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Abstract

The quantification of the quality of a structural dynamical model remains a major
issue today, and increasingly numerous methods are being devised in order to vali-
date a model by comparison with an experimental reference. This paper presents a
theory based on the concept of Lack Of Knowledge, which consists in globalizing the
various sources of errors on the substructure level using a scalar internal variable,
called the LOK variable, defined over an interval whose upper and lower bounds
follow probabilistic laws. These intervals defined on the different substructures are
then rigorously propagated through the mechanical model in order to determine
intervals with stochastic bounds including a given quantity of interest defined on
the whole structure. A general strategy of reduction of the lack of knowledge is then
discussed and applied to academic examples as well as industrial cases.
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1 Introduction

The quantification of the quality of a structural dynamical model remains a
major issue today; with regard to the comparison with an experimental ref-
erence, numerous methods have been developed, as in [1] or [2], in order to
adjust the stiffness and mass properties of dynamic models based on free- or
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forced-vibration tests. However, even an adjusted model is unable to account
for certain phenomena properly: there can be dispersion in the material prop-
erties; or the representation of some features, such as the connections, can be
oversimplified.

In order to describe such uncertainties, probabilistic methods are being in-
creasingly used [3]; in general, these methods consist in studying the conse-
quences of the uncertainties in the model’s parameters on the variability of
the results. But one can also find methods which do not necessarily involve
probability laws and are able to deal with uncertainties not related to the pure
variability of a given parameter [4–6].

The concept of Lack Of Knowledge (LOK), first introduced in [7], consists
in globalizing the various sources of errors on the substructure level using
a scalar internal variable, called the LOK variable, defined over an interval
whose upper and lower bounds follow probabilistic laws. The pair of stochastic
bounds defined on each substructure is called basic LOK; for the time being,
only the sources of errors concerning stiffnesses are considered. From these
basic LOKs associated to the different substructures, we can compute for the
whole structure the effective LOK for a quantity of interest α, resulting in
an interval with stochastic bounds that we can compare with experimental
values; this is achieved by the rigorous propagation of the basic LOK of each
substructure and its associated probability law through the mechanical model.

The comparison with experimental reality can then be made through these
effective LOKs, aiming to build a method in order to determine the basic
LOKs the most representative of the experimental reality. Here, we present
the first results, on both academic and industrial applications, of a strategy
of using additional experimental information to reduce the LOK [8].

2 Basic lack of knowledge

The theory considers the case of a structure belonging to a family of simi-
lar, but non necessarily identical, structures: each one can be modeled as an
assembly of substructures in which the connections can be viewed as special
substructures. It is on the level of these substructures that we choose to quan-
tify the uncertainties, thus globalizing all existing sources of errors. For the
time being, let us assume that these sources of errors are of the ”structural
stiffness” type. With the LOK concept we can easily estimate the comparison
between the model and reality, where reality is seen as a family of similar,
actual structures, too.
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2.1 Definition

The theory is based on the use of a given theoretical, deterministic model
which is completed by a ”LOK model”; this latter consists in associating each
substructure E of an actual structure with a LOK variable m defined over an
interval whose bounds m+

E and m−
E are formally defined as follows:

(

1 − m−
E

)

KE ≤ KE ≤
(

1 + m+
E

)

KE (1)

where KE and KE designate the stiffness matrices associated with substruc-
ture E for the actual structure and for the deterministic theoretical model
respectively; in this formal expression, inequalities can be considered as being
applied to the eigenvalues associated to the above matrices.

In practice, to express this inequality, one uses the strain energies:
(

1 − m−
E

)

eE ≤ eE ≤
(

1 + m+
E

)

eE (2)

where eE = 1
2
UT KEU denotes the strain energy of an actual structure be-

longing to the family of similar structures being studied, and eE = 1
2
UT KEU

denotes the strain energy of the deterministic theoretical model. This inequal-
ity must be verified for any displacement field U . The two quantities m+

E and
m−

E are scalar internal variables with respect to Substructure E which we call
upper basic LOK and lower basic LOK respectively.

For each substructure, the LOK m lies within the interval [−m−
E ; m+

E ], and
one cannot be more precise than that. This description corresponds to interval
analysis [9,10], which can model uncertainties which do not come from a direct
variability of the phenomena described. However, without any precaution, this
kind of description can lead to overestimated results when propagating the
intervals through the model.

That’s why we decided to defined the bounds of this interval as stochastic vari-
ables characterized by probabilistic laws whose nature is defined a priori and
whose characteristics are described by two parameters m+

E and m−
E bounding

all possible instances of m+
E and m−

E :

• for example, the probability law chosen can be uniform, and all values of
m+

E and m−
E within [−m−

E ; m+
E ] can occur in the same way;

• of course, in some cases where the model is imperfect (e.g. a nonlinear
connection represented by a linear model), the lack of knowledge is such
that the basic LOKs are not assigned a probability law: one then decides to
merely state that the LOK m lies somewhere within an interval [−m−

E ; m+
E ],

which is now deterministic. In this case, we come back to the simple interval
analysis’ description, as seen above.
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Other situations can be envisaged, such as the use of a Gaussian probability
law which is detailed in the following section.

In the general case, we have just introduced a description that is actually
close to approaches deriving from the concept of Imprecise Probabilities [6],
without our being aware of this connection at first, which explains the fact we
introduced our own tools to deal with the Lacks of Knowledge; however, we
will try to make a link between the two approaches in Section 2.4.

2.2 Illustration

When the only sources of errors being considered are related to the mate-
rial, one can reasonably assume that the LOK m of Substructure E follows a
centered normal law with the probability density p(m):

m ∈ [−m−
E ; m+

E ] with p(m) =
1√

2πσ2
e−

m2

2σ2 (3)

The standard deviation σ of the Gaussian law can be defined using the quan-

tities m+
E and m−

E , for example by setting
∫ m+

E

−m−

E

p(m)dm = 0.99; in order to

eliminate non-physical samples (−m−
E < −1), one chooses to prescribe a zero

probability density outside [−m−
E ; m+

E ], even if this means renormalizing it
afterwards.

With such a law, the probability of observing m in a given interval [−m−
E ; m+

E ]
is:

P (−m−
E ≤ m ≤ m+

E) =
∫ m+

E

−m−

E

p(m)dm (4)

Since in (2) the basic LOKs m+
E and m−

E are defined on both sides of the
theoretical model, the previous situation can be described by two independent
events:

• either m ∈ [0; m+
E ], i.e. one has the event (m−

E = 0,m+
E ≥ 0) with probability

P+(m+
E);

• or m ∈ [−m−
E ; 0], i.e. one has the event (m−

E ≥ 0,m+
E = 0) with probability

P−(m−
E).

Then, one has P+(∞) + P−(∞) = 1, and even P +(∞) = P−(∞) = 1
2

in
the particular case of a centered normal law: This situation is depicted in
Figure 1. This case shows how one can represent an uncertainty defined by
a classical probability law using our concept of lack of knowledge: depending
on the value of m obtained by random drawing, one has two distinct types of
intervals: [0; m+

E ] and [−m−
E ; 0].
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Fig. 1. Case of a Gaussian probability law (up) probability density of m
(down) P+ and P−

Of course, other probability laws could be assumed: the important idea is that,
with the use of the quantities P−(∞) + P+(m+

E) and P+(∞) + P−(m−
E) as

respective distribution functions of the upper bound m+
E and the lower bound

m−
E , we can deal with situations where the direct use of a probability density

p(m) might not be applied.

2.3 The concept of LOK-probability

However, the use of two quantities P + and P− is, in the general case, relatively
complex, so a number of mathematical, pragmatical tools were introduced in
[11].

Let us consider a family of intervals [−m−
E ; m+

E ] 3 m with m+
E + m−

E = L.
For a given L, the interval I(L) = [−m−

E ; m+
E ] is said to be standard if the

probability of having m in I(L) is maximum over the set of all intervals with
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length L, which we can write mathematically as:

I(L) = arg max
[−m−

E
;m+

E
]

m+

E
+m−

E
=L

P+(m+
E) + P−(m−

E) (5)

With this definition, one can introduce the concept of LOK- probability P (L)
by stating that for a given L, P (L) is the probability associated to the defini-
tion (5) of I(L):

P (L) = max
[−m−

E
;m+

E
]

m+

E
+m−

E
=L

P+(m+
E) + P−(m−

E) (6)

Thus, as P+(m+
E) and P−(m−

E) are linked to the distribution function of the
occurrences of the upper bound m+

E and the lower bound m−
E respectively,

the uncertain variable m has a probability bigger than P +(m+
E) + P−(m−

E)
being within [−m−

E ; m+
E ]: indeed, P+(m+

E)+P−(m−
E) < 1 means that intervals

including [−m−
E ; m+

E ] could be sampled, which increases the probability of m

being within [−m−
E ; m+

E ].

Another possible interpretation of these definitions is that if one seeks an
interval of basic LOKs such that m has at least a given probability P of being
inside, one has to consider the standard interval I(LP) such that the associated
LOK-probability P (L) equals P . One can show that this interval I(LP) is in
fact the smallest interval [−m−

E ; m+
E ] such that P+(m+

E)+P−(m−
E) = P , which

we can write mathematically as:

I(LP) = arg min
[−m−

E
;m+

E
]

P+(m+

E
)+P−(m−

E
)=P

m+
E + m−

E (7)

The situation is depicted in Figure 2, where we show the standard interval
from a family of intervals of same length L.

In the case of uniform laws, there is not unicity, but what matters is to be
able to consider a family of standard intervals defined by only one stochastic
variable, which simplifies the analysis.

2.4 Comparison with the Dempster-Shafer sets

As we outlined it before, the way we defined the basic LOKs can be related
to the concepts of Imprecise Probabilities [6]. In this section, we try to set
a bridge with the Dempster-Shafer sets [12,13], which are particular cases of
the theory of Imprecise Probabilities. In order to simplify the comparison, we
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Fig. 2. Standard interval of length L

only consider here intervals of the kind [0; m+
E ], with associated probabilities

P+(m+
E).

With 4 points of discretization for example, such that:

P+(m+
i ) =

i

4
∀i = 1, . . . , 4 (8)

we can define a Dempster-Shafer set I characterized by the following focal
elements Ai and probabilistic assignments m(Ii):

Ii = [0; m+
i ] and m(Ii) =

1

4
∀i = 1, . . . , 4 (9)

The probability for m being within an interval J ⊂ R
+ is given by the Demp-

ster rule of combination [12]:

∑

Ii⊂J

m(Ii) ≤ P (J) ≤
∑

Ii∩J 6=∅

m(Ii) (10)

With the particular case J = Ik, where k is given, we get:

k

4
=

∑

Ii⊂Ik

m(Ii) ≤ P (Ik) ≤
∑

Ii∩Ik 6=∅

m(Ii) = 1 (11)

The previous relation means that the probability for m being within Ik is
at least k

4
= P+(m+

k ). This is coherent with our previous assertion, that
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P+(m+
E) + P−(m−

E) is the best minor value of the probability for m being
the interval [−m−

E ; m+
E ].

In the following sections, we will use the LOK-probability in order to describe
the effect of the basic LOKs on quantities of interest defined on the whole
structure.

3 Utilization of the lacks of knowledge

3.1 Principle

Let us consider a quantity of interest α relative to the whole structure Ω from
the family of similar structures considered. We define ∆αmod = αmod − α,
where αmod is the quantity of interest associated with the model using the
LOK concept; α is the value associated with the deterministic theoretical
model.

Regarding the LOK model, one can associate each instance of (m−
E ,m+

E)E∈Ω

with two bounds ∆α
+
mod and ∆α

−

mod of the quantity ∆αmod: as we will see
in Section 3.2, this is simply a matter of propagating the basic LOK intervals
([−m−

E ; m+
E ])E∈Ω. As long as one knows the probability laws of the basic LOKs,

one can determine the distribution of these bounds ∆α
+
mod and ∆α

−

mod in
the form of an LOK-probability Pα(L) such that:

P (∆αmod ∈ I∆αmod
(L)) = Pα(L)∀L (12)

Again, this is the same thing as considering for a given probability P the
standard interval I∆αmod

(LP) such that P (∆αmod ∈ I∆αmod
(LP)) is bigger

than P . The two bounds of this interval I∆αmod
(LP), denoted ∆α−

mod(P ) and
∆α+

mod(P ), constitute what we call the effective LOK on the quantity of in-
terest α. So we are able to derive accurate information about the quantity of
interest αmod.

3.2 Effective LOKs

The calculation of effective LOKs applies to quantities of interest which are
common in modal analysis. Here, we are interested in measurements of free
vibrations; therefore, we are using eigenpulsations ωi and eigenmodes φ

i
as the

quantities of interest α: they are defined by the following eigenvalues problem:

(K − ω2
i M)φ

i
= 0 (13)
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where K and M are the global stiffness and mass matrices respectively; more-
over, the global stiffness matrix can be split on the different substructures E

of the structure Ω: K =
∑

E∈Ω

KE.

Let us recall that the pair ∆α−
mod, ∆α+

mod constitutes what we call the effective

LOK related to the quantity ∆αmod; the determination of these two quantities
for eigenpulsations and eigenmodes is given in the following two sections. It
relies on modal analysis classical relations of eigenmodes’ variations.

3.2.1 Effective LOK on an eigenpulsation

If the modes φ
i

of the deterministic theoretical model are normalized with

respect to the mass matrix ((φ
T

j
Mφ

i
= δji), we can express the discrepancy

between ω2
i and ω2

i as:

ω2
i − ω2

i = φT

i
Kφ

i
− φ

T

i
Kφ

i
(14)

A first-order approximation yields then:

ω2
i − ω2

i ' φ
T

i
(K − K)φ

i
= 2

∑

E∈Ω

(

eE(φ
i
) − eE(φ

i
)
)

(15)

by definition of the strain energies.

With the previous equation, the fundamental relation (2) enables us to propa-
gate the intervals ([−m−

E ; m+
E ])E∈Ω (where, for each substructure E, (m−

E ,m+
E)

is a given sample of the basic LOKs according to the probability laws chosen)
in a rigorous way as follows:

−∆ω2 −

i mod
≤ ω2

i ≤ ∆ω2 +

i mod
(16)

with

∆ω2 −

i mod
= 2

∑

E∈Ω

m−
EeE(φ

i
) (17a)

∆ω2 +

i mod
= 2

∑

E∈Ω

m+
EeE(φ

i
) (17b)

If one knows the probability laws for the basic LOKs, one can obtain the
dispersions of the bounds ∆ω

2 −

i mod and ∆ω
2 +
i mod and, thus, determine for a

given probability P the two bounds ∆ω2−
i mod and ∆ω2 +

i mod of the associated
standard interval I∆ω2

i mod
(LP); in other words, one obtains the effective LOK

on the square of the eigenpulsation ω2
i .
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3.2.2 Effective LOK on an eigenmode

As the modes φ
i
are not scalar quantities, one is interested with their values

φ
ki

at a specific degree of freedom (DOF) k, or else with their projection φN

i
ac-

cording to a given direction N . In both cases, for small samples (m−
E ,m+

E)E∈Ω,
one can express the dispersions of the bounds ∆φ

−

ki mod and ∆φ
+
ki mod, and of

∆φ
N −

i mod and ∆φ
N +
i mod respectively, as linear combinations of the basic LOKs:

the resulting relations come from the classical Nelson’s formula [14]. For exam-
ple, we get the following relations for the calculation of the bounds ∆φ

N −

i mod

and ∆φ
N +
i mod:

−∆φN −

i mod
≤ (φ

i
− φ

i
) · N ≤ ∆φN +

i mod
(18)

with

∆φN −

i mod
=

∑

E∈Ω

r
∑

k=1
k 6=i

1

2(ω2
k − ω2

i )

{

m−

E
eE(φ

i
+ φ

k
) + m+

E
eE(φ

i
− φ

k
)
}

φ
k
· N

(19a)

∆φN +

i mod
=

∑

E∈Ω

r
∑

k=1
k 6=i

1

2(ω2
k − ω2

i )

{

m+

E
eE(φ

i
+ φ

k
) + m−

E
eE(φ

i
− φ

k
)
}

φ
k
· N

(19b)

Then, for a given probability P , one determines the two bounds ∆φN−
i mod and

∆φN+
i mod of the associated standard interval I∆φN

i mod
(LP); in other words, one

obtains the effective LOK on the value of the projection φi · N . More details
can be found in [15].

3.2.3 Effective LOKs and sensitivity analysis

In a certain way, the previous equations can be compared with the goals of
the global sensitivity analysis [16], which studies how the uncertainty in the
output of a model can be apportioned to different sources of uncertainty in
the model input.

Indeed, the different relations we established between the basic LOKs and
the bounds including the chosen quantity of interest, show that the latter
can be expressed as linear combinations of the basic LOKs of the different
substructures, quantifying by this way how the uncertainty on each substruc-
ture applies to the total uncertainty on the quantity of interest: we can write
formally for the general case:
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∆α−

mod
=

∑

E∈Ω

∆α−
E =

∑

E∈Ω

(a−
Em−

E
+ b−Em+

E
) (20a)

∆α+

mod
=

∑

E∈Ω

∆α+
E =

∑

E∈Ω

(a+
Em−

E
+ b+

Em+

E
) (20b)

These relations can then lead to a strategy of selection of the most relevant ex-
perimental tests in order to determine the basic LOKs the most representative
of the experimental dispersion, as presented in the following section.

3.3 Determination of the basic LOKs

3.3.1 Comparison with an experimental reference

The quantification of the quality of a model with respect to an experimental
reference using our theory involves the determination of the basic LOKs which
best characterize the dispersions observed. Regarding the family of actual
structures, one can determine two values ∆α−

exp and ∆α+
exp which, for a given

probability P , contain P% of the values of the quantity of interest ∆αexp

related to the actual structures.

Then, using the concept of LOK-probability, the comparison of the experi-
mental data with the values given by the LOK model can be made by saying
that the basic LOKs must be such that:

P (∆αexp ∈ I∆αmod
(L)) ≥ Pα(L)∀L (21)

Through this relation, we claim that the LOK-model should be determined on
the safe side, that is the LOK-probability, which is a lower bound of the real
probability for ∆αmod being in the standard interval I∆αmod

(LP) should be a
lower bound of the probability for the experimental quantity of interest ∆αexp

being within I∆αmod
(LP).

This necessary condition is the same as saying, in terms of standard intervals,
that the relation ∆α−

mod(P ) ≤ ∆α−
exp(P ) ≤ ∆α+

exp(P ) ≤ ∆α+
mod(P ) must be

verified for any given probability value P . This interpretation is, in fact, a
generalization of the 99% values mentioned in [7,15].

3.3.2 Reduction of the basic LOKs

The main idea behind this determination is that the greater the amount of
experimental information available, the more likely one is to reduce the basic
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LOKs. This principle requires an initial description, which may be coarse, but
necessarily overestimated, of the basic LOKs for each substructure. This can
be obtained through a priori knowledge or through experiments relevant to
the structure being studied. In the end, one has a set of initial upper bounds
(m+ 0

E ,m− 0
E )E∈Ω (associated with probability laws) such that all the constraints

(21) for the experimental data available, and which can be used to describe
the basic LOKs for each substructure.

The reduction process consists in using this additional relevant experimental
information to reduce the level of LOK one substructure at a time. Let us
consider a given substructure E∗. The problem is to determine a basic LOK
(m−

E∗ ,m
+
E∗) which is smaller than the initial LOK (m− 0

E∗ ,m+ 0
E∗ ), which in

terms of LOK-probabilities is equivalent to the following inequality:

P 0
E∗(L) ≤ PE∗(L) ∀L (22)

This reduction is carried out under the constraint (21) associated with the ex-
perimental information chosen, which in terms of effective LOK on the quan-
tity of interest α can be written as:

∆α−
mod(P ) ≤ ∆α−

exp(P ) ≤ ∆α+
exp(P ) ≤ ∆α+

mod(P ) (23)

As the reduction is achieved substructure per substructure, the verification
of the constraint (21) is not sufficient in order to get results which are re-
alistic for any situation. Indeed, let us recall that the effective LOK derives
from the LOK-probability Pα(L) which characterizes the distribution of the
bounds ∆α

+
mod and ∆α

−

mod of the quantity of interest ∆αmod relative to the
model. As seen in Section 3.2, these bounds contain contributions from all the
substructures: for a given set of samples (m−

E ,m+
E)E∈Ω, one has:

∆α−

mod
= ∆α−

E∗ +
∑

E 6=E∗

∆α−
E (24a)

∆α+

mod
= ∆α+

E∗ +
∑

E 6=E∗

∆α+
E (24b)

Thus, the reduction of the LOK of E∗ may very well be flawed due to grossly
overestimated initial LOKs of the other substructures E 6= E∗. In order to
prevent such an occurrence, one should account for the worst possible cases
concerning all other substructures, which can be formally written as:

∆α− worst

mod
= ∆α−

E∗ +
∑

E 6=E∗

∆α−worst
E (25a)

∆α+ worst

mod
= ∆α+

E∗ +
∑

E 6=E∗

∆α+ worst
E (25b)

For example, concerning the effective LOK of an eigenfrequency, one has to
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deal with:

∆α− worst

E
= −2m+

E
eE(φ

i
) (26a)

∆α+ worst

E
= −2m−

E
eE(φ

i
) (26b)

This analysis of the worst cases should be further enriched by introducing a
coefficient ρE∗ ∈]0; 1] enabling one to quantify to what extent the selected
experimental information is representative of the behavior of the structure:
this term, which we call coefficient of representativeness, is maximum when the
experimental data account perfectly for the global mechanics of the structure.
As an illustration, let us take the example of a traction test: experimental
data associated with this test are relevant in the case of an isotropic model of
substructure, because they give a trustworthy vision of the LOK associated
to the substructure. On the contrary, they constitute a very partial vision in
the case of an orthotropic model, by giving information in the direction of the
traction test only. So the resulting bounds are defined as follows:

∆α− worst

mod
= ρE∗∆α−

E∗ +
∑

E 6=E∗

∆α−worst
E (27a)

∆α+ worst

mod
= ρE∗∆α+

E∗ +
∑

E 6=E∗

∆α+ worst
E (27b)

The choice of the coefficient ρE∗ is strongly linked to the kind of test consid-
ered.

Then, one can associate the bounds ∆α
+ worst
mod and ∆α

− worst
mod with an LOK-

probability Pαworst(LP) and deduce the two bounds ∆α+ worst
mod and ∆α−worst

mod of
the standard interval I∆αworst

mod
(L) associated with a given probability P . Thus,

new constraints must be taken into account:

∆α−worst
mod (P ) ≤ ∆α−

exp(P ) ≤ ∆α+
exp(P ) ≤ ∆α+ worst

mod (P ) (28)

In summary, the problem of reducing the LOK on a given substructure E∗

consists in finding

max PE∗(L, m) ∀L (29)

which verifies the constraints associated with the experimental information
chosen.
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4 Application to a simple case

4.1 Definition of the structure

4.1.1 Data of the deterministic theoretical model

The structure being considered is a plane truss; it consists of the six pin-
jointed bars shown in Figure 3. The bars are assumed to be solicited only
in traction-compression and the connections between the structure and the
base are assumed to be perfectly rigid. The material characteristics of the
theoretical model are given in Table 1.

4.1.2 Experimental data

We consider a family of similar trusses whose eigenpulsations and eigenmodes
constitute the experimental data which enable the reduction of the basic
LOKs. The ”experimental” trusses are simulated by introducing into the deter-
ministic theoretical model stiffness dispersions in the material characteristics;
these are indicated in Table 1. One should note we associated to material
”X”a uniform stiffness distribution. One can calculate the eigenpulsations and
eigenmodes of each of these simulated trusses and thus determine the laws of
distribution of the experimental quantities of interest (e.g. Figure 4).

1

2

3

4

5

Fig. 3. The plane truss being studied
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x 108
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700
Experimental distribution of eigenfrequencies for Mode 6

Fig. 4. Experimental distribution of
ω2

exp for Mode 6

Table 1
Material characteristics of the deterministic model of the truss and of the numer-
ically simulated structures, where bars 1-3, 3-5, 4-5 and 2-4 constitute Group g1,
bar 2-3 is Group g2 and bar 3-4 is Group 3

Gr. Mate- Young’s Mass Law Relative Relative characteristics

-rial modulus density chosen domain (µ: mean / σ: std dev

g1 alum. Eg1 = 72GPa 2, 700kg/m3 Gaussian [−0.05; 0.05] µ = 0.00 / σ = 0.019

g2 steel Eg2 = 210GPa 7, 800kg/m3 Gaussian [−0.15; 0.05] µ = −0.05 / σ = 0.039

g3 ”X” Eg3 = 10GPa 1, 500kg/m3 uniform [−0.10; 0.20] µ = 0.10 / σ = 0.087

14



4.2 Reduction of the basic LOKs

The reduction process is initiated by prescribing a priori an initial LOK level
(m− 0

E = 50%,m+ 0
E = 50%) on each substructure, which constitutes an appro-

priate overestimated level. One also assumes that the probability laws of the
basic LOKs are Gaussian for the aluminum and steel bars and uniform for
the bar made of material ”X”. The only experimental information retained is
the values ∆ω2 +

i exp and ∆ω2−
i exp which bound 99% of the experimental values

of the eigenpulsations actually measured; in particular, one is not concerned
with the distribution of these values between these bounds of the standard
99%-probability interval I∆ω2

i mod
. If one were to seek a richer description, one

could also use other values of probability.

As a second step, it is important to identify the most relevant experimental
measurements in order to carry out reductions on the different substructures
successfully. An effective method consists in relying upon the fact that the
sensitivity of the effective LOKs with respect to the basic LOKs is directly
related to the modal strain energies of the deterministic theoretical model,
as can be seen in the expressions of Section 3.2. Indeed, the most relevant
experimental data in the process of reducing the basic LOKs of the structure
E∗ are those whose modal strain energy is located primarily in E∗. Since the
experimental information we chose concerns eigenpulsations, we need to con-
sider the energies eE(φ

i
), which are listed in Table 2 where the most important

values are in boldface.

Table 2
Modal strain energies for Modes 1 to 6

eE(φ
i
) i=1 i=2 i=3 i=4 i=5 i=6

E=g1 3.310
5

1.310
6

7.610
6 3.8 106

2.510
7

6.010
7

E=g2 1.410
5 6.7 104 9.9 103

1.010
7 2.0 106 1.7 105

E=g3 2.510
5

1.710
6 6.1 105 4.7 105 6.9 104 1.9 105

The reduction process is carried out by choosing successively as experimental
data Modes 6, 4 and 2 for Groups 1, 2 and 3 respectively, and by assuming that
these data are representative of the global behavior of the truss (coefficients
ρE equal to 1). The final results are shown in Table 3. In this simple case, these
results can be compared directly to the stiffness dispersions introduced into
the deterministic model in order to simulate the experimental data: [Kg1 −
5%; Kg1 + 5%], [Kg2 − 15%; Kg2 + 5%] and [Kg3 − 10%; Kg3 + 20%]. One can
therefore note the good correspondence of the values obtained.
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Groups Experimental data Reduced basic LOKs

Law [−m−
E ; m+

E ] Statistical moments

g1 (∆ω2 +
6 exp, ∆ω2−

6 exp) Gaussian [−0.039; 0.041] µ = 0.001 / σ = 0.016

g2 (∆ω2 +
4 exp, ∆ω2−

4 exp) Gaussian [−0.158; 0.058] µ = −0.050 / σ = 0.042

g3 (∆ω2 +
2 exp, ∆ω2−

2 exp) uniform [−0.108; 0.203] µ = 0.048 / σ = 0.090

Table 3
Reduced basic LOKs

4.3 Predictive capability

With the basic LOKs determined above, one can calculate effective LOKs for
the three remaining unused modes (1, 3 and 5) in order to evaluate the quality
of the results of our reduction process. The basic LOKs are modeled using
the chosen probability laws associated with the prescribed levels; then the
corresponding 99% values are calculated and compared to the experimental
99% values in Table 4. One can observe that the constraints are properly
verified for Modes 1, 3 and 5, which shows that the results obtained with
Modes 2 , 4 and 6 are consistent.

Table 4
Comparison of eigenpulsations and eigenmodes (99%-values) for Modes 1, 3 and 5

i ∆ω
2 −

i mod
∆ω

2 −

i exp
ω

i
2 ∆ω

2 +

i exp
∆ω

2 +

i mod
∆φ

−

ki mod
∆φ

−

ki exp
φ

ki
∆φ

+

ki exp
∆φ

+

ki mod

1 1.36 106 1.35 106 1.43 106 1.53 106 1.54 106 0.85 0.88 0.95 0.99 1.01

3 1.58 107 1.58 107 1.64 107 1.71 107 1.70 107
−1.00 −0.98 −0.95 −0.91 −0.90

5 5.28 107 5.29 107 5.51 107 5.68 107 5.69 107
−0.74 −0.72 −0.68 −0.62 −0.62

5 Study of an industrial case

5.1 Description of the structure

Now, let us present the application of our method to an actual industrial struc-
ture: the Sylda5 satellite support, developed by the EADS Group, which is ca-
pable of carrying two satellites simultaneously (Figure 5). Free-vibration mea-
surements with 260 sensors were carried out by IABG on behalf of DASA/DOR-
NIER under contract with CNES. The model proposed by EADS represents
both the support itself and a cylindrical payload which simulates the pres-
ence of a satellite resting on the support. This model consists of 38 substruc-
tures made of various materials, including orthotropic sandwich materials,
aluminum and steel. As the initial measurements had shown that it was abso-
lutely essential to take into account the deformation of the ground under the
support, this ground was modeled very simply using 3 torsional springs, one
translational spring and a rigid-body constraint for all interface nodes between

16



the ground and the support. The final model consisted of 27,648 DOFs and
9,728 elements.

Fig. 5. Photograph of the Sylda5 sup-
port

Payload


Connection

SYLDA 5


Ground

Fig. 6. The associated Sylda5 model

5.2 Determination of the basic LOKs

First, the model was adjusted using the method described in [2], based on the
first 12 modes. The problem was then to determine the remaining LOKs. In
order to do that, the structure was divided into 4 main groups of substructures,
as described in Figure 6:

• Group g1 associated with the cylindrical payload;
• Group g2 containing the composite connection between the cylinder and the

Sylda5 support;
• Group g3 corresponding to the Sylda5 support itself;
• Group g4 associated with the model of the ground.

Table 5
Initial LOKs

Groups Law being sought (m− 0
E , m+ 0

E )

E=g1 Gaussian (20%,20%)

E=g2 uniform (20%,20%)

E=g3 Gaussian (20%,20%)

E=g4 uniform (50%,50%)

Table 6
Experimental data

Groups Data used

E=g3 Mode 4 (ω2 sup
4 exp , ω2 inf

4 exp)

E=g1 Mode 8 (ω2 sup
8 exp , ω2 inf

8 exp)

E=g4 Mode 6 (ω2 sup
6 exp , ω2 inf

6 exp)

E=g2 Mode 3 (ω2 sup
3 exp , ω2 inf

3 exp)

The reduction process was initiated by setting a priori the initial LOK levels
(m− 0

E ,m+ 0
E ) (and their corresponding laws) described in Table 5. The experi-

mental information consisted of the eigenmodes and the extrema of the eigen-
pulsations of a series of measurements. Table 6 indicates the order in which,
and the data with which, the reduction was carried out. The results were the
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following (with ρE = 1):

m+
g1 = 14.4% m+

g2 = 0.0% m+
g3 = 0.0% m+

g4 = 43.5%

m−
g1 = 0.0% m−

g2 = 6.0% m−
g3 = 1.5% m−

g4 = 0.0%

These results confirm the good quality of the adjusted model of the support
(g3) and of the model of the connector (both within a few %), whereas the
oversimplifications in the model of the ground resulted in a high LOK.

6 Conclusion

In this article, we showed some applications of the Lack-Of-Knowledge the-
ory, which combines interval analysis with the theory of probabilities. This
method enables one to quantify the uncertainties on the substructure level
using quantities of interest defined over the whole structure. The reduction
process presented here enables the determination of the basic LOKs for each
substructure starting from a priori assumptions on their bounds. In order to
do that, the experimental data are considered to be information which reduces
the LOK on the structure. These investigations constitute a first step toward
a general method of reduction of the LOKs.
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