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Abstract

Wavelet analysis is used to construct a rank-based estimator of a copula density. The
procedure, which can be easily implemented with ready-to-use wavelet packages, is
based on an algorithm that handles boundary effects automatically. The resulting
estimator provides a nonparametric benchmark for the selection of a parametric
copula family. From a theoretical point of view, the estimation procedure is shown
to be optimal in the minimax sense on a large functional class of regular copula
densities. The approach is illustrated with actuarial and financial data.
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1 Introduction

Copulas are quickly gaining in popularity as a modeling tool for multivariate data.
The books by Joe (1997) and Nelsen (2006) describe the mathematical and statistical
foundations of the subject. A host of applications in insurance and risk management
can be found in the more recent texts by Cherubini et al. (2004) and McNeil et al.
(2005), among others.

Suppose that the relation between variables X and Y is of interest and assume for
simplicity that both of them are real-valued. Let F (x) = Pr(X ≤ x) and G(y) =
Pr(Y ≤ y) be their cumulative distribution functions. Following Sklar (1959), the
joint distribution function of the pair (X, Y ) may be expressed in the form

H(x, y) = C(F (x), G(y)), (1)

for some distribution function C whose margins are uniform on the interval (0, 1).
When F and G are continuous, C is unique and coincides with the distribution
function of the pair (U, V ) = (F (X), G(Y )). In practice, H is unknown. A copula
model for the pair (X, Y ) can then be constructed by assuming that F , G and C
belong to specific classes of distributions. An advantage of this approach is that the
copula C, which characterizes the dependence between X and Y , can be chosen
separately from the marginal models.

Let (X1, Y1), . . . , (Xn, Yn) be a random sample from the unknown distribution H .
Denote by Fn and Gn the empirical distributions associated with F and G. A first
step in selecting an appropriate class of copulas consists of plotting the pairs

(

Ri

n
,
Si

n

)

= (Fn(Xi), Gn(Yi)), i ∈ {1, . . . , n}. (2)

Here, Ri is the rank of Xi among X1, . . . , Xn and Si is the rank of Yi among
Y1, . . . , Yn. The motivation behind this graphical approach is that the pseudo ob-
servations (Ri/n, Si/n) are close substitutes to the unobservable pairs (Ui, Vi) =
(F (Xi), G(Yi)) forming a random sample from C.

To illustrate this point, Figure 1 displays four scatter plots generated from the same
random sample of size n = 2000 from a Gumbel copula with Kendall’s tau τ = 1/2.
Panel a) shows the original sample; panels b) and c) show what happens when G
is exponential with mean 1/3 and F is either N (0, 1) or B(0.5, 0.7), respectively;
panel d) shows the pairs of normalized ranks. As one can easily see, the effect of the
marginals, which is dominant in panels b) and c), is completely suppressed in plot
d). This rank-rank plot enhances the underlying characteristics of the dependence
structure, such as the tendency of extreme values of both variables to occur together.
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Fig. 1. Scatter and rank-rank plots for a sample of size 2000 from the Gumbel copula with
τ = 1/2, once the margins have been transformed to F and G. Panel a): F = B(0.5, 0.7),
G = E(3); panel b): F = N (0, 1), G = E(3); panel c): F = G = U(0, 1); panel d): the
rank-rank plot associated with the three transformed samples coincide.

A clear limitation of the rank-rank plot is that it becomes quickly unreadable as the
number of observations increases. For a copula with small to moderate dependence,
a random sample of size 10,000 or more can easily fill the square, and all features of
the distribution are lost. As an alternative, one might consider plotting the empirical
distribution Cn of the pairs (Ri/n, Si/n). Although the convergence of Cn to C was
established by Deheuvels (1979), the graph is not of much help.

Consider for example random samples of size 2000 from the Gumbel and Clayton
copulas with τ = 1/2. Panels a) and b) of Figure 2 show that while these two
Archimedean copulas induce the same degree of dependence, they have very different
behavior, particularly in the tails. However, none of these differences is apparent in
panels c) and d), which display the corresponding empirical copulas.

A more promising avenue consists of plotting 3D-histograms of the relative frequen-
cies of the pseudo observations (Ri/n, Si/n), as measured on an arbitrary partition
of the unit square. This is done in Figure 3 for the same data as in Figure 2. The dis-
tinctive features of the Gumbel and Clayton copulas are now much more apparent,
but this is at the cost of a rather erratic picture.

The purpose of this paper is to present a smoothed version of the 3D-histogram
that practitioners could use as a graphical tool to spot the key features of a copula
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Fig. 2. Rank-rank plots and corresponding empirical copulas of random samples of size
n = 2000 from two copulas with τ = 1/2. Panels a) and c): Gumbel copula with parameter
1.5; panels b) and d): Clayton copula with parameter 1. In all cases, the margins are
F = B(0.5, 0.7) and G = E(3).

dependence structure such as symmetry, skewness or heavy-tail behavior. In more
technical terms, what will be proposed is a nonparametric (rank-based) estimator
of the copula density

c(u, v) =
∂2

∂u∂v
C(u, v), u, v ∈ (0, 1).

This density is assumed to exist and to be square-integrable in the sequel.
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Fig. 3. 3D-histograms showing the relative frequency of n = 2000 pairs (Ri/n, Si/n) in a
32 × 32 regular partition of the unit square for a copula with τ = 1/2. Panel a): Gumbel;
panel b): Clayton.
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The approach described here is based on the wavelet decomposition of the copula
density. A brief introduction to this methodology is given in Section 2, where multi-
resolution techniques are shown to be helpful in capturing the main features of a
known copula c. Section 3 considers the case where c is unknown and must be es-
timated from ranks. A mathematical framework for the study of this procedure is
then described in Section 4, and optimality results are stated in Section 5. Exam-
ples of applications to actuarial science and finance are discussed in Section 6. All
mathematical derivations are deferred to the Appendix.

This paper is not the first to propose a nonparametric, rank-based estimator of the
copula density. An early contribution along those lines was made by Gijbels and
Mielniczuk (1990), who used kernel methods. They proved the uniform strong con-
sistency and asymptotic normality of their estimator, but no rate of convergence
was given. Fermanian (2005) also proposed a kernel-type estimator and studied the
pointwise error, but he did not provide optimality results and imposed bandwidth
conditions that are too restrictive in the copula context. Finally, Biau and Wegkamp
(2005) proposed to estimate the copula density through a minimum distance crite-
rion. Their estimator enjoys good properties but its computation entails non-trivial
implementation issues that are left unaddressed.

Wavelets offer several advantages over alternative approaches in the present context:

(1) Wavelet decompositions can be computed easily and efficiently using the “Fast
Wavelet Transform” (FWT) algorithm of Mallat (1989); ready-to-use wavelet
packages are available in R, MatLab, etc.

(2) Wavelets handle automatically the boundary effects due to the fact that copula
densities are often large along the borders of the unit square, yet zero outside
this region; this is due to the good localization properties of the wavelet basis.

(3) In the specific case of copula estimation, the wavelet solution is natural and
easy to understand; as will be seen, it provides automatically a collection of
smoothings of the 3D-histogram, one for each level of resolution considered.

2 Multiresolution analysis in a nutshell

Wavelets have been applied successfully in different fields, such as signal and image
processing, numerical analysis and geophysics, as well as statistics. Roughly speak-
ing, the wavelet analysis of a two-place function h(x, y) is a procedure by which
this mapping can be decomposed simultaneously at an infinite number of resolution
levels j = 0, 1, . . . The decomposition at arbitrary level j0 ∈ N is given by
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h(x, y)=hj0(x, y) +Dj0h(x, y), x, y ∈ R (3)

where

hj0(x, y) =
∑

k∈Z2

αj0kφj0k(x, y)

is a trend (or approximation) and

Dj0h(x, y) =
∞
∑

j=j0





∑

k∈Z2

β
(1)
jk ψ

(1)
jk (x, y) +

∑

k∈Z2

β
(2)
jk ψ

(2)
jk (x, y) +

∑

k∈Z2

β
(3)
jk ψ

(3)
jk (x, y)





is a sum of details of three types: vertical (1), horizontal (2), and oblique (3).

In this representation, the coefficients αj0k and β
(1)
jk , β

(2)
jk and β

(3)
jk with j ≥ j0 are

unique for every choice of j0 ∈ N. As for the functions φj0k and ψ
(1)
jk , ψ

(2)
jk and ψ

(3)
jk ,

they are defined as follows

φjk1k2
(x, y) = φjk1

(x)φjk2
(y), ψ

(1)
jk1k2

(x, y) = φjk1
(x)ψjk2

(y),

(4)

ψ
(2)
jk1k2

(x, y) = ψjk1
(x)φjk2

(y), ψ
(3)
jk1k2

(x, y) = ψjk1
(x)ψjk2

(y),

in terms of a specific scaling function φ, and associated wavelet ψ and their location-
scale transforms given by

φjk3
(t) = 2j/2φ(2jt− k3) and ψjk3

(t) = 2j/2ψ(2jt− k3)

for all t ∈ R, j ∈ N and k3 ∈ Z. The functions φ and ψ must satisfy a number
of technical conditions which ensure that the location-scale families they generate
form an orthonormal system of L2, the collection of square-integrable functions.

Each choice of pair (φ, ψ) leads to a different multiresolution analysis whose degree
of regularity is as large as desired. Classical examples include the Haar, coiflet,
Meyer and symlet families of wavelets. In this paper, φ and ψ are assumed to have
a compact support [0, L] as in the very common Daubechies wavelets (Daubechies,
1992). See Meyer (1992) for a general introduce to this theory.

The key feature of a wavelet representation is that the trend at level j0 +1 coincides
with the trend at level j0, supplemented with the horizontal, vertical and oblique
details corresponding to level j0. In other words,

hj0+1 = hj0 +





∑

k∈Z2

β
(1)
j0kψ

(1)
j0k +

∑

k∈Z2

β
(2)
j0kψ

(2)
j0k +

∑

k∈Z2

β
(3)
j0kψ

(3)
j0k



 .
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To illustrate the properties of the wavelet decomposition, consider for example the
density of a Cauchy copula with Spearman correlation 0.6. This density is displayed
in Figure 4, along with the wavelet approximations h4, . . . , h0 corresponding to reso-
lution levels j0 = 4, . . . , 0. To construct this series of approximations, the true copula
c was identified with h5 by setting α5k1k2

= c(k1/2
5, k2/2

5) for all k1, k2 ∈ {1, . . . , 25}.
The successive approximations h4, . . . , h0 were then obtained by filtering h5 with
MatLab’s wavelet toolbox, using the Daubechies(4) wavelet whose support is [0, 3].

It is clear from Figure 4 that the approximation deteriorates as the resolution goes
down. The characteristics of the underlying copula are gradually smoothed out. This
is due to the fact that although it is regular in a theoretical sense, this copula density
is heavy-tailed: it exhibits steep peaks at (0, 0) and (1, 1). If the filtering procedure
had been applied to a Gaussian or Frank copula with an average level of dependence,
the successive approximations would have been much closer to the original density.
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Fig. 4. Cauchy copula with Spearman correlation 0.6 and its Daubechies(4) wavelet ap-
proximations at levels j = 5, . . . , 1 on a 32 × 32 grid.
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Intuitively speaking, the more regular h is, the smaller are the details represented
by Dj0h, and hence the closer hj0 is to h. In such cases, h can be approximated
accurately by a trend hj0 of small resolution j0.

3 Estimation procedure

The wavelet decomposition leads naturally to an estimation procedure for the density
of a copula. The idea is simple: starting from a jagged 3D-histogram of the pairs
(Ri/n, Si/n) of normalized ranks, the graph is gradually made smoother through
successive applications of the wavelet filter.

To be specific, the numerical procedure is as follows:

(1) Find the integer J for which N = 2J ≤ √
n < 2J+1. This integer represents the

finest resolution level one can afford for a sample of size n.
(2) Compute the frequencies associated with the 3D-histogram on the regular grid

N × N and identify them with the empirical scaling coefficients at resolution
level J . In other words, set

α̃Jk1k2
=

1

n

n
∑

i=1

1

{

k1 − 1

N
<
Ri

n
≤ k1

N
,

k2 − 1

N
<
Si

n
≤ k2

N

}

for all k1, k2 ∈ {1, . . . , N}.
(3) To avoid problems at the edges of the unit square, the N × N matrix A =

(α̃Jk1k2
) is expanded into a 3N ×3N block matrix B obtained by symmetrizing

A along all of its borders. Specifically,

B =















∗A∗ A∗ ∗A∗

A∗ A A∗

∗A∗ A∗ ∗A∗















,

where

A∗ = (α̃Jk1(N+1−k2)), ∗A = (α̃J(N+1−k1)k2
), ∗A∗ = (α̃J(N+1−k1)(N+1−k2)).

Various ways of handling edge effects are considered by Autin et al. (2008),
who conclude that this strategy is preferable.

(4) Apply the Fast Wavelet Transform on B and extract the (2, 2) block of size
N × N corresponding to the original A. A collection (c̃j) of estimates of c at
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resolution levels j = J, J − 1, . . . , 0 is then defined by setting

c̃j(u, v) =
∑

k∈Z2

α̃jkφjk(u, v), u, v ∈ (0, 1).

(5) Select c∗ = c̃J−1 as the estimator of the unknown copula density c.

This procedure is illustrated in Figure 5 for the same data used in Figure 3. In this
case, n = 2000 and hence J = 5. It is clear that the wavelet filter is very good
at smoothing out the histogram, even at resolution level J − 1. It is so efficient in
fact that even at resolution level J − 2, the key features of the underlying copulas
are beginning to fade out. As mentioned earlier, this is due to the relative lack of
regularity of these two specific copulas, which have heavy tails. By contrast, the
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Fig. 5. Wavelet smoothing of n = 2000 pairs of normalized ranks from a Clayton(1)
[top row] and a Gumbel(1.5) [bottom row]; panels a-b show the 3D-histograms on a
32 × 32 = 2J × 2J grid with J = 5; panels c)–d) and e)–f) show the wavelet estima-
tors ĉj at levels j = J − 1, J − 2, respectively.
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wavelet estimators ĉj with j = J−2, . . . , J−4 would look very much like ĉJ−1 when
the data stem from the Gaussian or Frank copulas, for example. The reason for this
phenomenon will be clear from the mathematical results that follow.

4 Mathematical framework

Let φ be a given scaling function, and let ψ be the associated wavelet. It is assumed
henceforth that both functions are real-valued and have compact support [0, L] for

some L > 0. For every j ∈ N, let φjk, ψ
(1)
jk , ψ

(2)
jk , and ψ

(3)
jk be defined as in (4) for

every k = (k1, k2) ∈ Z
2. By construction, the set

{φj0k, ψ
(1)
jℓ , ψ

(2)
jℓ , ψ

(3)
jℓ : j ≥ j0, k ∈ Z

2, ℓ ∈ Z
2}

is an orthonormal basis of L2(R
2) for arbitrary j0 ∈ N.

Given a copula density c, one can then expand it in the form (3) with

αj0k =
∫

(0,1)2
c(u, v)φj0k(u, v)dvdu, k ∈ Z

2.

Observe that in view of (1), the change of variables u = F (x) and v = G(y) yields

αj0k =
∫

φj0k(F (x), G(y))h(x, y)dydx = Eh{φj0k(F (X), G(Y ))},

where Eh denotes the expectation with respect to the sample (X1, Y1), . . . , (Xn, Yn)
from density h. If the marginal distributions F and G were known, a natural
(moment-based) estimator of αj0k would then be given by

α̂j0k =
1

n

n
∑

i=1

φj0k(F (Xi), G(Yi)). (5)

When F and G are unknown, a nonparametric analogue is obtained upon replacing
F and G by their empirical counterparts, Fn and Gn. In view of relation (2), the
estimator is thus rank-based, viz.

α̃j0k =
1

n

n
∑

i=1

φj0k(Fn(Xi), Gn(Yi)) =
1

n

n
∑

i=1

φj0k

(

Ri

n
,
Si

n

)

.

The wavelet-based estimator of c is then given by

c̃j0(u, v) =
∑

k∈Z2

α̃j0kφj0k(u, v), u, v ∈ (0, 1) (6)

9



in which the integer j0 is the smoothing index of the method.

Note that just as Deheuvels’ empirical copula is not a copula, c̃j0 is not necessarily a
copula density. In particular, c̃j0 may sometimes be negative on parts of its domain
and fail to integrate to 1. If in applications, an intrinsic copula density estimate is
deemed necessary, it can be derived from c̃j0 by truncation and normalization.

From a numerical point of view, it is important to note that the sum over k in (6) is
finite, because the wavelet lives on a compact support. As a result, one needs only
compute ⌊22j0L2⌋ terms in practice. In the special case where the copula density must
be estimated at a single point (u0, v0) ∈ (0, 1)2, only ⌊L2⌋ terms need be computed.
For these reasons, the set on which k varies is left unspecified in the Appendix.

Of course, the performance of the procedure depends on the choice of the level
j0. The latter should be determined in some optimal way. The properties of the
estimate with respect to the pointwise and quadratic loss functions are considered
in the following section.

5 Optimality Results

The purpose of this section is to study the performance of c̃j0 as an estimator of the
underlying copula density c. Two different loss functions will be used to this end.
The first one is the mean integrated squared error (MISE), defined by

MISE(c̃j0, c) = Eh

[∫ 1

0

∫ 1

0
{c̃j0(u, v) − c(u, v)}2dvdu

]

.

The second loss function is the pointwise error at an arbitrary but fixed pair (u0, v0),
i.e.,

PTW(c̃j0, c) = Eh[{c̃j0(u0, v0) − c(u0, v0)}2].

In view of the decomposition (3) for c, one can write

MISE(c̃j0, c) =MISE(c̃j0, cj0) +
∫ 1

0

∫ 1

0
{Dj0c(u, v)}2dvdu,

PTW(c̃j0, c) =PTW(c̃j0, cj0) + {Dj0c(u0, v0)}2.

In each case, the first summand measures the error due to sampling while the second
is a systematic error associated with the fact that the infinite-dimensional object c
has been approximated by its trend at level j0.
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First consider the bias term arising from the approximation. This term can be
bounded as soon as the copula density is sufficiently regular. Roughly speaking,
regularity pertains to the size of the horizontal, vertical and oblique details in de-
composition (3) for c. More precisely, suppose that c belongs to the ball of radius
M > 0 in the Besov space Bp

s with parameters s > 0 and p ≥ 2, or s > 2/p− 1 and
p ∈ [1, 2]. For an introduction to Besov spaces, see Triebel (1992).

Proceeding as in the proof of Lemma 1 in Butucea and Tribouley (2006), one gets

∫ 1

0

∫ 1

0
{Dj0c(u, v)}2dvdu ≤ M 2−2j0s∗ , (7)

where s∗ = s+ 1− 2/p if p ∈ [1, 2] and s∗ = s otherwise. Moreover, the same bound
applies to the pointwise error, but for the ball of radius M in the Besov space B∞

s .

Now turn to the sampling error term. Introduce

ĉj0(u, v) =
∑

k∈Z2

α̂j0kφj0k(u, v), u, v ∈ (0, 1)

with α̂j0k defined as in (5). This is the estimator that would be used if the marginal
distributions F and G were known. One can then write

MISE(c̃j0 , cj0) ≤ 2 MISE(c̃j0, ĉj0) + 2 MISE(ĉj0, cj0).

A similar decomposition is also valid for the pointwise loss.

Now it is well known that

MISE(ĉj0, cj0) ∨ PTW(ĉj0, cj0) ≤ K1
22j0

n
, (8)

for some constant K1 > 0 depending only on φ and either

||c||2 =
∫

c(u, v)2dvdu or ||c||∞ = sup
u,v∈(0,1)

|c(u, v)|,

as the case may be; see, e.g., Kerkyacharian and Picard (1992) for details. Thus to
ensure that the variance of ĉj0 tends to zero asymptotically, j0 must be chosen so
that 2j0 ≪ √

n.

The additional cost caused by the need to resort to rank statistics is studied in the
following theorem, whose proof is given in the Appendix.
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Theorem 1 Let φ be a scaling function having m derivatives and for arbitrary
resolution level j0 ∈ N, let c̃j0 be the estimator of a copula density c defined by (6).
If j0 is such that

2j0 ≤
(

n

log(n)

)1/2−1/(2m)

< 2j0+1,

then there exists a constant K2 > 0 (depending only on φ and on either ||c||2 or
||c||∞ as the case may be) such that

MISE(c̃j0, ĉj0) ∨ PTW(c̃j0, ĉj0) ≤ K2
22j0

n

(

22j0
log(n)

n
+ 2−j0 log(n)

)

.

Note the slight additional restriction on j0 involving m. The case m = 2 corresponds
to the constraints on the bandwidth found by Fermanian and Scaillet (2005), who
use a kernel-based estimation method.

Combining bounds (7)− (8) with the result of Theorem 1, one can see that the error
term associated with the use of ranks is negligible with respect to the usual error
term as soon as 2j0 ≫ log(n). Accordingly, the following result holds.

Theorem 2 Fix s > 0 and p ≥ 2 or s > 2/p− 1 and p ∈ [1, 2]. Denote by Bp
s (M)

the Besov ball of radius M > 0. Let also φ be a scaling function having m derivatives
with m > 1 + 1/s∗. Given a sample of size n from a bivariate distribution whose
underlying copula has density c, choose j∗ ∈ N such that

2j∗ ≤ n1/(2+2s∗) < 2j∗+1

and denote by c̃j∗ the estimator of c of resolution j∗ given by (6) in terms of φ. Then
there exists a constant K > 0 depending only on φ and M such that

sup
c∈Bp

s (M)

ns∗/(1+s∗)MISE(c̃j∗, c) ≤ K.

The same bound is valid for the pointwise error, with B∞
s (M) instead of Bp

s (M).

The net result of this analysis is that under the hypotheses of Theorem 2, the
procedure of estimation described above is optimal on the Besov ball Bp

s (M) for the
quadratic loss as well as on the Hölder ball B∞

s (M) for the pointwise loss function.

6 Illustrations

Two applications of the proposed methodology are presented below. In each case,
the graphs were produced in a matter of seconds with MatLab’s wavelet toolbox.
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These applications were selected to illustrate a number of practical points.

As a first example, consider the data of Frees and Valdez (1998), which were later
reanalyzed by Genest et al. (1998), Klugman and Parsa (1999), Chen and Fan (2005)
and Genest et al. (2006), among others. The data consist of the indemnity payment
(LOSS) and the allocated loss adjustment expense (ALAE) for 1500 general liability
claims. As in all previous studies, the 34 claims subject to censoring were discarded.

Six graphical representations of these data are provided in Figure 6. In the top row,
panels a), b), and c) show the original data on the logarithmic scale, the rank-rank
plot, and the 3D-histogram based on a 16 × 16 grid, respectively. The bottom row
shows three copula estimates. They are:

(1) panel d): the raw wavelet-based copula density estimate, i.e., without boundary
correction;

(2) panel e): the copula density estimate c∗ (with boundary correction) described
in Section 3;

(3) panel f): the Gumbel copula density whose parameter estimate τ̂ = 0.31 is the
empirical value of Kendall’s tau.

The need to apply a boundary correction to the wavelet-based estimation procedure
is apparent from Figure 6. The difficulty with the uncorrected estimator is that it
misses peaks along the boundaries of the unit square. This is due to the fact that the
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Fig. 6. Six graphical representations of the LOSS/ALAE data of Frees and Valdez (1998).
Panel a): Original data on the logarithmic scale; panel b): rank-rank plot; panel c): 3D-his-
togram on a 16×16 grid; panel d): wavelet-based copula density estimate without boundary
correction; panel e) recommended wavelet-based copula density estimate c∗ (with bound-
ary correction); panel f) Gumbel copula with parameter 1.4.
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nonparametric procedure tries to produce a smooth copula estimate both within and
outside the unit square (where the copula vanishes). Once the boundary correction
is applied, however, the wavelet-based estimate c∗ resembles the Gumbel copula
density with parameter τ = 0.31. The advantage of the wavelet-based estimator is
that it suggests this choice without having to make parametric assumptions. In other
words, while the graph in panel f) represents a good estimator under the assumption
that the copula is from the Gumbel family, the wavelet-based procedure does not
need to make any such assumption to arrive at the same conclusion.

The various authors who analyzed this data set concluded that the Gumbel copula
provides an adequate representation of the underlying dependence structure. This
parametric family of extreme-value copulas captures the fact that almost all large
indemnity payments generate important adjustment expenses (e.g., investigation
and legal costs) while the effort invested in the treatment of a small claim is more
variable. Accordingly, the copula exhibits positive but asymmetric dependence.

The second example uses time-series data on the daily prices for one-month-ahead
futures on light sweet crude oil and natural gas. The log-returns for these two com-
modities were analyzed by Grégoire et al. (2008) for the period extending from July
1, 2003 to July 19, 2006. They found that once standardized to mean 0 and variance
1, the log-returns Xt for oil could be treated as a random sample from a Student dis-
tribution with 13.745 degrees of freedom. The log-returns for gas, however, exhibit
heteroscedasticity; they can be modeled by a GARCH(1, 6) model whose residuals
Yt follow a skewed t-distribution (Azzalini and Capitanio, 2003).

Of special interest in this application is the dependence between the two commodi-
ties, once the effect of time has been filtered out. This dependence is represented
by the pairs of ranks derived from the residuals (Xt, Yt). Nine graphical representa-
tions of these data are provided in Figure 7. In the top row, panels a), b), and c)
show the pairs (Xt, Yt), the associated rank-rank plot, and the 3D-histogram based
on a 16 × 16 grid, respectively. The second row shows the proposed copula density
estimator c∗ using three different wavelets: the Haar, Daubechies(4) and Adelson
wavelet, corresponding to panels d), e) and f), respectively. Finally, panels g)–i)
on the third row exhibit three parametric copula densities: the Frank copula with
parameter 3.22, the Gaussian copula with parameter r = 0.522, and the Student
copula with r = 0.522 and 22 degrees of freedom, respectively. The latter is the cop-
ula ultimately selected by Grégoire et al. (2008) on the basis of goodness-of-fit tests,
although the Gaussian and Frank copulas were mentioned as very close contenders.

14



a) −0.06 −0.04 −0.02 0 0.02 0.04 0.06

−2

−1

0

1

2

3

4

b) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c) 12345678910111213141516

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

d)
0.2

0.4
0.6

0.8 0.2
0.4

0.6
0.8

0.5

1

1.5

2

2.5

3

3.5

4

4.5

e)
0.2

0.4
0.6

0.8 0.2
0.4

0.6
0.8

0.5

1

1.5

2

2.5

3

3.5

4

4.5

f)
0.2

0.4
0.6

0.8 0.2
0.4

0.6
0.8

0.5

1

1.5

2

2.5

3

3.5

4

4.5

g)
0.2

0.4
0.6

0.8 0.2
0.4

0.6
0.8

0.5

1

1.5

2

2.5

3

3.5

4

4.5

h)
0.2

0.4
0.6

0.8 0.2
0.4

0.6
0.8

0.5

1

1.5

2

2.5

3

3.5

4

4.5

i)
0.2

0.4
0.6

0.8 0.2
0.4

0.6
0.8

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Fig. 7. Nine graphical representations of the oil/gas data of Grégoire et al. (2008). Panel
a): Pairs of residuals after time-series filtering; panel b): rank-rank plot; panel c): 3D-his-
togram on a 16×16 grid; panels d)–f): copula density estimates with Haar, Daubechies(4)
and Adelson wavelet, respectively; panel g): Frank copula with parameter 3.22; panel h):
Gaussian copula with parameter 0.522; panel i) Student copula with parameter 0.522 and
22 degrees of freedom.

Three points are apparent from the graphs:

(1) in this specific application, the 3D-histogram conveys very little information
beyond the fact that most of the probability mass accumulates along the main
diagonal (u = v);

(2) there is little to choose between the three wavelets: in most applications, they
yield essentially the same estimator, although the density associated with Haar
wavelet tends to be a little more jagged (in that sense, the wavelet plays much
the same role as the kernel in classical density estimation);

(3) the third row confirms that the three choices of parametric copulas considered
by Grégoire et al. (2008) are acceptable and quite similar in many respects
(although the Student copula has heavier tail behavior than the other two).
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As a further confirmation of point 3, Table 1 reports the average squared error

ASE(c∗, cθ̂) =
1

M2

M
∑

ℓ1=1

M
∑

ℓ2=1

{

c∗
(

ℓ1
M

,
ℓ2
M

)

− cθ̂

(

ℓ1
M

,
ℓ2
M

)}2

and the relative average squared error

RASE(c∗, cθ̂) = ASE(c∗, cθ̂)
/

1

M2

M
∑

ℓ1=1

M
∑

ℓ2=1

c2
θ̂

(

ℓ1
M

,
ℓ2
M

)

,

between the recommended wavelet estimator c∗ and a parametric copula density cθ̂
in which θ has been estimated by a rank-based method. In Table 1, M = 16 and
the parametric copula estimates are those considered by Grégoire et al. (2008). The
copulas are listed in order of preference, based on the ASE and RASE criteria. It
is clear that the Gumbel and Clayton dependence structures can be ruled out. It is
more difficult to choose between the other three.

These findings are consistent with the conclusions of Grégoire et al. (2008). On the
basis of goodness-of-fit tests, their order of preference is

Student(22) ≻ Gaussian ≻ Frank ≻ Gumbel ≻ Clayton;

the associated P -values (in percentage) are 3.00, 1.40, 0.95, 0.75 and 0, respectively.
This slight discrepancy may be due to the fact that the procedure on which c∗ is
based tends to oversmooth high peaks.

One way or another, it is obvious from the various graphical displays that throughout
the study period, the prices of oil and natural gas exhibited a strong dependence,
particularly in the tails. In addition, the association between the residuals from
the time-series models is clearly positive and approximately symmetric. That these
commodities should be increasingly dependent is not surprising, given that both
natural gas and crude oil are used to generate electricity and heating. In addition,
natural gas is used to extract oil from tar sands.

Copula Parameter ASE RASE (×100)

Frank 3.474 0.0184 1.43

Gaussian 0.522 0.0406 3.14

Student(22) 0.522 0.0480 3.69

Gumbel 1.538 0.1306 9.14

Clayton 1.076 0.2795 18.08

Table 1
Average squared error (ASE) and relative average squared error (RASE) between the
proposed wavelet estimator c∗ and five copulas with specific choices of parameter.
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7 Discussion

This paper has proposed a rank-based procedure for the estimation of a copula
density based on the method of wavelets. The estimator is easy to implement, e.g.,
with ready-to-use wavelet toolboxes available in MatLab or R. It involves only two
“strategic” choices: a wavelet function and a multiresolution level j∗. It was seen
through an example that the choice of wavelet is fairly inconsequential. In the algo-
rithm of Section 3, j∗ was arbitrarily fixed at level J−1, and this was seen to produce
acceptable results, except when the underlying dependence structure exhibits very
high peaks. Although it was shown in Section 4 that the estimator c∗ = cj∗ is opti-
mal in a minimax sense, the choice of j∗ depends on a priori information about the
degree of regularity, s, of the unknown copula density.

To circumvent these difficulties, one could rely on non-linear wavelet estimation
methods. In addition to estimating the trend, these adaptive techniques take the
details into account whenever they are deemed to be sufficiently important. This
makes it possible to capture with more accuracy the high peaks of the underlying
density since details are important in that neighborhood. Different thresholding
techniques adapted to the copula density estimation problem are considered in the
companion paper by Autin et al. (2008).

While a wavelet-based estimate of a copula density is useful for describing the un-
derlying dependence structure, it does not eliminate the need for parametric copula
models, particularly for prediction purposes. It does, however, provide an additional
graphical tool for model selection. In future work, one might also consider using a
wavelet-based copula density estimate c∗ as a benchmark for goodness-of-fit testing.
A simple solution would be to select the parametric copula which is closest to c∗

according to the ASE criterion. As it turns out, however, ASE(c∗, cθ) is a biased
estimate of ‖cj∗ − cθ‖2

2, so additional work along these lines is required. In addition,
comparisons would need to be done with existing goodness-of-fit tests for copula
distributions surveyed by Genest et al. (2008).
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Appendix

Because the wavelet basis is orthonormal, Theorem 1 is an obvious consequence of
the following proposition.

Proposition 1 Assume that the scaling function φ is m−differentiable and let j be
the integer such that

2j ≤ (n/log(n))1/2−1/2m < 2j+1.

Then there exists a constant K > 0 such that for given (u0, v0) ∈ (0, 1)2, one has

Eh

[

∑

k

(α̃jk − α̂jk)
2

]

∨ Eh

[

∑

k

(α̃jk − α̂jk)φjk(u0, v0)

]2

≤ K
22j

n

(

22j log(n)

n
+ 2−j log(n)

)

.

The proof of this result is given below. It relies on two key points:

(1) It follows from the localization of the wavelet basis that the estimation of the
scaling coefficients only depends on a small number of observations: for fixed
k, only n2−j of the n available data points are needed, as will be seen in the
first step of the proof.

(2) The wavelet basis may be chosen to be sufficiently regular to control the distance
both between Fn(Xi) and F (Xi), and between Gn(Yi) and G(Yi). Through a
Taylor series expansion, this leads to the desired result for almost all levels j.

For clarity, the following argument is presented in the bivariate context, as in the
rest of this article. Note, however, that a d-variate generalization is possible, using
multivariate expansions.

7.1 Proof of Proposition 1

For arbitrary k = (k1, k2) ∈ Z
2, introduce

ξk(Xi, Yi) = φjk(Fn(Xi), Gn(Yi)) − φjk (F (Xi), G(Yi)) .

Observe that this quantity may be written alternatively as

ξk(Xi, Yi)= ξk1
(Xi)ξk2

(Yi) + ξk1
(Xi)φjk2

(G(Yi)) + ξk2
(Yi)φjk1

(F (Xi)) (9)
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in terms of

ξk1
(Xi) = φjk1

(Fn(Xi)) − φjk1
(F (Xi)) and ξk2

(Yi) = φjk2
(Gn(Yi)) − φjk2

(G(Yi)).

The proof of the theorem requires the evaluation of

Eh

[

∑

k

(α̃jk − α̂jk)
2

]

=
∑

k

E

(

1

n

n
∑

i=1

ξk(Xi, Yi)

)2

(10)

and

Eh

(

∑

k

(α̃jk − α̂jk)φjk(u0, v0)

)2

≤
∑

k,p

(

1

n2

n
∑

i=1

n
∑

ℓ=1

Eh|ξk(Xi, Yi)ξp(Xℓ, Yℓ)|
)

|φjk(u0, v0)φjp(u0, v0)|. (11)

7.1.1 First step: Finding bounds on the number of terms in the sums over i

In equations (10) and (11), the right-hand terms involve a sum over i ∈ {1, . . . , n}.
The scaling function φ being well localized, the number of non-zero terms in each
of these sums is of a smaller order than n. To find a sharper bound on the size of
I = {i : ξk(Xi, Yi) 6= 0}, use the expansion (9). Clearly, one has

|I| ≤ |{i : ξk1
(Xi) 6= 0, ξk2

(Yi) 6= 0}|.

Observe that for each i ∈ {1, . . . , n}, Ui = F (Xi) is a uniform random variable on
(0, 1). Let X(1) < · · · < X(n) be the ordered sample, and set U(i) = F (X(i)). The
problem reduces to finding the size of the set

I(j) =
{

i : ξk1
(X(i)) = φjk1

(

i

n

)

− φjk1
(U(i)) 6= 0

}

.

Fix ǫ > 0. Clearly, I(j) ⊂ I(j, 0) ∪ I1(j, ǫ) ∪ I2(j, ǫ) with

I(j, 0) =
{

i : φjk1

(

i

n

)

6= 0
}

,

I1(j, ǫ) =
{

i : φjk1

(

i

n

)

= 0, φjk1
(U(i)) 6= 0,

∣

∣

∣

∣

U(i) −
i

n

∣

∣

∣

∣

< ǫ
}

,

I2(j, ǫ) =
{

i : φjk1

(

i

n

)

= 0, φjk1
(U(i)) 6= 0,

∣

∣

∣

∣

U(i) −
i

n

∣

∣

∣

∣

≥ ǫ
}

⊂
{

i : |Fn(X(i)) − F (X(i))| ≥ ǫ
}

.
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Recall that the support of φ is [0, L] and write Ijk1
= [k12

−j, (k1 + L)2−j ] for the
support of φjk1

. It follows that |I(j, 0)| = ⌊Ln2−j⌋ and |I1(j, ǫ)| = ⌊2nǫ⌋. A finer
bound than n is not needed for the size of I2(j, ǫ) because ǫ will be chosen in such
a way that for every i, the probability of the event {|Fn(X(i)) − F (X(i))| ≥ ǫ} is as
small as desired. Since

∣

∣

∣

∣

∣

n
∑

i=1

ξk(Xi, Yi)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∣

∑

i∈I(j,0)∪I1(j,ǫ)

ξk(Xi, Yi) +
∑

i∈I2(j,ǫ)

ξk(Xi, Yi)

∣

∣

∣

∣

∣

∣

≤
∑

i∈I(j,0)∪I1(j,ǫ)

|ξk(Xi, Yi)| + n1{‖F̂−F‖∞>ǫ}

the Dvoretzky–Kiefer–Wolfowitz inequality can be invoked with ǫ = (δ log(n)/(2n))1/2

and δ as large as desired. Therefore, one gets

Eh

(

1

n

n
∑

i=1

ξk(Xi, Yi)

)2

≤ 2Eh





1

n

∑

i∈I1(j,0)∪I1(j,ǫ)

|ξk(Xi, Yi)|




2

+ 2n−δ.

Observe that this choice of ǫ leads to |I(j, 0) ∪ I1(j, ǫ)| ≤ ⌊(L+ 2
√
δ)n2−j⌋.

7.1.2 Second step: Finding bounds on the expected values

The following lemma is the key tool for determining upper bounds on the right-hand
terms of equations (10) and (11). The proof of the lemma itself is deferred to the
end of this section.

Lemma 1 Assume that the scaling function φ is m−differentiable for some integer
m. Then there exists a constant K > 0, depending on φ and on ‖c‖2, such that for

all i 6= ℓ and j ∈ N satisfying 2j ≤ (n/ log(n))1/2−1/2m < 2j+1, one has

|Ehξk(Xi, Yi)ξp(Xi, Yi)| ∨
∑

k

|Ehξk(Xi, Yi)ξk(Xℓ, Yℓ)| ≤K 23j

(

log(n)

n

)

.

If in addition the copula density c is uniformly bounded, then for all i 6= ℓ,

Eh [ξk(Xi, Yi)ξp(Xℓ, Yℓ)] ≤ K
log(n)

n
and Eh [ξk(Xi, Yi)ξp(Xi, Yi)] ≤ K 22j log(n)

n
,

where K > 0 is another constant that now depends on ‖c‖∞ also.
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Since the support of the scaling function is compact, there are at most ⌊L222j⌋ terms
in the sums over k appearing in the right-hand terms of equation (10). Accordingly,
one can find a constant K > 0 such that

Eh

[

∑

k

(α̃jk − α̂jk)
2

]

≤ 1

n2

∑

k

∑

i∈I(j,0)∪I1(j,ǫ)

Eh (ξk(Xi, Yi))
2

+
1

n2

∑

k

∑

i6=ℓ∈I(j,0)∪I1(j,ǫ)

|Ehξk(Xi, Yi)ξk(Xℓ, Yℓ)| +K 22jn−δ

≤K
1

n2
22j(n2−j)23j log(n)

n
+K

1

n2
(n2−j)223j log(n)

n
+K n−δ+1,

which leads to the result stated in Theorem 1. Moreover, for the pointwise error,
there are then only ⌊L2⌋ terms in the sum over k such that φjk(u0, v0) is non-zero.
This yields

Eh

(

∑

k

(α̃jk − α̂jk)φjk(u0, v0)

)2

≤ 1

n2

∑

k,p

∑

i∈I(j,0)∪I1(j,ǫ)

|Ehξk(Xi, Yi)ξp(Xi, Yi)| ‖φjkφjp‖∞

+
1

n2

∑

k,p

∑

i6=l∈I(j,0)∪I1(j,ǫ)

|Ehξk(Xi, Yi)ξp(Xℓ, Yℓ)| ‖φjkφjp‖∞ +K n−δ

≤K
1

n2
(n2−j)23j log(n)

n
22j +K

1

n2
(n2−j)2 log(n)

n
22j +K n−δ+1,

for some other constant K > 0. Thus the proof of Theorem 1 is complete.

7.2 Proof of Lemma 1

Let ∆(Xi) = Fn(Xi) − F (Xi). Assuming that φ is continuously m−differentiable
and denoting φ(r) its derivative of order r, one can write

ξk1
(Xi) =

m−1
∑

r=1

ẑr
k1

(Xi) + ŵk1
(Xi),

where
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ẑr
k1

(Xi) = 2jr∆(Xi)
rφ

(r)
jk1

(F (Xi)),

ŵk1
(Xi) = 2jm

∫ F (Xi)

Fn(Xi)
φ

(m)
jk1

(t)(Fn(Xi) − t)m−1dt.

For fixed ǫ > 0, write

∆(Xi) = ∆(Xi)
(

1|∆(Xi)|≤ǫ + 1|∆(Xi)|>ǫ

)

.

Denote by LD a quantity bounded above by K 2jm′

1|∆(Xi)|>ǫ for some integer m′ ≤
m and some K > 0 depending on the sup-norm of the derivative of φ. Then

|ẑr
k1

(Xi)| ≤ 2jrǫr|φ(r)
jk1

(F (Xi))| + LD,

|ŵk1
(Xi)| ≤ ‖φ(m)‖∞ 2(m+1/2)jǫm + LD.

Now assume that ǫ is such that ǫ ≤ 2−j. Then

|ξk1
(Xi)| ≤K

(

2(m+1/2)jǫm + 2jǫ max
r∈{1,...,m−1}

|φ(r)
jk1

(F (Xi))|
)

+ LD, (12)

for some other constant K > 0. Obviously, the same kind of expansion holds when
the variable Yi is considered. Using the expansion (9), one finds

ξk(Xi, Yi)ξp(Xℓ, Yℓ) = T1 + T2 + T3,

where

T1 = ξk1
(Xi)ξk2

(Yi)ξp1
(Xℓ)ξp2

(Yℓ),

T2 is a sum of four terms of the type

TT2 = ξk1
(Xi)ξk2

(Yi)ξp1
(Xℓ)φjp2

(G(Yℓ)),

and T3 is a sum of four terms of the type

TT3 = ξk1
(Xi)ξp1

(Xℓ)φjk2
(G(Yi))φjp2

(G(Yℓ)).

7.2.1 Case where c is possibly unbounded

Using Hölder’s Inequality, one can compute easily a bound for the expectation terms,
viz.
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Eh[|φ(a1)
jk1

(F (X))|b1|φ(a2)
jk2

(G(Y ))|b2 ]≤‖|φ(a1)
jk1

(u)|b1|φ(a2)
jk2

(v)|b2‖2‖c‖2

≤ 2j(b1/2+b2/2−1)‖c‖2 ‖φ(a1)‖2 ‖φ(a2)‖2,

where b1, b2 ∈ (0,∞) are arbitrary. Observe that if b1 or b2 vanishes, the bound is
better because the expectation is taken over the marginal of c, which is bounded,
viz.

Eh|φ(a1)
jk1

(F (X))|b1 ≤ 2j(b1/2−1) ‖φ(a1)‖1.

Let K be some new constant only depending on the L1−norm of the derivatives of
φ and on ‖c‖2. Using (12), an upper bound on |Eh(T1)| is then given by

K
(

2(4m+2)jǫ4m + 2(3m+2)jǫ3m+1 + 2(2m+3)jǫ2m+2 + 2(m+4)jǫm+3 + 25jǫ4 + Eh(LD)
)

when i = ℓ, and by

K
(

2(4m+2)jǫ4m + 2(3m+2)jǫ3m+1 + 2(2m+3)jǫ2m+2 + 2(m+3)jǫm+3 + 24jǫ4 + Eh(LD)
)

when i 6= ℓ. Similarly, one gets

|Eh(TT2)| ≤ K
(

2(3m+1)jǫ3m + 2(2m+3)jǫ2m+1 + 2(m+3)jǫm+2 + 24jǫ3 + Eh(LD)
)

when i = ℓ and

|Eh(TT2)| ≤ K
(

2(3m+1)jǫ3m + 2(2m+3)jǫ2m+1 + 2(m+2)jǫm+2 + 23jǫ3 + Eh(LD)
)

when i 6= ℓ. Furthermore,

|Eh(TT3)| ≤ K
(

22mjǫ2m + 2(m+2)jǫm+1 + 23jǫ2 + Eh(LD)
)

when i = ℓ. When i 6= ℓ, the term TT3 has to be studied carefully in order to avoid
a logarithmic term. To this end, the upper bound (12) must be replaced with the
following equality

ξk1
(Xi) = ẑ1

k1
(Xi) +Rk1

(Xi)

with

|Rk1
(Xi)| ≤K

(

2(m+1/2)jǫm + 22jǫ2 max
r∈{2,...,m−1}

|φ(r)
jk1

(F (Xi))|
)

+ LD

and yet another constant K > 0. As a result, one finds

Eh(TT3) = Eh[ẑ
1
k1

(Xi)ẑ
1
p1

(Xℓ)φjk2
(G(Yi))φjp2

(G(Yℓ))] +R = tktp +R,
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where
|R| ≤ K

(

22mjǫ2m + 2(m+1)jǫm+1 + Eh(LD)
)

for some new constant K > 0, and

tk = 2j
∫

∆(F−1(u))φ
(1)
jk1

(u) φjk2
(v)c(u, v)dvdu.

Now in view of the fact that the wavelet basis is orthogonal, note that Parseval’s
Identity implies that

∑

k2

(∫

Φ(v)φjk2
(v)dv

)2

≤
∫

Φ2(v)dv,

for any function Φ ∈ L2(R). Applying this inequality to

Φuk1
(v) =

∫

∆(F−1(u))φ
(1)
jk1

(u)c(u, v)du,

it follows that for k = p,

∑

k

t2k = 22j
∑

k1

∑

k2

(∫

Φuk1
(v)φjk2

(v)dv
)2

≤ 22j
∑

k1

(∫

Φ2
uk1

(v)dv
)

≤ 22j
∑

k1

∫ [∫

∆(F−1(u))φ
(1)
jk1

(u)c(u, v)du
]2

dv

≤ 22j‖∆‖2
∞

∑

k1

∫

|φ(1)
jk1

(u)|2du
∫

c2(u, v)dvdu,

where the last step is a consequence of the Cauchy–Schwartz Inequality.

In all of the above, the term LD may vary from line to line but remains bounded
above by a constant K > 0 times

2jm′

(1|Fn(Xi)−F (Xi)|>ǫ + 1|Ĝ(Yi)−G(Yi)|>ǫ).

Applying the Dvoretzky–Kiefer–Wolfowitz Inequality, one finds

Eh(LD)≤K2jm′

[P (|Fn(Xi) − F (Xi)| > ǫ) + P (|Gn(Yi) −G(Yi)| > ǫ)]

≤K2jm′

[P (‖Fn − F‖∞ > ǫ) + P (‖Gn −G‖∞ > ǫ)]

≤Kn−2δ,

where δ could be as large as desired, provided that ǫ ≥ (δ′log(n)/n)1/2 for δ′ >
m′/2 + 2δ. This is compatible with the condition on j given in the statement of
Lemma 1.
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Take such an ǫ. If 2j ≤ (n/ log(n))1/2−1/2m, the larger term is 23jǫ2 when i = ℓ. If
i 6= ℓ, the larger term given by tk is of the same order. This completes the proof of
the first part of Lemma 1.

7.2.2 Case where c is uniformly bounded

When ‖c‖∞ is finite, a sharper bound holds for the expectation terms, viz.

Eh[|φ(a1)
jk1

(F (X))|b1|φ(a2)
jk2

(G(Y ))|b2 ]≤‖|φ(a1)
jk1

(u)|b1|φ(a2)
jk2

(v)|b2‖1‖c‖∞
≤ 2j(b1/2+b2/2−2)‖c‖∞ ‖φ(a1)‖b1

2b1
‖φ(a2)‖b2

2b2
.

The proof is the same as before, except that (for the same choice of ǫ) one gets

|Eh(T1)| + |Eh(TT2)| + |Eh(TT3)| ≤K (24jǫ4 + 23jǫ3 + 22jǫ2)

when i = ℓ, and

|Eh(T1)| + |Eh(TT2)| + |Eh(TT3)| ≤K (23jǫ4 + 2jǫ3 + ǫ2)

when i 6= ℓ. In this case, the constant K > 0 also depends on ‖c‖∞. This completes
the proof of Lemma 1.
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References

Autin, F., Le Pennec, E., and Tribouley, K. (2008). Thresholding meth-
ods to estimate the copula density. Submitted available online at
http://www.cmi.univ-mrs.fr/∼autin/DONNEES/COPULAS.

Azzalini, A. and Capitanio, A. (2003). Distributions generated by perturbation of
symmetry with emphasis on a multivariate skew t-distribution. J. R. Stat. Soc.
Ser. B Stat. Methodol., 65:367–389.

25



Biau, G. and Wegkamp, M. H. (2005). A note on minimum distance estimation of
copula densities. Statist. Probab. Lett., 73:105–114.

Butucea, C. and Tribouley, K. (2006). Nonparametric homogeneity tests. J. Statist.
Plann. Inference, 136:597–639.

Chen, X. and Fan, Y. (2005). Pseudo-likelihood ratio tests for semiparametric mul-
tivariate copula model selection. Canad. J. Statist., 33:389–414.

Cherubini, U., Luciano, E., and Vecchiato, W. (2004). Copula Methods in Finance.
Wiley, New York.

Daubechies, I. (1992). Ten lectures on wavelets, volume 61 of CBMS-NSF Regional
Conference Series in Applied Mathematics. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA.
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