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This article studies the convergence properties of some 2D cellu-
lar automata, when a single cell is updated at random at each time
step. We tackle this question for a particular set of rules, namely,
the totalistic rules with nearest neighbours. We focus on a few
examples that represent, in our view, the diversity of behaviours
found in dimension two. These behaviours are analysed quanti-
tatively with an estimation of the time needed to converge to a
fixed point.

Key words: asynchronous cellular automata, stochastic process, two-
dimensional particle systems.

1 INTRODUCTION

The present paper is intended as a first step to understand the convergence
properties of some 2D cellular automata subjected to a random perturbation.
We focus on the fully asynchronous dynamics, where a single cell is uniformly
sampled and updated at each time step. This scheme contrasts with the classi-
cal synchronous dynamics, where each cell is updated at each time step, and
with the α-asynchronous dynamics, where each cell has a probability α to be
fired at each time unit.
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So far, asynchronous cellular automata have been mainly studied exper-
imentally. Among the first analytical results on asynchronous cellular au-
tomata, a new classification of rules was proposed in dimension 1 [3]. This
approach uses the mean time needed to reach a fixed configuration as a dis-
criminating factor. To our knowledge, the first analytical work related to two-
dimensional asynchronous CA was carried out by Regnault et al. on the Mi-
nority rule [7]. Our purpose is to determine whether the classes found in 1D
are also present in 2D, and to see if new classes appear. We select some to-
talistic rules that are, in our view, representative of the different behaviours
found in two dimensions.

One of our motivations for this work is to examine CA under the light of
their robustness to asynchronous updating. To what extent does a random
updating scheme change qualitative properties of a given system? For the
sake of conciseness, we refer to [3, 6] for a review of works related to asyn-
chronism and for a discussion on updating schemes. The different types of
convergence we exhibit, from very fast to very slow, seem to confirm that
the updating scheme is an important factor to understand the evolution of a
cellular automaton.

2 DEFINITIONS AND NOTATIONS

2.1 Topology of the environment
Let Λ be the two-dimensional square grid of size L, with torical boundary
conditions (i.e., we identify Λ with Z/L.Z× Z/L.Z). We denote by n = L2

the total number of cells ; n is the central parameter that will be used to
quantify the scaling properties of the systems.

For a cell c and an integer k, we define the sphere ∂B(c, k) as:

∂B(c, k) = {c′ ∈ Λ | d(c, c′) = k},

where d is the usual graph distance on the torus. Below is a representation of
the sphere ∂B(c, 3), with c in black and L = 10:

A configuration σ = {σc}c∈Λ is an association of each cell c to a state
σc in {0, 1}. We denote by |σ|q the number of occurrences of state q in
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configuration σ. Configurations are modified at discrete times, according to a
local transition function. The locality of the interactions between cells comes
from the association to each cell c ∈ Λ with its von Neumann neighbourhood:
N (c) = {c, c + ~n, c− ~n, c + ~e, c− ~e}, where ~n = (0, 1) and ~e = (1, 0).

2.2 Asynchronous 2D Totalistic Rules
We now define our cellular automaton as a discrete dynamical system. Each
system is determined by a function φ : {0, 1}5 → {0, 1} which governs
the interaction of the cells of the grid. Such a function φ is called a local
transition rule. In this paper, we consider only the totalistic rules, i.e., rules
φ which can be written

φ(q1, . . . , q5) = f(q1 + · · ·+ q5),

where f : {0, . . . , 5} → {0, 1}. There are 64 totalistic rules. We associate to
each function f the code Ti where i = f(0) · 20 + f(1) · 21 + · · ·+ f(5) · 25.
We also represent rules with a table, below is the table of T32:

s 0 1 2 3 4 5
f(s) 0 0 0 0 0 1

Rule T32 stands for the rule which “leaves” a cell into the state 1 if and only
if it is surrounded by all 1s.

We restrict our study to the fully asynchronous dynamics in which one sin-
gle cell is updated at each time step. To define this type of asynchronism, we
associate to each local rule φ its global updating rule Φ : {0, 1}Λ × P(Λ) →
{0, 1}Λ where Φ(σ,U) is the configuration obtained by updating the cells in
U in the configuration σ according to the local rule φ. More formally, if we
write σ′ = Φ(σ,U):

σ′c =

{
f(σc + σc+~n + σc−~n + σc+~e + σc−~e) for c ∈ U ;

σc otherwise .

A local rule φ and a sequence (Ut)t∈N of updates defines the sequence of
configurations (σt)t∈N:

σ0 ∈ {0, 1}Λ,

σt+1 = Φ(σt,Ut), for t ∈ N.

The classical synchronous updating is defined with ∀t,Ut = Λ. The fully
asynchronous dynamics is obtained by taking (Ut)t∈N as a sequence of inde-
pendent random variables (Ut)t∈N that select one cell uniformly from Λ:

(U1,U2, . . . ) = ({U1}, {U2}, . . . ) .
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The sequence (σt) is then a discrete Markov chain with values in {0, 1}Λ.

2.3 Convergence Time
For a local rule φ, we denote by Fφ the set of the fixed points of the global rule
Φ associated to φ. It consists of the configurations that remain unchanged,
whatever the cell selected for updating:

Fφ = {σ ∈ {0, 1}Λ | for any cell c ∈ Λ,Φ(σ, {c}) = σ}.

Note that for a given φ, the sets of fixed points under synchronous and
asynchronous updating are identical.

Definition 1. For a given function φ and an initial configuration σ0, let
Tφ(σ0) be the time of convergence of the sequence (σt)t∈N, that is, the ran-
dom variable:

Tφ(σ0) = min{t ∈ N |σt ∈ Fφ},

with min ∅ = +∞. The Worst Expected Convergence Time (WECT) of rule
φ is given by:

WECTφ(n) = max
σ0

E
[
Tφ(σ0)

]
.

We list three reasons for which we are interested in this quantification:

1. In dimension one, Fatès et al. [3] have studied the WECT of the El-
ementary Cellular Automata with two quiescent states. This work re-
vealed that the asymptotic behaviour of WECTf (n) provides a novel
classification of the 1D cellular automata. Precisely, they have shown
that these rules may be classified into 5 families, according to whether
WECTf (n) is Θ(n log n), Θ(n2), Θ(n3), Θ(n2n) or infinite? .

2. Another motivation comes from algorithmic complexity theory, since
cellular automata are often thought as model in computability theory.
With this point of view, it is natural to ask what happens when the
system starts from the “worse” configuration.

3. Alternatively, if we think of cellular automata as models of physical
or biological systems, studying the WECT provides us with an estima-
tion of the maximum time needed to go back to equilibrium when a
perturbation is applied.

? We write fn = Θ(gn) when there exist two positive numbers C−, C+ such that, for n

large enough, C−gn ≤ fn ≤ C+gn.
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t = 0 t = n t = 3n t = 7n

FIGURE 1
Example of a simulation for the coupon collector rule T63. Cells in state 1 (resp. 0)
are coloured in black (resp. white), a convention which is kept throughout the paper.
Simulations were obtained with the FiatLux CA simulator [2].

2.4 The results
We recover in dimension two some of the classes met in dimension one, as
well as a new one: ≈ n3/2. We have given to each of these rules a name to
facilitate their identification; this name is chosen after their global behaviour.
The five different behaviours we study are summarised in table below:

Name φ WECTφ(n) Observed behaviour
Coupon collector T63 Θ(n log n) Very fast convergence to 1Λ

Epidemic T62 ≈ n3/2 Fast convergence to 1Λ

Majority T56 Θ(n2) Fast convergence
Erratic T10 > λn (conj.) Slow convergence (metastability)
Parity Counter T21 infinite Noise-like evolution

3 FAST CONVERGENCE: POLYNOMIAL TIMES

In this section, we study three rules which converge in polynomial time, i.e.,
the scaling of their worst expected convergence time is less than a polyno-
mial in n. These three rules are presented from the quickest to the slowest
convergence time.

3.1 A Coupon Collector automaton
Our examination begins with the simple rule T63:

s 0 1 2 3 4 5
f(s) 1 1 1 1 1 1
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An update sets the cell into state 1 whatever its initial state. The only
fixed point is the all-1 configuration: F63 = 1Λ. It is reached in one step
under the synchronous dynamics. In the asynchronous case, this fixed point
is attained when each cell has been updated at least once (see Fig. 1). This
kind of process often arises in the analysis of algorithms (see e.g., [5]) ; it is
usually called a Coupon collector process.

Theorem 1.
WECT63(n) = Θ(n log n).

Proof. It is clear that the worst convergence time is attained with the config-
uration where all the cells are in state 0: σ0 = 0Λ. We introduce H(σt) =
|σt|0. At each time step, either H remains unchanged or it decreases by one.
Precisely

P(∆Ht = −1 | σt) =
H(t)

n
.

where ∆Zt denotes the increment of a function Z at time t, that is, ∆Zt =
Z(σt+1)− Z(σt). We keep this notation in the following of the article.

Thus

T63(σ0) =
n∑

i=1

Gi,

where (Gi)i≥1 is a sequence of independent r.v. with Gi a geometric r.v. of
parameter (n− i + 1)n−1. We obtain

E
[
T63(σ0)

]
=

n∑
i=1

E[Gi] =
n∑

i=1

n

n− i + 1

= nHn = Θ(n log n),

(Hk stands for the k-th harmonic number).

3.2 The Majority rule
We now turn to the Majority rule T56:

s 0 1 2 3 4 5
f(s) 0 0 0 1 1 1

An update on cell c sets this cell to the state found in majority in its neigh-
bourhood N (c). The global effect of the rule is to converge quickly to an
equilibrium where homogeneous regions of 0s and 1s coexist (see Fig. 2).
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t = 0 t = n t = 3n t = 17n

FIGURE 2
Example of a simulation for rule T56, when σ0 is a random uniform configuration.

Theorem 2.
WECT56(n) = Θ(n2).

To prove the theorem, we introduce the following Lemma [4]:

Lemma 1. Let τ be a stopping time with regard to a filtration (Ft) and (St)
a sequence of positive random variables adapted to (Ft), with S0 = s0.
Assume that there exists ε > 0 such that, for t < τ ,

E[∆St | Ft] ≤ −ε,

then
E[τ ] ≤ s0

ε
.

Intuitively, a filtration represents the information gained by an observation
of the process. For the sake of simplicity, we will not define it formally
here, we will instead simply consider that there exists a natural filtration Ft

associated to the sequence of configuration (σt).
The proof of Theorem 2 consists of two parts: the upper bound on the

WECT is obtained by considering an energy function, the lower bound by
analysing the convergence of a particular configuration.

Proof. We introduce I, an anti-similarity function that counts the number of
pairs of neighbouring cells in different states:

I(σ) = card{{c, c′} ∈ Λ2 | d(c, c′) = 1 and σc 6= σc′}.

We obtain an upper bound on the convergence time by showing that the se-
quence I(σt) is decreasing. To see why this holds, first note that if an updat-
ing changes the state of the cell, then one of the four cases below has occurred,
and then I has decreased by at least 2.
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∆I ∆I

→ −4 → −4

→ −2 → −2

Thus, for t < T ,

E[∆It | σt] ≤ − 2
n

.

Using Lemma 1 with St = I(σt), as I takes its values in {0, . . . , 2n}, we
have that for any initial configuration σ0,

E
[
Tf (σ0)

]
≤ n

2
I(σ0) ≤ n2.

Lower bound. To obtain a lower bound on the convergence time, we consider
the snake-like initial configuration σsn represented below (for L = 10):

Intuitively, this initial configuration is constructed in order to ensure that the
only way of reaching equilibrium is to “shrink” the snake by updating its two
extremities. As the probability to update one of the two extremities is 2/n,
we obtain

E
[
T56(σsn)

]
≥

|σsn|1−1∑
i=1

E[Gi],

where Gi’s are i.i.d. geometric r.v. with parameter 2/n. The snake is made of
about n/3 cells in state 1 ; as we have |σsn|1 ∼ n/3,

E
[
T56(σsn)

]
≥ Cst n2.

Remark 1. It is easy to see that the number of fixed points of T56 is expo-
nential in n. To describe more precisely the set of fixed points of the majority
rule F56, we may note that fixed points correspond to the local minima of the
“energy” function I.
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t = 0 t = 2n t = 5n t = 8n

c
0’s

1’s

ri

FIGURE 3
Top : Example of a simulation for rule T62. Bottom : Schematic view of a configura-
tion where a region of 1’s reaches the sphere ∂(c, ri).

3.3 The Epidemic automaton
Up to now, the classes of convergence we met were already known for 1D
cellular automata [3]. Let us consider the Epidemic rule T62, which conver-
gence type is new and specific to the two-dimensional case:

s 0 1 2 3 4 5
f(s) 0 1 1 1 1 1

A cell in state 0 (healthy) turns to state 1 (infected) if one of its neighbours is
in state 1 ; it then remains in this state for ever. The global effect of this rule
is to make the connected components of 1s, the 1-regions, grow and fill the
whole grid Λ.

Theorem 3. There exist two constants C−, C+ such that, for n large enough,

C−

log n
n3/2 ≤ WECT62(n) ≤ C+(log n)n3/2.

Remark 2. We conjecture that one may tighten these bounds and show that
WECT62(n) is actually of order n3/2.
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Remark 3. Our problem is very close to that introduced by Eden [1], except
that in our model, changes of state occur at random times. Richardson [8] has
shown that the 1-region R1 in the Eden model admits an asymptotic shape.
Informally, his result may be stated as follows: with infinite environment,

R1/Card(R1) → C,

where the fraction denotes a spatial rescaling operation and where C is a
deterministic convex subset of R2. This result does not tell us however at
which speed the 1-region R1 grows.

Proof. The first step is to prove that the largest convergence time is obtained
for the configurations which contain only one cell in state 1. Let us introduce
a partial order ≺ on {0, 1}Λ by:

∀(σ, η) ∈ Λ2, σ ≺ η if and only if ∀c ∈ Λ, σc ≤ ηc.

It suffices to note that Φ conserves the order ≺ in the sense that:

∀Ut ∈ Λ, σ ≺ η ⇒ Φ(σ,Ut) ≺ Φ(η, Ut).

We therefore obtain that for any two configurations σ and η such that σ ≺ η,
σt = 1Λ ⇒ ηt = 1Λ ; which proves the first step. The second step is to
establish the two bounds in Theorem 3 when σ0 contains one single cell in
state 1.

Lower bound. Let us denote by c the only 1 in the initial configuration σ0.
The idea for establishing a lower bound is to “slice” the grid into concentric
balls of center c, separated by a distance r. Let us denote by Bl the l-th ball,
i.e., Bl = ∂B(c, r × l) is the set of cells lying at distance l.r from c.

All along the process, the 1-region will grow, our objective is to find a
lower bound on the time needed to go from the (l-1)-th ball to the l-th ball.
To do this, we fix the value of r to r = dlog Le and for any l, let ρl be the first
time it reaches Bl, namely

ρl = inf
t≥0

{ ∃i ∈ Bl |σt
i = 1 },

and set ρ0 = 0, τl = ρl − ρl−1. Then

T62(σ0) ≥ τ1 + τ2 + · · ·+ τbL/2rc,

where T is the time of convergence. The upper bound follows now from:
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Lemma 2. There exists a constant C such that, for any l ≤ bL/2rc,

E[τl] ≥ C.L2.

Proof of the Lemma. Let us focus on a given l. A path joining Bl−1 and Bl of
length j is a sequence of j neighbour cells (c1, c2, . . . , cj) joining Bl−1 to Bl

i.e., (a) c1 is in Bl−1, cj is in Bl and (b) for i = 1, . . . , j − 1, d(ci, ci+1) = 1.
Below is a representation of a path in grey circles :

We first try to find an upper bound on P(τl ≤ k) . If τl is less than k, then
there exists a path joining Bl−1 to Bl of length j ≥ r, whose cells become 1
during the k steps in the time interval from ρl−1 + 1 to ρl−1 + k.

Let us denote by Comp(C, k, l) the event : “the cells of path C were set to
state 1 during the k steps from ρl−1 + 1 to ρl−1 + k”. We have that :

P(τ` ≤ k) ≤ P
( ⋃

C∈C
Comp(C, k, l)

)
where C denotes the set of paths joining Bl−1 and Bl with a length smaller
or equal than k. We can now split the calculus with regard to the sets (Cj),
where Cj is the set of paths of length j:

P(τ` ≤ k) ≤
k∑

j=r

P
( ⋃

C∈Cj

Comp(C, k, l)
)

A path in Cj starts from one of the 8(l−1)r cells of Bl−1 and performs j steps
with 3 directions available at each step. We thus have card Cj ≤ 8(l− 1)r3j .

On the other hand, for a path C = (c1, . . . , cj) ∈ Cj , let us denote by
U1, . . . , Uk be the k random variables that have updated the cells in the time
interval ρl−1 + 1 to ρl−1 + k. There exist j time steps {t1, . . . , tj} such that

{Ut1 , . . . , Utj} = {c1, . . . , cj}

We thus have that, for any path C:

P
(
Comp(C, k, l)

)
≤

(
k

j

)
j!
nj

.
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From this inequality, we derive

P(τl ≤ k) ≤
k∑

j=r

8(l − 1) r3j

(
k

j

)
1

L2j
,

≤ 8(l − 1)r
k∑

j=r

(
k

j

)
3j

L2j

Now, we remark that fixing k ≤ L2/10 gives

P(τl ≤ k) ≤ 4L
k∑

j=r

(3/10)j as (l − 1)r ≤ L/2

≤ 4L (3/10)r
.2 ≤ 8 exp (log L(1 + log(3/10))) ,

which tends to zero, as 1 + log(3/10) is negative. For our purpose, it is
sufficient to bound this probability by 1/2 (for large L). As we have P(τl >

k) = 1− P(τl ≤ k), it follows that

E[τl] ≥
L2/9∑
k=0

P(τl > k) ≥ L2

10
.
1
2
.

We now conclude the proof for the lower bound with:

T62(σ0) ≥
bL/2rc∑

l=1

E[τl]

≥ C(L/ log L)L2.

Upper bound. This bound is easier to obtain. Contrary to the proof of the
lower bound, we now consider the time ςl at which all the cells in Bl are in
state 1. Set ς0 = 0, and τl = ςl − ςl−1. Since the radius of the grid of size L

is bL/2c,
T62(σ0) = τ1 + · · ·+ τbL/2c.

Lemma 3. There exists a constant λ, independent of l and L, such that

E[τl] ≤ λL2 log l.
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Proof of the Lemma. At time ςl−1, all the cells at distance l− 1 are in state 1,
and so all the cells in Bl have a 1-neighbour, so it will be all-1 at the first time
at which its 4l cells have been updated. Thus, similarly to the proof for the
Coupon Collector automaton,

E[τl] ≤ E[G4l + · · ·+ G1],

≤
4l∑

i=1

L2

i
≤ λL2 log l.

Using Lemma 3, it follows that

E
[
T62(σ0)

]
≤

L/2∑
l=1

λL2 log l ≤ λ2L
3 log L ∼ n3/2 log n.

4 (VERY) SLOW CONVERGENCE?

We now examine two rules that illustrate how we may use analysis to distin-
guish between the “very long” and the infinite convergence times.

4.1 Metastability for an Erratic automaton
When exploring systematically the 64 totalistic rules, we observed that some
of them evolved in a metastable regime: the observation of the configurations
attained gives the impression that the system evolves “erratically” and will
never converge. However, a detailed analysis show that these rules do pos-
sess fixed points and that some of them may be attained with a convenient
sequence of updates. Among these rules, we focus on rule T10:

s 0 1 2 3 4 5
f(s) 0 1 0 1 0 0

Figure 4 shows an example of noise-like configurations and examples of fixed
points of rule T10. Hence, we can show that WECT10(n) < +∞.

Conjecture 1. There exists a constant λ > 1 such that, for n large enough,

λn ≤ WECT10(n) < +∞.

13



FIGURE 4
Left: Two typical noise-like configurations observed in the evolution of the erratic
rule T10. Right:: Two fixed points of this rule.

Remark 4. This conjecture is consistent with the simulations, since we can-
not observe convergence, except for very small grids (i.e., n = 4×4 or 6×6).

In [3], authors proved that there exist 1D CA for which the worst conver-
gence time is exponential in n. It seems however that the methods used in
dimension one do not apply here. It is an open problem to establish a proof
of convergence for rule 10 or any other 2D rule that displays metastability.

4.2 The Parity Counter
We finish our exploration of the 64 totalistic rules with rule T42:

s 0 1 2 3 4 5
f(s) 0 1 0 1 0 1

It is sometimes referred to as the Parity Counter: an update on cell c turns
it into a 1 if and only if the number of 1’s in N(c) is odd.

Theorem 4. If σ0 is not a fixed point, then T42(σ0) = +∞.
Consequently,

WECT42(n) = +∞.

Proof. Let σ0 be any initial configuration but a fixed point. There at least one
unstable cell. When one of these unstable cells is updated, for rule T42, one
of these four transitions occurs:

→

→

→

→

14



It is then easy to see that each transition is reversible, i.e., the updated cell
stays unstable (but its neighbours might be stabilised).

Remark that the proof holds only for the case where a single cell is updated
at each time step. For example, if we take two neighbouring 1-cells in a 0

grid, it becomes possible to converge to the fixed point 0Λ if the two 1-cells
are updated simultaneously:

The parity counter thus provides a simple an interesting example that shows
that a small difference in the updating function may trigger a qualitative
change in the asymptotic behaviour of a cellular automaton.

4.3 Concluding remark
According to our simulations, the spectrum of convergence times that we
studied here covers most of the totalistic rules. We ask however if there
are other convergence types. In particular, there are 8 rules (e.g., T7) for
which we observe convergence to particular patterns such as checkerboards.
In this case, we observe that boundaries between stable regions perform ran-
dom walks. It is an open problem to determine the convergence time of these
rules.

Table 1 gives a synthetic view of the 64 totalistic rules. Another challeng-
ing problem is to discriminate, among the rules for which we do not observe
convergence, which ones evolve in a metastable state and which ones are truly
non-converging.
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