivities: ‘intelligent’ and ‘dynamic’ in the sense that these eddy coefficients
automatically cancel out in regions of space where the flow is laminar or transitional. Indeed,
an extra eddy viscosity may very well inhibit the development of unstable waves, in the vicinity
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Figure 27. Mean pressure.
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Figure 28. Rms pressure.
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Figure 29. Zero-mean longitudinal velocity map.

of walls for instance, resulting in an unwanted relaminarization. Well carried LES of the type
presented above are now well known to predict correctly basic first- and second-order statistics
of free or wall-bounded turbulent shear flows.

In the present paper, we have attended to addressing the capability of LES to predict
properly coherent-vortex dynamics. This has been done on the basis of a review of recent
Grenoble works involving constant-density isotropic or weakly compressible shear flows (either
free or wall bounded).

In isotropic decaying turbulence, we have recovered thanks to LES the thin longitudinal
vortices found before by other authors using DNS. However, we have not found evidence that
these vortices are formed initially by vortex-sheet roll-up. The way vortices form seems to
depend upon initial conditions.
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Figure 30. Mean eddy viscosity.
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Figure 31. Location of the numerical probes.

In the very wide class of turbulent shear flows considered with LES, we find that coherent
vortices are, roughly speaking, of two types: spiral Kelvin–Helmholtz vortices, and longitudinal
vortices. Kelvin–Helmholtz vortices are of course the result of Kelvin–Helmholtz instability, and
well documented in laboratory experiments and DNS. Big longitudinal vortices may form as the
result of a longitudinal deformation of spanwise Kelvin–Helmholtz vortices in separated flows.
The origin of thin quasi-longitudinal vortices forming in turbulent boundary layers is less clear,
but again they have been recovered in experiments and DNS. The fact that we find these vortices
in LES is a good validation for these methods to capture vortex dynamics.

Vortex control by manipulation of these vortices either at the level of their generation or
during their life is essential in order to reduce drag and noise in aero- and hydrodynamics. This
is linked in particular to the control of separation and/or associated recirculation, in order in
particular to reduce the drag. Other examples of control are the reduction of the excessive noise
caused by a plane turbojet engine during takeoff, or aeroacoustic noise of an external rear-view
mirror on a passenger car. Thanks to the control of turbulence in all situations where it occurs
(transport, engines and combustion chambers, nuclear engineering), one may expect a reduction
of 20–30% of world global energetic consumption. An important application of turbulence control
is also the reduction of atmospheric, oceanic, river and lake pollution. All these studies should
associate fine non-stationary numerical simulations of the LES type with more industrial models
of the RANS type. In this respect, the approach based on the so-called non-stationary RANS
methods should be viewed more like a loosely resolved LES than like an non-stationary solution
of the Reynolds equation. This is obvious in the case of all statistically stationary turbulent
flows (such as a wake, mixing layer, back-step etc), where the Reynolds equation cannot have
any time dependence. It is well known that, when a clear shedding frequency of vortices may be
identified in the flow, phase averaging with respect to this signal gives rise to a non-stationary
equation similar to the Reynolds equation. But phase averaging is not a well defined operator
downstream of shear flows, where coherent vortices become unpredictable. It cannot be defined
at all in isotropic turbulence if no solution of the flow is known.
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Figure 32. Pressure spectra at various locations.
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