J. D. Anderson-jr, Modern Compressible Flow, Series in Mechanical Engineering, 1982.

P. Angot, C. Bruneau, and P. Fabrie, A penalization method to take into account obstacles in incompressible viscous flows, Numerische Mathematik, vol.81, issue.4, pp.497-520, 1999.
DOI : 10.1007/s002110050401

E. Arquis and J. P. Caltagirone, Sur les conditions hydrodynamiques au voisinage d'une interface milieu fluide-milieu poreux: applicationàapplication`applicationà la convection naturelle, C.R. Acad. Sci. Paris II, pp.299-300, 1984.

F. S. Billig, Shock-wave shapes around spherical-and cylindrical-nosed bodies., Journal of Spacecraft and Rockets, vol.4, issue.6, 1967.
DOI : 10.2514/3.28969

Y. Cho, S. Boluriaan, and P. J. Morris, Immersed Boundary Method for Viscous Flow Around Moving Bodies, 44th AIAA Aerospace Sciences Meeting and Exhibit, 2006.
DOI : 10.2514/6.2006-1089

G. Chiavassa and R. Donat, Point Value Multiscale Algorithms for 2D Compressible Flows, SIAM Journal on Scientific Computing, vol.23, issue.3, pp.805-823, 2001.
DOI : 10.1137/S1064827599363988

G. Chiavassa and R. Donat, A Penalization technique for the efficient computation of compressible fluid flow with obstacles , Prooceedings of the XI Intl. Conf. on Hyperbolic Problems: Theory, Numerics, Applications, 2007.

A. Cohen, S. Müller, M. Postel, and S. M. Ould-kaber, Fully adaptive multiresolution finite volume schemes for conservation laws, Mathematics of Computation, vol.72, issue.241, pp.183-225, 2002.
DOI : 10.1090/S0025-5718-01-01391-6

P. Colella, D. T. Graves, B. J. Keen, and D. Modiano, A Cartesian grid embedded boundary method for hyperbolic conservation laws, Journal of Computational Physics, vol.211, issue.1, pp.347-366, 2006.
DOI : 10.1016/j.jcp.2005.05.026

R. Donat and A. Marquina, Capturing Shock Reflections: An Improved Flux Formula, Journal of Computational Physics, vol.125, issue.1, pp.42-58, 1996.
DOI : 10.1006/jcph.1996.0078

H. Forrer and R. Jeltsch, A Higher-Order Boundary Treatment for Cartesian-Grid Methods, Journal of Computational Physics, vol.140, issue.2, pp.259-277, 1998.
DOI : 10.1006/jcph.1998.5891

R. Glowinski, T. W. Pan, R. O. Wells-jr, and X. Zhou, Wavelet and Finite Element Solutions for the Neumann Problem Using Fictitious Domains, Journal of Computational Physics, vol.126, issue.1, pp.40-51, 1996.
DOI : 10.1006/jcph.1996.0118

C. Hirsch, Numerical Computation of Internal and External flows, I- Fundamental of Numerical Discretization and II-Computational Methods for Inviscid and Viscous Flows

N. K. Kevlahan and J. M. Ghidaglia, Computation of turbulent flow past an array of cylinders using a spectral method with Brinkman penalization, European Journal of Mechanics - B/Fluids, vol.20, issue.3, pp.333-350, 2001.
DOI : 10.1016/S0997-7546(00)01121-3

N. K. Kevlahan and O. V. Vasilyev, An Adaptive Wavelet Collocation Method for Fluid-Structure Interaction at High Reynolds Numbers, SIAM Journal on Scientific Computing, vol.26, issue.6, 2005.
DOI : 10.1137/S1064827503428503

K. Khadra, S. Parneix, P. Angot, and J. P. Caltagirone, Fictitious domain approach for numerical modelling of Navier-Stokes equations, Int. J. Num. Mth. Fluids, pp.34-651, 2000.

A. Kunoth, Wavelet Techniques for the Fictitious Domain-Lagrange Multiplier Approach, Numerical Algorithms, vol.27, issue.3, pp.291-316, 2001.
DOI : 10.1023/A:1011891106124

R. Leveque, Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics, pp.130-132, 2002.

R. Leveque and D. Calhoun, A Cartesian Grid Finite-Volume Method for the Advection-Diffusion Equation in, Irregular Geometries J. Comp. Phys, vol.157, pp.143-180, 2000.

C. Helzel, M. Berger, and R. Leveque, A high-resolution rotated grid method for conservation laws with embedded geometries SIAM, J. Sci. Comput, vol.26, pp.785-809, 2005.

Q. Liu and O. Vasilyev, A Brinkman penalization method for compressible flows in complex geometries, Journal of Computational Physics, vol.227, issue.2, pp.946-966, 2007.
DOI : 10.1016/j.jcp.2007.07.037

A. Marquina, Local Piecewise Hyperbolic Reconstruction of Numercial Fluxes for Nonlinear Scalar Conservation Laws, SIAM J. Sci. Comput, p.15, 1994.

S. Müller and Y. Stiriba, Fully Adaptive Multiscale Schemes for Conservation Laws Employing Locally Varying Time Stepping, Journal of Scientific Computing, vol.14, issue.2, pp.493-531, 2007.
DOI : 10.1007/s10915-006-9102-z

A. Paccou, G. Chiavassa, J. Liandrat, and K. Schneider, A penalization method applied to the wave equation, Comptes Rendus M??canique, vol.333, issue.1, p.329, 2003.
DOI : 10.1016/j.crme.2004.09.019

A. Rault, G. Chiavassa, and R. Donat, Shock-Vortex Interaction at High Mach Numbers, J. Sci Comput, vol.19, pp.1-3, 2003.

O. Roussel and K. Schneider, An adaptive multiresolution method for combustion problems: application to flame ball???vortex interaction, Computers & Fluids, vol.34, issue.7, pp.817-831, 2005.
DOI : 10.1016/j.compfluid.2004.05.011

C. W. Shu and S. J. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, II, Journal of Computational Physics, vol.83, issue.1, pp.32-78, 1989.
DOI : 10.1016/0021-9991(89)90222-2

K. Schneider and M. Farge, Adaptive Wavelet Simulation of a Flow around an Impulsively Started Cylinder Using Penalisation, Applied and Computational Harmonic Analysis, vol.12, issue.3, pp.374-380, 2002.
DOI : 10.1006/acha.2002.0378

E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 1999.
DOI : 10.1007/b79761

O. Vasilyev and N. Kevlahan, Hybrid wavelet collocation-Brinkman penalization method for complex geometry flows, International Journal for Numerical Methods in Fluids, vol.296, issue.3-4, p.40, 2002.
DOI : 10.1002/fld.307

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.421.6740

X. Zhong, Additive Semi-Implicit Runge???Kutta Methods for Computing High-Speed Nonequilibrium Reactive Flows, Journal of Computational Physics, vol.128, issue.1, pp.19-31, 1996.
DOI : 10.1006/jcph.1996.0193