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ABSTRACT An accurate computation of field enhancement in
the vicinity of metallic nanostructures is fundamental for the
prediction of different physical phenomena such as SERS or flu-
orescence, and also for the design of nanostructures for specific
applications. Several numerical models have been developed
and are used to compute the field enhancement. Nevertheless,
its evaluation can be very tedious and boring due to the plasmon
resonance increasing the intensity level, and to the discontinuity
of the field near the material edges. The behavior of commonly
used computational codes is investigated in order to identify the
convergence problems, and to propose some solutions to control
the accuracy in the computation of the field enhancement.

1 Introduction

Since the early developments of near-field optical
microscopies, the variety of their applications has not ceased
to widen. Recently, a new area of the nanotechnology ap-
peared: the plasmonic. The applications concerned with this
field go from telecommunications to biology, passing by the
physics of the mesoscopic domain. In plasmonics, the use of
electromagnetic field enhancement obtained either by the an-
tenna effect, dependent on the electromagnetic singularities
around material tips or by plasmon resonance, opens the way
to local measurements of interaction between radiation and
matter [1].

However, a direct measurement of this enhancement is not
yet possible and the lithography techniques used to build the
nanostructure are rather expensive. Therefore, it is necessary
to use theoretical forecasts to optimize and functionalize the
produced nanostructures. The field enhancement is strongly
dependent on physical parameters like wavelength, shape,
size, polarization, angle of incidence, and material properties.
In the particular case of SNOM (scanning near-field optical
microscopy) many papers are dedicated to the computation of
the near-field diffracted by a nanometric probe. The computed
intensity enhancement varies from 3000 [2] to 10000 [1], be-
tween 10 and 160000 [3] and it has been shown to be ten
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orders of magnitude in amplifying medium than what would
be expected for plasmon resonance in a passive medium [4].
The accurate computation of the field enhancement is ne-
cessary to carry out predictions and to design the resonant
structures for SERS, and TERS.

In the near-field optical community, several numerical
methods have been used for a long time. In principle, all the
methods which make possible the computation of the optical
near-field around metallic nanostructures, illuminated by an
external source, could be used. Nevertheless, only a few of
them are able to deal with high local variations of the electric
field. This requirement is directly connected with the numeri-
cal convergence and the discretization of the problem. More-
over, the discretization required to compute the solution is in
the direct space for methods like finite difference time domain
(FDTD) or the finite element method (FEM), or in the Fourier
space for the spectral methods (like the differential, coupled
wave (CWM), volume or surface integral (Green) methods).
Let us note that the difference between the methods is some-
times subtle due to the fact that they can be close to each other
or even mixed. As an example, the CWM could be considered
as a modification of the classical differential methods, or the
finite element method can be applied, with some refinements,
to any set of differential equations [5].

Various methods (commercial or free of use codes) must
be carefully handled especially in the case of high field en-
hancement computation. To illustrate this important fact, we
will present an example of an application in Sect. 2. Section 3
will be devoted to investigating the convergence of three nu-
merical methods, before concluding and proposing possible
improvements of the methods.

2 The plasmonic design:
the resolution of the inverse problem

An initial problem that has to be solved before de-
signing nanostructures is the measurement of their true per-
mittivity and shape. At present, the bulk permittivities are
commonly used in simulations to compute the field enhance-
ment. Moreover, the measurement of the topography of metal-
lic nanostructures with atomic force microscopy (AFM) suf-
fers from the convolution of the AFM probe shape by that
of the nanostructure. Therefore, the metrology applications
must be performed through an inversion procedure to deduce



values from the data recorded experimentally, as it is done in
the medical domain. To take into account the important pro-
cesses of the image formation, an accurate model has to be
developed. The principle of an inversion procedure is based on
the use of an accurate model to deduce the unknown parame-
ters from experimental data (Fig. 1).

An inversion procedure based on an evolutionary scheme
was recently used to perform the recovery of unknown ex-
perimental parameters [6]. Also, it was shown theoretically
that the measurement of the permittivity of nanostructure is
possible [7]. The direct method used in this inversion pro-
cedure was FDTD including, an improvement of the model
of dispersion [8]. The use of classical FDTD (with Cartesian
mesh, commonly used in commercial codes with regular or
non-regular Yee’s cells) to compute the field enhancement
around a metallic nano-wire has been investigated in [9]. It
has been shown that to achieve realistic spectroscopic studies,
the models must take into account both the geometric and dis-
persive characteristics of the complex materials. In particular,
an appropriate refinement of the grid must be used in order to
assure the stabilization and the convergence to the physical so-
lution, especially in the regions where a strong confinement
of the light around the nanostructure occurs. In FDTD, arti-
ficial plasmons are generated at the vertices of metallic cells,
which may prevent computation of the reliable field enhance-
ment [9-11]. In plasmonics, the problem of accuracy and the
difficulty of obtaining convergence of the models is illustrated
in Fig. 2 of [12], where the computed transmission of a square
coaxial aperture can vary by more than 10% between FDTD
and the Fourier modal method.

In the following section, three popular methods for field
computation will be investigated in the case of metallic nano-
structures.

3 Convergence of CWM, FEM and Green methods

To simplify the discussion, the field enhancement
is computed in the vicinity of a nano-wire with rectangu-
lar shape (200 x 20 nm?) with relative permittivity &€ = —10.
This permittivity corresponds to gold material at a wavelength
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FIGURE 1 Principle of the inverse scheme to measure unknown parame-

ters from experimental data. An accurate model of the imaging process and
an efficient inversion procedure are needed

A = 632.8 nm. Due to the negative value of the relative per-
mittivity, the excitation of plasmon resonance (which depends
on the geometry of the object) can occur. The imaginary part
of the permittivity is neglected in order to bench the numerical
models with high requirements. Actually, the imaginary part
would contribute in widening the resonance peaks and there-
fore would facilitate the convergence of the methods. Never-
theless, this hypothesis is not restrictive, and all the numerical
models used here can deal with complex permittivities.

The nanostructure is illuminated at normal incidence, with
a p-polarized plane wave. The computation of the electric
field is achieved in reflection, 2 nm above the nanostructure.
The intensity enhancement is the square modulus of the elec-
tric field and strongly varies at the edges of the nanostruc-
ture. Therefore, high order evanescent diffracted waves are
required to converge to the solution. Moreover, in order to
compare the efficiency of the three investigated methods, the
Matlab codes run on the same personal computer.

In the following subsections, the convergence of the
Coupled Wave Method, the Volume Integral Method, and the
Finite Element Method will be investigated.

3.1 The coupled wave method (CWM)

The coupled wave method (CWM) is widely used
due to its implementation simplicity and effectiveness, espe-
cially in the case of lamellar structures. This method is a modi-
fication of the differential method [13]. In [14] the method was
fully described and was applied to the case of a glass aperiodic
structure. The code used for the present CWM simulations is
the same as in [14], but in this work, the sample is illuminated
with a plane wave rather than a gaussian beam. Therefore, the
nanostructure is a grating made of gold wires with rectangu-
lar shape with a 400 nm period (Fig. 2). The convergence of
this spectral method depends only on the number of diffracted
waves involved in the computation.

The field enhancement at the edges of the nanostructure is
clearly related to the singularity of the electric field in the re-
gion where the permittivity abruptly changes. In CWM, the
convergence parameter is the truncation order M, which limits
the number of diffracted plane waves involved in the computa-
tion [14]. Figure 3 shows the convergence of the method with
M, by focussing on the maximum of the intensity in the com-
putational window. The regular discretization step in Fourier
space is essential to describe resonance in metals and to as-
sure the convergence of the method (which is slower than in
the dielectric case [14]). Figure 3a—c show the intensity com-
puted with M = 80, M = 360 and the convergence as a func-
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FIGURE 2 Schematic of the gold grating with aspect ratio 0.5, height
20 nm, and period 400 nm. The incoming light is a plane wave



FIGURE 3 The intensity enhancement
computed from CWM for a grating with
aspect ratio 0.5, height 20 nm, and period
400 nm. The angle of incidence of the
incoming light is 0. The intensity en-
hancement is computed 2 nm above the
grating tracks
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tion of M, respectively. With the computer used (512 Mo
RAM), a memory overflow occurs if M is greater than 360.
As shown in Fig. 3c, the convergence is still not reached, even
if the energy conservation is satisfied with an accuracy bet-
ter than 10~°. The computation time increases drastically with
M (Fig. 3d). This result confirms the study of convergence
in [14], where M = 600 is needed to reach convergence, in the
case of a dielectric sample. Let us note that the method con-
verges more rapidly and much less harmonics are necessary
to reach convergence if either the near-field, a few nanome-
ters away from the sample, or the far-field is required to be
diffracted in a given direction (or a scattering section).

In this section, it has been shown that controlling the con-
vergence is essential in the case of computation of the inten-
sity enhancement in the vicinity of the edges of a periodic
nanostructure. The investigated case corresponds to a pure
reciprocal space method, where the number of plane waves in-
volved in the model of diffraction is the key parameter of the
convergence.

Another class of methods uses the Green tensors. In the
following section, the classical volume integral method is
used to investigate the influence of both the mesh of the nanos-
tructure geometry and the truncation order for the computa-
tion of the intensity enhancement.

3.2 The volume integral
or green volumic method (VIM)

The volume integral method (VIM) is based on
the computation of the Green tensors associated with the dis-
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cretization of a defect above an interface. The convergence of
the method depends on the number of cells or dipoles used to
mesh the defect and on the discretization in Fourier space used
to compute the Green tensor. In this paper, the same numerical
method as described in [15], is used to model the diffraction
by the nanostructure depicted in Fig. 4.

Like in the CWM case, the goal is to compute the field en-
hancement 2 nm above the edges of the nanostructures, where
a high gradient of electric field is expected. In the following,
2 nm square cells or dipoles are used to mesh the nanostruc-
ture. It must be noticed that the size of the dipoles is much
smaller than the /10 discretization step commonly used in
far-field simulations. This small size is necessary to reach
convergence. Figure 5S¢ shows the convergence as a function
of the discretization used to compute the Green tensor pre-
viously defined as the truncation order M. The value of the
intensity enhancement cannot be computed with 1 x 1 nm?
square dipoles, due to the insufficient available memory. The
intensity enhancement is equal to 24.6082 with M = 180
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FIGURE 4 Schematic of the gold nanostructure with height 20 nm, and
period 400 nm. The incoming light is a plane wave
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FIGURE 5 The intensity enhance-
ment computed with VIM for a nano-
structure with height 20 nm, and lat-
eral size 200 nm. The angle of inci-
dence of the incoming light is O de-
grees. The intensity enhancement is
computed 2 nm above the nanostruc-
ture. The size of the mesh cells is 2 x
2 nm?
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and 26.4890 with M = 360, respectively. These results were
obtained close to the maximum of the available memory
in the PC.

Figure 5d can be compared to Fig. 3d: the computation
time increases rapidly with the order M of truncation. This
parameter has to be included in the choice of the models.
The performance of the processor influences the computation
time. Let us notice that the considered nanostructure is de-
scribed in a 2 dimensional geometry. Of course, modeling 3D
nanostructures would require more computing time and mem-
ory resources.

After the study of periodic structure with the CWM, where
only the order of truncation was involved in convergence, and
those of isolated nanostructures were investigated with the
VIM, and where both spatial and truncation influenced the
computation of the intensity enhancement, the convergence
problem will be illustrated using a pure direct space method:
the finite element method applied to the propagation equation.
33 The finite element approach
to solve the Helmholtz’ equation

The last method considered in this study is widely
used to solve different kinds of differential equations (such
as in mechanical systems, thermic, fluid mechanics etc.) and
has been used to compute the near-field around nanostruc-
tures in the Green formalism [16]. It is based on the variational
formulation of the differential equation and the resolution
is achieved by its minimization on an adaptive non-regular
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non-Cartesian mesh of the computation window, taking into
account the boundary conditions on the edges of this win-
dow (external boundary conditions). In this paper, the FEM
is used to solve the Helmholtz’ equation [17], the bound-
ary conditions are imposed on the incoming plane wave field
(Dirichlet’s conditions) on the edges of the computational do-
main [18]. The drawback of the finite volume element method
is that the whole domain of computation must be meshed,
therefore a huge number of cells is needed. Due to the use
of an adaptive non-regular non-Cartesian mesh, the refine-
ment of the grid is effective only where high gradients of the
solution are located. This may help to spare computer mem-
ory. This point has been addressed in [9] by comparison of
the FEM with the classical FDTD with regular/non-regular
Cartesian Yee’s cells.

In this study, the incoming plane wave amplitude is set
on the edges of the external boundaries. Consequently, the
diffraction of the nanostructure is neglected in this region
which assures the unicity of the solution. Nevertheless, to be
valid, a sufficiently wide domain of computation must be used
(relatively to the scattering cross-section of the nanostruc-
ture). In this study, the domain of computation is a 3A square
domain and also the studied nanostructure, situated at the cen-
ter of the domain is a rectangle of width 200 nm and heigth
20 nm. The intensity in Fig. 6 is computed 2 nm above the
nanostructure.

Figure 6 shows the influence of the gridding in the adap-
tive mesh process. Figure 6a—b shows the confinement of the
computed intensity with the initial mesh and after seven re-



FIGURE 6 The intensity enhance-
3 25 ment computed from FEM for a na-
nostructure with height 20 nm, and
25 20 period 400 nm. The angle of inci-
dence of the incoming light is O de-
2 grees. The intensity enhancement is
< =2 15 computed 2 nm above the nanostruc-
1.5 - ture
10
1
05 JL 5
-200 -100 0 100 200 -200 -100 0 100 200
X (nm) X (nm)
a Intensity profile (8398 cells). b Intensity profile (9600 cells).
p=1.059e-005 1 000
25 p=2.255e-005
=2.003e-005 “
2 p=4.189¢-005 g 800
5
o5 g 600
a
10 p=2.002e-005 g 400
V]
5
p=0.0005012 200
8400 8600 8800 9000 9200 9400 9600 8400 8600 8800 9000 9200 9400 9600
Number of cells Number of cells
Intensity enhancement as a func- Computation time as a function
tion of the number of cells to reach a of the number of cells.
c given accuracy p. d

gridings. Even if the problem is symmetric, the height of the
peaks is not the same in the plot due to a small decay be-
tween the left cell and the right one above the nanostructure
edges. As expected, the model is very sensitive to the mesh
refinement. The accuracy, obtained for the computation of
the field is indicated in Figure 6¢ and is the maximum of the
variation of the field between two adjacent cells. This accu-
racy is automatically computed in the region of the intensity
enhancement, where the gradient of the field is maximum.
The advantage of the adaptive non-Cartesian mesh is shown
in Figs. 6¢c—d: the computation time and the number of cells
varies slowly with the accuracy p (or the intensity enhance-
ment) and is mainly related to the iterative inversion algo-
rithm process. The smallest cell size reaches 0.1 nm to obtain
stabilization of the solution. In this case as for the previous
ones, the convergence is probably not completely reached be-
fore the memory overflow, but the lateral size of the peaks is
smaller, due to the non-regular and non-Cartesian mesh. Let
us note that the intensity enhancement is close to those given
through the VIM.

4 Conclusion

In this study, it has been shown that modeling the
intensity enhancement near nanostructures edges with classi-
cal codes can induce slow convergence (i.e. a great amount
of memory, and a large computation time is needed in both
the periodic or non periodic cases). The three methods used

in this paper use the experimental values of permittivities in
contrast to FDTD for which an analytical model of dispersion
is required. Therefore, situations where gain or non linearities
exist may be described is spite of a probably larger computa-
tional time.

Some requirements to accurately compute the intensity
enhancement near nanostructures are:

— the use of adaptive non-regular and non-Cartesian mesh.
Indeed, the use of Cartesian grid in FDTD or VIM will
result in failure to reach convergence.

— the use of a remeshing process and control of the accu-
racy of the solution. High field gradients are expected near
the nanostructures edges and therefore high spatial fre-
quencies or high order diffracted modes are needed to
achieve convergence. Moreover, cell sizes much smaller
than A/10 are required (in contrast to those commonly
used) where the intensity enhancement is located near the
nanostructure. In Fourier space, the contribution of the
diffracted plane waves with high spatial frequency cannot
be neglected.

— the use of the surface methods, for which only the sur-
face of the nanostructure must be discretized. This way
may be a memory sparing solution and could be more ef-
ficient if a non regular discretization of the surface can be
considered.

— to smooth the nanostructure shape models in order to avoid
the mathematical singularity of the electric field.



Let us note that the CWM, VIM and the FEM have been
compared in the same conditions. The language of computa-
tion, and the computer are the same, and a similar nanostruc-
ture is considered. In this context, the codes have not reached
the convergence before a memory overflow. The computation
of intensity enhancement requires high performance comput-
ers, and a careful control of the convergence. These consid-
erations are critical to tend to accurate computations of the
intensity enhancement and predictive plasmonics.
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