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Abstract

Over the last few years, the development of multi-channel sensors motivated inter-
est in methods for the coherent processing of multivariate data. Some specific issues
have already been addressed as testified by the wide literature on the so-called blind
source separation (BSS) problem. In this context, as clearly emphasized by previous
work, it is fundamental that the sources to be retrieved present some quantitatively
measurable diversity. Recently, sparsity and morphological diversity have emerged
as a novel and effective source of diversity for BSS. We give here some essential
insights into the use of sparsity in source separation and we outline the essential
role of morphological diversity as being a source of diversity or contrast between
the sources. This paper overviews a sparsity-based BSS method coined General-
ized Morphological Component Analysis (GMCA) that takes advantages of both
morphological diversity and sparsity, using recent sparse overcomplete or redun-
dant signal representations. GMCA is a fast and efficient blind source separation
method. In remote sensing applications, the specificity of hyperspectral data should
be accounted for. We extend the proposed GMCA framework to deal with hyper-
spectral data. In a general framework, GMCA provides a basis for multivariate data
analysis in the scope of a wide range of classical multivariate data restorate. Nu-
merical results are given in color image denoising and inpainting. Finally, GMCA is
applied to the simulated ESA/Planck data. It is shown to give effective astrophysical
component separation.

Key words: Blind component separation, Sparse overcomplete representations,
Sparsity, Morphological component analysis, Morphological diversity
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1 Introduction

Finding a suitable representation of multivariate data is a longstanding prob-
lem in statistics and related areas. Good representation means that the data
is somehow transformed so that its essential structure is made more visible
or more easily accessible. This problem is for instance encountered in un-
supervised learning, exploratory data analysis and signal processing. In the
latter, a typical field where the good representation problem arises is source
separation. Over the last few years, the development of multi-channel sensors
motivated interest in such methods for the coherent processing of multivariate
data. Areas of application include biomedical engineering, medical imaging,
speech processing, astronomical imaging, remote sensing, communication sys-
tems, seismology, geophysics, econometrics.

Consider a situation where there is a collection of signals emitted by some
physical objects or sources. These physical sources could be, for example,
different brain areas emitting electric signals; people speaking in the same
room (the classical cocktail party problem), thus emitting speech signals; or
radiation sources emitting their electromagnetic waves. Assume further that
there are several sensors or receivers. These sensors are in different positions, so
that each records a mixture of the original source signals with different weights.
It is assumed that the mixing weights are unknown, since their knowledge
entails knowing all the properties of the physical mixing system, which is not
accessible in general. Of course, the source signals are unknown as well, since
the primary problem is that they cannot be recorded directly. The blind source
separation (BSS) problem is to find the original signals from their observed
mixtures, without prior knowledge of the mixing weights, and by knowing very
little about the original sources. In the classical example of the cocktail party,
the BSS problem amounts to recovering the voices of the different speakers,
from the mixtures recorded at several microphones.

There has been a flurry of research activity on BSS which is one of the hottest
areas in the signal processing community. Some specific issues have already
been addressed using a blend of heuristic ideas and rigorous derivations. This
is testified by the extensive literature on the subject. As clearly emphasized
by previous work, it is fundamental that the sources to be retrieved present
some quantitatively measurable diversity (e.g. decorrelation, independence,
morphological diversity, etc). Recently, sparsity and morphological diversity
have emerged as a novel and effective source of diversity for BSS.

The goal of this paper is to give some new and essential insights into the
use of sparsity in source separation and to outline the fundamental role of
morphological diversity as being a source of diversity or contrast between the
sources. This paper describes a BSS method, and more generally a multichan-
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nel sparsity-based data analysis framework, coined Generalized Morphologi-
cal Component Analysis (GMCA) which is fast, efficient and robust to noise.
GMCA takes advantages of both morphological diversity and sparsity, using
recent sparse overcomplete signal representations. Theoretical arguments as
well as numerical experiments in multivariate image processing are reported
to characterize and illustrate the good performance of GMCA for BSS.

1.1 Organization of the paper

In Section 2 we formally state the BSS problem and survey the current state-
of-the-art in the field of BSS. In Section 3, we give the necessary background
on sparse overcomplete representation and decomposition, with extensions to
the multichannel setting. In Section 4, the multichannel extension of the Mor-
phological Component Analysis (MCA) algorithm is described and some of
its theoretical properties are stated. In Section 5, a new way of thinking spar-
sity in BSS. All necessary ingredients introduced in previous sections are put
together, and the GMCA algorithm for BSS is provided. The extension of
GMCA to hyperspectral data and its application of GMCA to multichannel
data restoration analysis are reported in 6 and Section 7.1. We also discuss an
application of the GMCA BSS algorithm to an astronomical imaging experi-
ment.

1.2 Definitions and notations

Unless stated otherwise, a vector x will be a row vector x = [x1, · · · , xt]. We

equip the vector space R
t with the scalar product

〈

x, y
〉

= xyT . The ℓp-norm

of a vector x is defined by ‖x‖ℓp = (
∑

i |x[i]|p)1/p, with the usual notation
‖x‖ℓ∞ = maxi |x[i]|. The notation ‖x‖ℓ0 defines the ℓ0 quasi-norm of x (i.e.
the number of non-zero elements in x).

Bold symbols represent matrices and XT is the transpose of X. The i-th entry
of xp is xp[i], xp is the p-th row and xq the q-th column of X. The ”entrywise”

p-norm of a matrix X is defined by ‖X‖p =
(

∑

i,j |xi[j]|p
)1/p

, not to be confused
with matrix induced p-norms. The Frobenius norm of X is obtained for p = 2,
‖X‖2F = Trace

(

XTX
)

. Similarly to vectors, ‖X‖∞ and ‖X‖0 respectively
denote the maximum in magnitude and the number of nonzero entries in the
matrix X.

In the proposed iterative algorithms, x̃(h) will be the estimate of x at itera-
tion h. Φ = [φT

1 , · · · , φT
T ]T defines a T × t dictionary the rows of which are

unit ℓ2-norm atoms {φi}i. The mutual coherence of Φ (see (1) and references
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therein) is µΦ = maxi6=j

∣

∣

∣

〈

φi, φj

〉∣

∣

∣. When T > t, this dictionary is said to be
redundant or overcomplete. In the next, we will be interested in the decom-
position of a signal x in Φ. We thus define SΦ

ℓ0
(x) (respectively SΦ

ℓ1
(x)) the

set of solutions to the minimization problem minc ‖c‖ℓ0 s.t. x = cΦ (respec-
tively minc ‖c‖ℓ1 s.t. x = cΦ). When the ℓ0 sparse decomposition of a given
signal x has a unique solution, let α = ∆Φ(x) where x = αΦ denote this
solution. Finally, we define ∆λ(.) to be a thresholding operator with threshold
λ (hard-thresholding or soft-thresholding; this will be specified when needed).

The support Λ(x) of row vector x is Λ(x) = {k; |x[k]| > 0}. Note that the
notion of support is well-adapted to ℓ0-sparse signals as these are synthesized
from a few non-zero dictionary elements. Similarly, we define the δ-support of
x as Λδ(x) = {k; |x[k]| > δ‖x‖ℓ∞}.

2 Blind Source Separation, a strenuous inverse problem

2.1 Modelling multichannel data

2.1.1 The BSS model

In a source separation setting, the observed data are composed of m distinct
monochannel datum {xi}i=1,··· ,m. Each datum could be a

√
t ×
√
t image or

a monodimensional signal with t samples. In the next, we assume that each
observation {xi}i=1,··· ,m is a row-vector of size t. The classical instantaneous
linear mixture model states that each datum is the linear combination of n
so-called sources {sj}j=1,··· ,n such that:

∀i = 1, · · · , m; xi =
n
∑

j=1

aijsj , (1)

where the set of scalar values {aij}i=1,··· ,m;j=1,··· ,n models the “weight” of each
source in the composition of each datum. For convenience, the mixing model
with additive noise can be rewritten in matrix form:

X = AS + N , (2)

where X is the m× t measurement matrix, S is the n× t source matrix and A
is the m× n mixing matrix. A defines the contribution of each source to each
measurement. An m× t matrix N is added to account for instrumental noise
or model imperfections. In this paper, we will only study the overdetermined
case: m ≥ n; the converse underdetermined case (m < n) is a more difficult
problem (see (2; 3) for further details). Further work will be devoted to this
particular case.
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In the blind source separation problem, both the mixing matrix A and the
sources S are unknown and must be estimated jointly. In general, without
further a priori knowledge, decomposing a rectangular matrix X into a linear
combination of n rank-1 matrices is clearly ill-posed. The goal of BSS is to
understand the different cases in which this or that additional prior constraint
allows to reach the land of well-posed inverse problems and to devise separation
methods that can handle the resulting models.

2.1.2 A question of diversity

Note that the mixture model in Equation (1) is equivalent to the following
one:

X =
n
∑

i=1

aisi , (3)

where ai is the i-th column of A. Blind Source Separation is equivalent to
decomposing the data X into a sum of n rank-1 matrices {Xi = aisi}i=1,··· ,n.
Obviously, there are infinitely many ways of decomposing a given matrix with
rank n into the linear combination of n rank-1 matrices. Further information
is required to disentangle between the sources.
Let us assume that the sources are random vectors. These may be known a
priori to be different in the sense of being simply decorrelated. A separation
scheme will then look for sources S such that their covariance matrix RS is
diagonal. Unfortunately, the covariance matrix RS is invariant by orthonormal
transformations such as rotations.

Therefore, an effective BSS method has to go beyond decorrelation (see (4; 5)
for further reflections about the need for stronger a priori constraints going
beyond the decorrelation assumption).
In the next sections we will emphasize on different sets of a priori constraints
and different methods to handle them. In Section 2.2, we give an overview
of BSS methods that use statistical independence as the key assumption for
separation. Recently, sparsity has emerged as being a very effective way to
distinguish the sources. These new approaches are introduced in Section 2.3.

2.2 Independent Component Analysis

2.2.1 Generalities

The previous section emphasized on the need for further “a priori” assump-
tions to bring blind source separation to the “land” of well-posed inverse prob-
lems. In this section, we cope with noiseless mixtures assuming that X = AS.
The case where the data are perturbed by additive noise will be discussed at
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the end of this section.
The seminal work by Comon (6) paved the way for the outgrowth of Inde-
pendent Component Analysis (ICA). In the celebrated ICA framework, the
sources are assumed to be independent random variables with joint probabil-
ity density function fS such that:

fS(s1, · · · , sn) =
n
∏

i=1

fsi
(si) . (4)

Disentangling between sources requires a way to measure how separable sources
are different. As statistical independence is verified by the pdf of the sources,
devising a good “measure” of independence is not trivial. In that setting,
ICA then boils down to finding a multichannel representation/basis on which
the estimated sources S̃ are as “independent as possible”. Equivalently, ICA
looks for a separating/demixing matrix B such that the estimated sources
S̃ = BAS are independent. Until the end of the section devoted to ICA, we
will assume that the mixing matrix A is a square invertible matrix (m = n
and det(A) > 0).
Until now, we can wonder if independence makes the sources identifiable.
Under mild conditions, the Darmois theorem (7) shows that statistical inde-
pendence means separability (6). It states that if at most one of the sources
is generated from a Gaussian distribution then if the entries of S̃ = BAS are
independent then B is a separating matrix and S̃ is equal to S up to a scale
factor (multiplication by a diagonal matrix with strictly positive diagonal en-
tries) and permutation. As a consequence, if at most one source is Gaussian,
maximizing independence between the estimated sources leads to perfect es-
timation of S and A = B−1. The Darmois theorem then motivates the use
of independence in blind source separation. It paved the way for the popular
Independent Component Analysis (ICA).

2.2.1.1 Independence and Gaussianity : The Kullback-Leibler (KL)
divergence from the joint density fS(s1, · · · , sn) to the product of its marginal
density is a popular measure of statistical independence :

J (S)=K
[

fS(s1, · · · , sn),
n
∏

i=1

fS(si)

]

(5)

=
∫

S

fS(s1, · · · , sn) log

(

fS(s1, · · · , sn)
∏n

i=1 fS(si)

)

, (6)

Interestingly (see (8)), the KL can be decomposed into two terms as follows:

J (S) = C (S)−
n
∑

i=1

G (si) +K , (7)
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where C (S) = K [N (E{S},RS) ,N (E{S}, diag (RS))] and G (si) = K
[

f(si),N
(

E{si}, σ2
si

)]

,

σ2
si

is the variance of si, and N (m,Σ) is the normal probability density func-
tion with mean m and covariance Σ. In Equation (7)K is a constant. The first
term in Equation (7) vanishes when the sources are decorrelated. The second
term measures the marginal Gaussianity of the sources. This decomposition
of the KL entails that maximizing independence is equivalent to minimizing
the correlation between the sources and maximizing their non-Gaussianity.
Note that, with a taste of the central limit theorem, intuition tells us that
mixing independent signals should lead to a kind of Gaussianization. It then
seems natural that demixing leads to processes that deviate from Gaussian
processes.

2.2.2 The algorithmic viewpoint

2.2.2.1 Approximating independence : In the ICA setting, the mixing
matrix is square and invertible. Solving a BSS problem is equivalent to looking
for a demixing matrix B that maximizes the independence of the estimated
sources: S̃ = BX. In that setting maximizing the independence of the sources
(with respect to the Kullback-Leibler divergence) is equivalent to maximizing
the non-Gaussianity of the sources. Since the seminal paper of Comon (6), a
variety of ICA algorithms have been proposed. They all merely differ in the
way they devise assessable quantitative measures of independence. Some pop-
ular approaches have given “measures” of independence are presented below :

• Information Maximization : (see (9; 10)) Bell and Sejnowski showed that
maximizing the information of the sources is equivalent to minimizing the
measure of independence based on the Kullback-Leibler divergence in Equa-
tion (5).

• Maximum Likelihood : Maximum Likelihood has also been proposed to solve
the BSS issue. The Maximum Likelihood (ML) approach ((11; 12; 13)) has
been showed to be equivalent to information maximization (InfoMax) in the
ICA framework.

• Higher Order Statistics : As we pointed out earlier, maximizing the inde-
pendence of the sources is equivalent to maximizing their non-Gaussianity
under a strict decorrelation constraint. Because Gaussian random variables
have vanishing higher order cumulants, devising a separation algorithm
based on higher order cumulants should provide a way of accounting for
the non-Gaussianity of the sources. A wide range of algorithms have been
proposed based on the use of higher order statistics ((14; 15; 16), and ref-
erences therein). Historical papers (see (6)) proposed ICA algorithms that
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use approximations of the Kullback-Leibler divergence (based on truncated
Edgeworth expansions). Interestingly, those approximations explicitly in-
volve higher order statistics.

Lee et al. (see (17)) showed that most ICA-based algorithms are similar in
theory and in practice.

2.2.2.2 Limits of ICA : Despite its theoretical strength and elegance,
ICA suffers from several limitations:

• Probability density assumption : Even implicit, ICA algorithm requires in-
formation on the sources distribution. As stated in (17), whatever the con-
trast function to minimize (mutual information, ML, higher order statistics),
most ICA algorithms can be equivalently restated in a natural gradient form
((18; 19)). In such setting, the “demixing” matrix B is estimated iteratively:
B← B + µ∆B where the natural gradient of B is given by:

∆B ∝
[

I− h(S̃)S̃T
]

B , (8)

where the function h is applied elementwise: h(S̃) = [h(s̃ij)] and S̃ is the
current estimate of S: S̃ = BX. Interestingly, the so-called score function h
in Equation (8) is closely related to the assumed pdf of the sources (see (20;
19)). Assuming that all the sources are generated from the same probability
density function fS, the so-called score function h is defined as follows:

h(S̃) = −
∂ log

(

fS(S̃)
)

∂S̃
. (9)

As expected, the way the “demixing” matrix (and thus the sources) is esti-
mated closely depends on the way the sources are modeled (from a statistical
point of view). For instance, separating platykurtic (distribution with neg-
ative kurtosis) or leptokurtic (distribution with positive kurtosis) sources
will require completely different score functions. Even if ICA is shown in
(19) to be quite robust to “mis-modeling”, the choice of the score function
is crucial with respect to the convergence (and rate of convergence) of ICA
algorithms. Some ICA-based techniques (see (21)) emphasized on adapting
the popular FastICA algorithm to adjust the score function to the distri-
bution of the sources. They particularly emphasize on modeling sources the
distribution of which belongs to specific parametric classes of distributions
such as generalized Gaussian: fS(S) ∝ ∏ij exp(−µ|sij|θ) 1 .

1 Note that the class of generalized Gaussian contains well-known distributions: the
Gaussian (θ = 2) and the Laplacian (θ = 1) distributions.
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• Noisy ICA : Only a few works have already investigated the problem of
noisy ICA (see (22; 23)). As pointed out by Davies in (22), noise clearly de-
generates the ICA model: it is not fully identifiable. In the case of additive
Gaussian noise as stated in Equation (2), using higher order statistics yields
an efficient estimate of the mixing matrix A = B−1 (higher order statistics
are blind to additive Gaussian noise; this property does not hold for non-
Gaussian noise). Further, in the noisy ICA setting, applying the demixing
matrix to the data does not yield an efficient estimate of the sources. Fur-
thermore, most ICA algorithms assume the mixing matrix A to be square.
When there is more observations than sources (m > n), a dimension re-
duction step is pre-processed. When noise perturbs the data, this subspace
projection step can dramatically deteriorate the performance of the separa-
tion stage.

In the next Section we will introduce a new way of modeling the data so as
to avoid most of the aforementioned limitations of ICA.

2.3 Sparsity in Blind Source Separation

In the above paragraph, we pointed out that Blind Source Separation is over-
whelmingly a question of contrast and diversity. Indeed, devising a source
separation technique consists in finding an effective way of disentangling be-
tween the sources. From this viewpoint, statistical independence is a kind of
“measure” of diversity between signals. Within this paradigm, we can wonder
if independence is a natural way of differentiating between signals.
As a statistical property, independence is a non-sense in a non-asymptotic
study. In practice, one has to deal with finite-length signals; sometimes with
a few samples. Furthermore, most real-world data are badly modeled by sta-
tionary stochastic processes. Let us consider the images in Figure 1.

Natural pictures are clearly non-stationary. As these pictures are slightly cor-
related, independence will fail in differentiating between them. Hopefully, the
human eye (more precisely the different levels of the human visual cortex) is
able to distinguish between those two images. Then, what makes the eye so
effective in discerning between visual “signals” ?
The answer may come from neurosciences. Indeed, for a decades, many re-
searchers (Barlow (24), Hubel and Wiesel 2 , Olshausen (25), Field (26), Si-
moncelli (27) and references therein) in this field have endeavored to provide
some exciting answers: the mammalian visual cortex seems to have learned via
the natural selection of individuals, an effective way of coding the informa-
tion in natural scenes. Indeed, the first level of the mammalian visual cortex

2 Hubel and Wiesel were awarded with the Nobel Prize in Medicine in 1981.
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Fig. 1. Examples of natural images.

(coined V1) seems to verify several interesting properties: i) it tends to “decor-
relate” the responses of visual receptive fields (following Simoncelli et al (27),
an efficient coding cannot duplicate information in more than one neuron), ii)
owing to a kind of “economy/compression principle”, saving neurons’ activity
yields a sparse activation of neurons for a given stimulus (this property can
be considered as a way of compressing information).
Furthermore, the primary visual cortex is sensitive to particular stimuli (visual
features) that surprisingly look like oriented Gabor-like wavelets (see (26)). It
gives support to the crucial part played by contours in natural scenes. Fur-
thermore, each stimulus tends to be coded by a few neurons. Such a way of
coding information is often referred to as Sparse Coding. These few elements
of neuroscience motivate the use of sparsity as an effective way of compressing
signal’s information thus extracting its very essence.
Inspired by the behavior of our visual cortex, seeking a sparse code may pro-
vide an effective way of differentiating between “different” signals. Here, “dif-
ferent” signals are signals with different sparse representations.

A pioneering work in sparse BSS

The seminal paper of Zibulevsky and Pearlmutter (28) introduced sparsity
as an alternative to standard contrast functions in ICA. In this paper, the
authors proposed to estimate the mixing matrix A and the sources S in a
fully Bayesian framework. Each source {si}i=1,··· ,n is assumed to be sparsely
represented in the basis Φ:

∀i = 1, · · · , n; si =
t
∑

k=1

αi[k]φk . (10)
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As the sources are assumed to be sparse, the distribution of their coefficients
in Φ is a “sparse” (i.e. leptokurtic) prior distribution:

fS(αi[k]) ∝ e−µigγ(αi[k]) , (11)

where gγ(αi[k]) = |αi[k]|γ with γ ≤ 1 3 . Zibulevsky proposed to estimate A
and S via a Maximum A Posteriori (MAP) estimator. The optimization task
is then run using a Newton-like algorithm: the Relative Newton Algorithm
(RNA - see (29) for more details). This new sparsity-based method paved the
way for the use of sparsity in Blind Source Separation. Note that several other
works emphasized the use of sparsity in a parametric Bayesian approach ((30)
and references therein). Recently, sparsity has emerged as being an effective
tool for solving underdetermined source separation issues ((31; 3; 32; 33) and
references therein). In this paper, we will concentrate on overdetermined Blind
Source Separation (m ≥ n). Inspired by the work of Zibulevsky, we present a
novel sparsity-based source separation framework providing new insights into
BSS.

3 Sparse multichannel signal representation

3.1 The blessing of sparsity and overcomplete signal representations

In the last section we emphasized on the crucial role played by sparsity in BSS.
Indeed, sparse representations provide an effective way to “compress” signals
to a few very significant content. In previous work (see (34; 35)), we claimed
that the sparser the signals are, the better the separation is. Therefore, the first
step towards separation consists in finding an effective sparse representation;
where “effective” means very sparse. Owing to its essential role in BSS, this
section particularly emphasizes on the quest for sparse representation.

What’s at stake : In the last decade sparsity has emerged as one of the
leading concepts in a wide range of signal processing applications (restora-
tion (36), feature extraction (37), source separation (38; 28; 39), compression
((40)), to name only a few). Sparsity has long been a theoretical and practical
attractive signal property in many areas of applied mathematics (Computa-
tional harmonic analysis ((41)), Statistical estimation (42; 43)).
Very recently, researchers have advocated the use of overcomplete signal rep-
resentations. Indeed, the attractiveness of redundant signal representations

3 Applying gγ(.) pointwisely to a vector αi is equivalent to computing its ℓγ norm.
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relies on their ability to sparsely represent a large class of signals. Further-
more, handling very sparse signal representations allows more flexibility and
entails effectiveness in many signal processing tasks (restoration, separation,
compression, estimation, etc). Neuroscience also underlined the role of over-
completeness. Indeed, the mammalian visual system has been shown to be
probably in need of overcomplete representation (25). In that setting, over-
complete Sparse Coding may lead to more effective (sparser) codes. In signal
processing, both theoretical and practical arguments (44; 45) have supported
the use of overcompleteness. It entails more flexibility in representation and
effectiveness in many image processing tasks.
In the general sparse representation framework, a line vector signal x ∈ R

t is
modeled as the linear combination of T elementary waveforms (the so-called
signal atoms):

{φi}i=1,··· ,T ; x =
T
∑

i=k

α[k]φk , (12)

where α[k] =
〈

x, φk

〉

are called the decomposition coefficients of x in the

dictionary Φ = [φT
1 , · · · , φT

T ]T (the T × t matrix whose rows are the atoms
normalized to a unit ℓ2-norm). In the case of overcomplete representations,
the number of waveforms {φk} that composes the dictionary Φ is higher than
the dimension of the space in which x lies: T > t. In practice, the dimension-
ality of the sparse decomposition (i.e. the vector of coefficients α) can be very
high: T ≫ t.
Nonetheless, handling overcomplete representations is clearly an ill-posed prob-
lem owing to elementary linear algebra. Indeed decomposing a signal in an
overcomplete representation requires solving an underdetermined linear prob-
lem with more unknowns than data : T > t. Linear algebra tells us that the
problem x = αΦ has no unique solution. The next Section will provide solu-
tions to this puzzling issue.

3.2 The sparse decomposition issue

In the sparse decomposition framework, the transition from ill-posedness to
well-posedness is often fulfilled by reducing the space of candidate solutions
to those satisfying some side constraints. Researchers have emphasized on
adding a sparsity constraint to the previous ill-posed problem. Amongst all the
solutions of x = αΦ we would like the sparsest one (with the least number of
non-zero coefficients αi). Donoho and Huo (46) proposed to solve the following
minimization problem :

min
α
‖α‖ℓ0 s.t x = αΦ . (13)

Clearly this is a combinatorial optimization problem that requires enumerating
all the combinations of atoms {φi}i=1,··· ,T that synthesize x. This NP-hard
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problem then appears hopeless. Donoho and Huo (46) proposed to relax the
non-convex ℓ0 sparsity by substituting the problem in Equation (13) with the
following convex problem :

min
α
‖α‖ℓ1 s.t. x = αΦ . (14)

The problem in Equation (14) is known as Basis Pursuit (see (47)). However,
the solutions to the ℓ0 and ℓ1 problems are not equivalent in general. An
extensive work (46; 48; 49; 50; 1; 51; 52) has focused on conditions under
which the problems in Equation (13) and (14) are equivalent. Consider that
x =

∑

k∈Λ(x) α[k]φk, we recall that Λ(x) is the support of x in Φ and K =
Card (Λ(x)). The signal x is said to be K-sparse in Φ. Interestingly, the first
seminal work addressing the uniqueness and equivalence of the solutions to
the ℓ0 and ℓ1 sparse decomposition recovery emphasized essentially on the
structure of the overcomplete dictionary Φ. One quantitative measure that
gives information about the structure of an overcomplete dictionary is its
mutual coherence µΦ, see also 1.2:

µΦ = max
i6=j

∣

∣

∣

〈

φi, φj

〉∣

∣

∣ . (15)

This parameter can be viewed as a worst-case measure of resemblance be-
tween all pairs of atoms. Interestingly, (46) showed that if a vector x∗ with
Card (Λ(x∗)) = K is sufficiently sparse and verifies:

K <
1

2

(

1 +
1

µΦ

)

, (16)

then x∗ is the unique maximally sparse solution to the ℓ0 sparse decomposition
problem in Equation (13), and the ℓ0 and ℓ1 sparse decomposition problems
are equivalent. Consequently, recovering sparse decompositions is then made
tractable. Note however that despite its simplicity, the identifiability test of
(16) is pessimistic (worst-case analysis). More involved, but sharper, bounds of
identifiability and equivalence between ℓ0 and ℓ1 problems have been proposed
in the literature, see e.g. (49; 53; 52; 1; 48) and (54) for an extensive review.

3.3 Overcomplete multichannel representations

In this section we extend the sparse decomposition problem to the multichan-
nel case. Previous work on the subject includes (55; 56) where all channels
are constrained to have a common sparsity pattern (i.e. joint support), (57)
in which the sparsity measure they used is different thus leading to different
constraints, (58) which introduced the concept of multichannel dictionary. In
this paper, we address a more general problem as we assume no constraint
on the sparsity pattern of the different channels. Extending the redundant
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representation framework to the multichannel case requires defining what a
multichannel overcomplete representation is. We assume that the multichan-
nel dictionary Ψ at hand is the tensor product of a spectral dictionary Ξ
(m×n matrix) and a spatial or temporal dictionary Φ (T × t matrix) 4 . Each
atom of Ψ is then the tensor product of an atomic spectrum ξi and a spatial
elementary signal φj:

∀{i, j} ∈ {1, · · · , n} × {1, · · · , T}, ψij = ξi ⊗ φj . (17)

Recall that most popular sparse recovery results in the monochannel setting
rely on the mutual coherence of the dictionary. In the multichannel case a
similar quantity can be defined. Recalling the definition of mutual coherence
given in section 1.2, the mutual coherence for multichannel dictionaries is as
follows:

0 ≤ µΨ = max {µΞ, µΦ} < 1 . (18)

This expression of the multichannel mutual coherence is interesting as atoms
can be selected based on their spatial or spectral morphology. In other words,
discriminating two different multichannel atoms ψγ={i,p} and ψγ′={j,q} can be
made based on:

• Spatial or temporal (resp. spectral) diversity : in this case i = j and p 6= q
(resp. i 6= j and p = q). These atoms have the same spectrum (resp. spa-
tial shape) but one can discriminate between them based on their spatial
(resp. spectral) diversity. From (18), their coherence is lower than µΦ (resp.
µΞ). Disentangling these multichannel atoms can equivalently be done in
the monochannel case.

• Both diversities : i 6= j and p 6= q, the “separation” task seems easier as the
atoms don’t share neither the same spectra nor the same spatial (or tem-
poral) “shape”. Note that from (18), the coherence between these atoms in
this case is lower than µΞµΦ ≤ max {µΞ, µΦ}.

Let us assume that the data X are K-sparse in Ψ. Hence, X are the linear
combination of K multichannel atoms:

X =
∑

γ∈Λ(X)

αγψγ , (19)

4 The adjectives spectral and spatial that characterize the dictionaries are not for-
mal. Owing to the symmetry of the multichannel sparse decomposition problems, Ξ
and Φ have no formal difference. In practice and more particularly in multi/hyper-
spectral imaging, Ξ will refer to the dictionary of physical spectra and Φ to the
dictionary of image/signal waveforms.
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This equation is clearly similar to the monochannel case. Owing to this key
observation, we will see in the next paragraph that most sparse decomposition
results can be extended to the multichannel case.

3.3.1 Multichannel sparse recovery results

In the last paragraph we emphasized on the apparent similarities between
the monochannel and multichannel sparse models in Equation (19). Similarly,
decomposing multichannel data in Ψ requires solving the following problem:

min
α
‖α‖0 s.t X = αΨ , (20)

where αΨ =
∑

γ αγψγ . The convex ℓ1 minimization problem would be recast
equivalently in the multichannel case:

min
α
‖α‖1 s.t X = αΨ . (21)

From the optimization viewpoint, monochannel and multichannel problems
are similar. This point leads us to straightforwardly extend sparse recovery
results in Equation (16) to the multichannel case. The uniqueness and equiv-
alence condition of the sparse multichannel decomposition problem in Equa-
tion (20) is then similar to the monochannel case. Assume that X is K-sparse
in the multichannel dictionary Ψ = Ξ⊗Φ. The ℓ0 sparse decomposition prob-
lem in Equation (20) has a unique solution and problems in Equation (20)
and (21) are equivalent when :

K <
1

2

(

1 +
1

µΨ

)

where µΨ = max{µΞ, µΦ} .

In this framework, most results in the monochannel case (49; 53; 51; 52; 1; 48)
can be straightforwardly extended to the multichannel case.

3.3.2 Practical Sparse Signal Decomposition

In the previous sections, we emphasized on conditions under which the ℓ0-
sparse decomposition problem in Equation (20) can be replaced with the con-
vex ℓ1-sparse decomposition problem in Equation (21). Most algorithms that
have been proposed to solve sparse decomposition issues can be divided into
three main categories:

• Linear programming : in the seminal paper (47), the authors proposed to
solve the convex ℓ1-sparse decomposition problem in Equation (21) with lin-
ear programming methods such as interior point methods. Unfortunately,
linear programming-based methods are computationally demanding and
thus not well suited to large-scale problems such as ours.
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• Greedy algorithms : the most popular greedy algorithm must be the Match-
ing Pursuit and its orthogonal version OMP (59). Conditions have been
given under which MP and OMP are proved to solve the ℓ1 and ℓ0 sparse
decomposition problems (60; 1; 61). Greedy algorithms have also been pro-
posed by the statistics community for solving variable selection problems
(LARS/LASSO see (62; 63)). Homotopy-continuation algorithms have also
been introduced to solve the sparse decomposition problem (64; 65; 66).
Interestingly, a recent work by Donoho (67) enlightens the links between
greedy algorithms such as OMP, variable selection algorithms and homo-
topy. Such greedy algorithms however suffer from high computational cost.
• Iterative thresholding : recently, iterative thresholding algorithms have been

proposed to mitigate the greediness of the aforementioned stepwise algo-
rithms. Iterative thresholding has first been introduced for solving sparsity-
based inverse problems (see (68; 69; 70)).

Most of these algorithms can be easily extended to handle multichannel data.

4 Morphological Component Analysis For Multichannel Data

4.1 Morphological Diversity and Morphological Component Analysis

An introduction to morphological diversity

Recall that a monochannel signal x is said to be sparse in a waveform dic-
tionary Φ if it can be well represented from a few dictionary elements. As
discussed in (37), a single basis is often not well-adapted to large classes
of highly structured data such as “natural images”. Furthermore, over the
past ten years, new tools have emerged from modern computational harmonic
analysis : wavelets (71), ridgelets (72), curvelets (73; 74; 44), bandlets (75),
contourlets (76), to name a few. It is quite tempting to combine several repre-
sentations to build a larger dictionary of waveforms that will enable the sparse
representation of larger classes of signals.

In (37) and (77), the authors proposed a practical algorithm coined Morpho-
logical Component Analysis (MCA) aiming at decomposing signals in over-
complete dictionaries made of a union of bases. In the MCA setting, x is the
linear combination of D morphological components:

x =
D
∑

i=1

ϕi =
D
∑

i=1

αiΦi , (22)

where {Φi}i=1,··· ,D are orthonormal bases of R
t. Morphological diversity then

relies on the sparsity of those morphological components in specific bases.
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In terms of ℓ0 quasi-norm, this morphological diversity can be formulated as
follows:

∀{i, j} ∈ {1, · · · , D}; j 6= i⇒ ‖ϕiΦ
T
i ‖ℓ0 < ‖ϕiΦ

T
j ‖ℓ0 . (23)

In other words, MCA relies on the incoherence between the sub-dictionaries
{Φi}i=1,··· ,D to estimate the morphological components {ϕi}i=1,··· ,D by solving
the following convex minimization problem:

{ϕi}1≤i≤D = arg min
{ϕi}1≤i≤D

∥

∥

∥

∥

∥

x−
D
∑

i=1

ϕi

∥

∥

∥

∥

∥

2

ℓ2

+ 2λ
D
∑

i=1

‖ϕiΦ
T
i ‖ℓ1 . (24)

Note that the minimization problem in (24) is closely related to Basis Pur-
suit Denoising (BPDN - see (47)). In (78), we proposed a particular block-
coordinate relaxation, iterative thresholding algorithm (MCA/MOM) to solve
(24). Theoretical arguments as well as experiments were given showing that
MCA provides at least as good results as Basis Pursuit for sparse overcom-
plete decompositions in a union of bases. Moreover, MCA turns out to be
clearly much faster than Basis Pursuit. Then, MCA is a practical alternative
to classical sparse overcomplete decomposition techniques.

Morphological diversity in multichannel data

In the previous paragraph, we gave a brief description of morphological di-
versity in the monochannel case. We extend morphological diversity to the
multichannel case. In this particular setting, we assume that each observation
or channel {xi}i=1,··· ,m is the linear combination of D morphological compo-
nents:

∀i ∈ {1, · · · , m}; xi =
D
∑

j=1

ϕij , (25)

where each morphological component ϕij is sparse in a specific basis Φj. Then
each channel {xi}i=1,··· ,m is assumed to be sparse in the overcomplete dictio-
nary Φ made of the union of the D bases {Φi}i=1,··· ,D.
We further assume that each column of the data matrix X is sparse in the
dictionary Ξ made of the union of D′ bases {Ξi}i=1,··· ,D′ to account for inter-
channel structures. The multichannel data X are then assumed to be sparse
in the multichannel dictionary Ψ = [Ξ1 · · ·ΞD′ ]⊗ [Φ1 · · ·ΦD]. The multichan-
nel data are then modeled as the linear combination of D ×D′ multichannel
morphological components:

X =
D
∑

j=1

D′
∑

k=1

̟jk , (26)
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where ̟jk is sparse in Ξk ⊗ Φj. In the same vein as what we discussed in
subsection 3.3 on how to discriminate two multichannel atoms, separating
two multichannel morphological components ̟ip and ̟jq 6=ip may be achieved
based either on spatial/temporal (resp. spectral) morphologies (i 6= j and
p = q, resp. i = j and p 6= q), or on both morphologies (i 6= j and p 6= q). The
“separation” task seems easier in the latter case as the morphological compo-
nents share neither the same spectral basis nor the same spatial (or temporal)
basis.
Analyzing multichannel signals requires accounting for their spectral and spa-
tial morphological diversities. For that purpose, the proposed multichannel
extension to MCA coined mMCA aims at solving the following minimization
problem :

min
{̟jk}

∥

∥

∥

∥

∥

∥

X−
D
∑

j=1

D′
∑

k=1

̟jk

∥

∥

∥

∥

∥

∥

2

F

+ 2λ
D
∑

j=1

D′
∑

k=1

‖ΞT
k̟jkΦ

T
j ‖1 . (27)

4.2 Multichannel overcomplete sparse recovery

General multichannel overcomplete sparse decomposition

Recall that Ξ is a m×M overcomplete dictionary with M > m, Φ is a T × t
overcomplete dictionary with T > t. Let us first consider the noiseless case.
The multichannel extension of (13) writes as follows:

min
α
‖α‖0 s.t X = ΞαΦ , (28)

where α is an M × T matrix (see also (20)). Arguing as in the monochannel
case, the convex ℓ1 minimization problem (14) can also be rewritten in the
multichannel setting :

min
α
‖α‖1 s.t X = ΞαΦ , (29)

see also (21).

4.3 Multichannel Morphological Component Analysis

The problem at stake in Equation (27) can be solved by extending to the
multichannel case well-known sparse decomposition algorithms as reviewed in
subsection 3.3.2. Extension of MP and OMP to the multichannel case has
been proposed in (58). The aforementioned greedy methods iteratively select
one dictionary atom at a time. Unfortunately, this stepwise selection of ac-
tive atoms is burdensome and the process may be sped up as in (79) where
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a faster stagewise Orthogonal Matching Pursuit (StOMP) is introduced. It is
shown to solve the ℓ0 sparse recovery problem in Equation (13) with random
dictionaries under mild conditions.

Owing to the particular structure of the problem in Equation (27), extend-
ing the MCA algorithm (37) to the multichannel case would lead to faster
and still effective decomposition results. Recall that in the mMCA setting,
the data X are assumed to be the linear combination of D × D′ morpholog-
ical components {̟jk}j=1,··· ,D;k=1,··· ,D′. Λ(̟jk) is the support of ̟jk in the
subdictionary Ψjk = Ξk ⊗ Φj . As X is K-sparse in the whole dictionary,
∑

j,k Card (Λ(̟jk)) = K. The data can be decomposed as follows:

X =
D
∑

j=1

D′
∑

k=1

̟jk =
D
∑

j=1

D′
∑

k=1

∑

i∈Λ(̟jk)

αjk[i]ψjk[i] . (30)

Substituting Equation (30) in Equation (27), the mMCA algorithm approaches
the solution to Equation (27) by iteratively and alternately estimating each
morphological component ̟jk in a Block-coordinate relaxed way (see (80)).
Each matrix of coefficients αjk is then updated as follows :

αjk = arg min
αjk

‖Rjk −Ξk αjkΦj‖2F + 2λ‖αjk‖1 , (31)

where Rjk = X−∑p,q 6=j,k ΞqαpqΦp is a residual term.
Since we are assuming that the subdictionaries {Φj}j and {Ξk}k are orthonor-
mal, the update rule in Equation (31) is equivalent to the following:

αjk = arg min
αjk

∥

∥

∥ΞT
k RkΦ

T
j − αjk

∥

∥

∥

2

F
+ 2λ‖αjk‖1 , (32)

which has a unique solution αjk = ∆λ

(

ΞT
k RkΦ

T
j

)

known as soft-thresholding
with threshold λ as follows:

∆λ(u[i]) =











0 if u[i] < λ

u[i]− λ sign (u[i]) if u[i] ≥ λ
. (33)

For a fixed λ, mMCA selects groups of atoms based on their scalar prod-
uct with the residual Rjk. Assuming that we select only the most coherent
atom (with the highest scalar product) with the residual Rjk then one mMCA
iteration boils down to a stepwise multichannel Matching Pursuit (mMP)
step. In contrast with mMP, the mMCA algorithm is allowed to select several
atoms at each iteration. Thus, when hard-thresholding is used instead of soft-
thresholding, mMCA is equivalent to a stagewise mMP algorithm. Allowing
mMCA to select new atoms is obtained by decreasing the threshold λ at each
iteration. The mMCA algorithm is summarized below:
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1. Set the number of iterations Imax and threshold λ(0).
2. While λ(h) is higher than a given lower bound λmin (e.g. can depend on the noise
variance, see Section 4.5),

For j = 1, · · · ,D and k = 1, · · · ,D′

• Compute the residual term R
(h)
jk assuming the current estimates of ̟pq 6=jk,

˜̟
(h−1)
pq 6=jk are fixed:

R
(h)
jk = X−∑pq 6=jk ˜̟

(h−1)
pq 6=jk.

• Estimate the current coefficients of ˜̟
(h)
jk by thresholding with threshold λ(h):

α̃
(h)
jk = ∆λ(h)

(

ΞT
k R

(h)
jk ΦT

j

)

.

• Get the new estimate of ̟jk by reconstructing from the selected coefficients

α̃
(h)
jk :

˜̟
(h)
jk = Ξkα̃

(h)
k Φj.

3. Decrease the threshold λ(h) following a given strategy.

4.3.1 The thresholding strategy

In (78) we proposed a thresholding strategy that is likely to provide the solu-
tion to the ℓ0 sparse monochannel problem. The strategy which goes by the
name of MOM (for “Mean of Max”) can be extended to the multichannel case.
At each iteration h the residual is projected onto each sub-dictionary and we
define :

m
(h−1)
jk =

∥

∥

∥

∥

∥

ΞT
k

(

X−
∑

p,q

Ξqα̃
(h−1)
pq Φp

)

ΦT
j

∥

∥

∥

∥

∥

∞

. (34)

The multichannel-MOM (mMOM) threshold is then computed as the mean

of the two largest values in the set {m(h−1)
jk }j=1,··· ,D;k=1,··· ,D′

λ(h) =
1

2

{

m
(h−1)
j0k0

+m
(h−1)
j1k1

}

. (35)

In the next section, we show conditions under which mMCA/mMOM selects
atoms without error and converges asymptotically to the solution of the mul-
tichannel ℓ0 sparse recovery problem in Equation (20).

4.4 Recovering sparse multichannel decompositions using mMCA

The mMOM rule defined in Equation (34)-(35) is such that mMCA will se-
lect, at each iteration, atoms belonging to the same subdictionary Ψjk =
Ξk ⊗ Φj . Although it seems more computationally demanding, the mMOM
strategy has several nice properties. We show sufficient conditions under which
i) mMCA/mMOM selects atoms belonging to the active atom set of the
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solution of the ℓ0 sparse recovery problem (Exact Selection Property), ii)
mMCA/mMOM converges exponentially to X and its sparsest representa-
tion in Ψ. Let us mention that the mMCA/mMOM exhibits an auto-stopping
behavior, and requires only one parameter λmin whose choice is easy and dis-
cussed in Section 4.5.
The next proposition states that mMCA/mMOM verifies the Exact Selection
Property at each iteration.

Proposition 1 (Exact Selection Property) Suppose that X is K-sparse
such that :

X =
D
∑

j=1

D′
∑

k=1

∑

i∈Λ(̟jk)

αjk[i]ψjk[i] ,

where K =
∑

j,k Card (Λ(̟jk)) satisfying K <
µ−1

Ψ

2
. At the h-th iteration,

assume that the residual R(h) is K-sparse such that :

R(h) =
D
∑

j=1

D′
∑

k=1

∑

i∈Λ(̟jk)

βjk[i]ψjk[i] .

Then mMCA/mMOM picks up coefficients belonging to the support of X at
iteration (h).

When the previous Exact Selection Property holds, the next proposition shows
that mMCA/mMOM converges exponentially to X and its sparsest represen-
tation in Ψ = [Ξ1 · · ·ΞD′]⊗ [Φ1 · · ·ΦD].

Proposition 2 (Convergence) Suppose that X is K-sparse such that :

X =
D
∑

j=1

D′
∑

k=1

∑

i∈Λ(̟jk)

αjk[i]ψjk[i] ,

where K =
∑

j,k Card (Λ(̟jk)).

If K <
µ−1

Ψ

2
then mMCA/mMOM converges exponentially to X and its spars-

est representation in Ψ. More precisely, the residual converges to zero at an
exponential rate.

See (81) for detailed proofs. Note that the above conditions are far from being
sharp. Exact Selection and convergence may still be valid beyond the bounds
retained in the latter two statements.
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4.5 Handling bounded noise with mMCA

When bounded noise perturbs the data, the data are modeled as follows :

X =
D
∑

j=1

D′
∑

k=1

∑

i∈Λ(̟jk)

αjk[i]ψjk[i] + N (36)

where N is a bounded noise : ‖N‖F < ǫ. Sparse recovery then needs to solve
the following problem:

min
αjk

D
∑

j=1

D′
∑

k=1

‖αjk‖0 s.t

∥

∥

∥

∥

∥

∥

X−
D
∑

j=1

D′
∑

k=1

ΞkαjkΦj

∥

∥

∥

∥

∥

∥

F

< ǫ (37)

Stability conditions of sparse recovery have been investigated in (82; 83; 84) in
the monochannel case. More particularly, conditions are proved in (82) under
which OMP verifies an Exact Selection Property in the presence of bounded
noise. They also showed that the OMP solution lies in a ℓ2 ball centered on
the exact solution to the ℓ0 sparse recovery problem with a radius on the order
of ǫ. Exhibiting similar stability results in the mMCA setting is challenging
and will be addressed in the future. In the mMCA framework, assuming the
noise level is known, the mMCA/mMOM algorithm stops when λ ≤ λmin with
λmin = 3− 4ǫ.

4.6 Choosing the overcomplete dictionary

The choice of the overcomplete dictionary is a key step as it determines where
we will be looking for a sparse representation. It is the expression of some
prior information we have available on the signal. Interestingly, the ℓ1 sparse
recovery problem can be seen in the light of a Bayesian framework. Solving
the following problem

min
{αjk}

∥

∥

∥

∥

∥

∥

X−
D
∑

j=1

D′
∑

k=1

ΞkαjkΦj

∥

∥

∥

∥

∥

∥

2

F

+ 2λ
D
∑

j=1

D′
∑

k=1

‖αjk‖1 (38)

is equivalent, in a Bayesian framework, to making the assumption among
others of an independent Laplacian prior on the coefficients of each morpho-
logical component in the sparse representation domain. Choosing the set of
subdictionaries is then equivalent to assuming some specific prior for each
morphological component.
Furthermore, the attractiveness of mMCA lies in its ability to take advantage
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of sparse representations which have fast implicit analysis and synthesis oper-
ators without requiring the explicit manipulation of each atom: wavelets (71),
curvelets (74), bandlets (75), contourlets (76), ridgelets (72), wave atoms (85)
to name a few. As a consequence, mMCA is a fast non-linear sparse decom-
position algorithm whose computational complexity is dominated by that of
the transforms involved in the dictionary.
In the image processing experiments reported in this paper, we will assume
that a wide range of images can be decomposed into a piecewise smooth (con-
tour) part and an oscillating texture part. We will assume a priori that the
contour part is sparse in the curvelet tight frame, and the texture part is
sparsely described by the local discrete cosine transform (DCT) (71) 5 . How-
ever, all the results we previously proved were given assuming that each sub-
dictionary was an orthonormal basis. When the selected subdictionaries are
more generally tight frames, the solution to (32) is no longer a simple thresh-
olding. Nevertheless, in (86) and (70), the authors showed that thresholding is
the first step towards solving (32) when the subdictionary is redundant. Rig-
orously, proximal-type iterative shrinkage is shown to converge to a solution
of (32). In practice, even when the subdictionary is a tight frame (for instance
the curvelet frame) we will only use a single thresholding step to solve (32).
As far as the choice of the spectral dictionary Ξ is concerned, it is based on a
spectral sparsity assumption.

Epilogue

In this Section, we have surveyed the tricky problem raised by sparse over-
complete signal decomposition for multichannel data. We then presented a
multichannel extension to the MCA algorithm. The so-called mMCA algo-
rithm will be the backbone of the next sparsity-based algorithm we propose
to solve the sparse BSS issue.

5 Morphological Diversity and Blind Source Separation

In (35) we introduced an extension of the mMCA framework for BSS. The so-
called Generalized Morphological Component Analysis (GMCA) framework
states that the observed data X are generated according to Equation (2).
In words, X is a linear instantaneous mixture of unknown sources S using
an unknown mixing matrix A, with an additive perturbation term N that
accounts for noise or model imperfection. We remind the reader that we only

5 An alternative choice would be the wave atoms (85).
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consider the overdetermined source separation case, i.e. m ≥ n and thus A
has full column rank.

5.1 Generalized Morphological Component Analysis

From now, we assume that the sources are sparse in the spatial dictionary Φ

that is the concatenation ofD orthonormal bases {Φi}i=1,··· ,D: Φ =
[

ΦT
1 , · · · ,ΦT

D

]T
.

In the GMCA setting, each source is modeled as the linear combination of D
morphological components where each component is sparse in a specific basis :

∀i ∈ {1, · · · , n}; si =
D
∑

k=1

ϕik =
D
∑

k=1

αikΦk . (39)

GMCA seeks an unmixing scheme, through the estimation of A, which leads to
the sparsest sources S in the dictionary Φ. This is expressed by the following
optimization task written in its augmented Lagrangian form:

{Ã, S̃} = arg min
A,S

2λ
n
∑

i=1

D
∑

k=1

‖ϕikΦ
T
k ‖0 + ‖X−AS‖2F , (40)

where each row of S is such that si =
∑D

k=1 ϕik. Obviously this algorithm is
combinatorial by nature. We then propose to substitute the ℓ1 norm for the
ℓ0 sparsity, which amounts to solving the optimization problem :

{Ã, S̃} = arg min
A,S

2λ
n
∑

i=1

D
∑

k=1

‖ϕikΦ
T
k ‖1 + ‖X−AS‖2F . (41)

More conveniently, the product AS can be split into n × D multichannel
morphological components: AS =

∑

i,k a
iϕik. Based on this decomposition,

we propose an alternating minimization algorithm to estimate iteratively
one term at a time. Define the {i, k}-th multichannel residual by Ri,k =
X−∑{p,q}6={i,k} a

pϕpq as the part of the data X unexplained by the multichan-
nel morphological component aiϕik. Estimating the morphological component
ϕik = αikΦk assuming A and ϕ{pq}6={ik} are fixed leads to the component-wise
optimization problem :

ϕ̃ik = arg min
ϕik

2λ‖ϕikΦ
T
k ‖1 + ‖Ri,k − aiϕik‖2F , (42)

or equivalently,

α̃ik = arg min
αik

2λ‖αik‖1 + ‖Ri,kΦ
T
k − aiαik‖2F , (43)

since here Φk is an orthogonal matrix. By classical ideas in convex analysis, a
necessary condition for α̃ik to be a minimizer of the above functional is that
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the null vector be an element of its subdifferential at α̃ik, that is :

0 ∈ − 1

‖ai‖22
aiT Ri,kΦ

T
k + αik +

λ

‖ai‖22
∂‖αik‖1 , (44)

where ∂‖αik‖1 is the subgradient defined as (owing to the separability of the
ℓ1-norm):

∂‖α‖1 =











u ∈ R
t

∣

∣

∣

∣

∣

∣

u[l] = sign(α[l]), l ∈ Λ(α)

u[l] ∈ [−1, 1], otherwise.











.

Hence, (44) can be rewritten equivalently as two conditions leading to the
following closed-form solution:

α̂jk[l] =











0, if
∣

∣

∣

(

aiT Xi,kΦ
T
k

)

[l]
∣

∣

∣ ≤ λ

α′[l], otherwise.
(45)

where α′ = 1
‖ai‖2

2
aiT Ri,kΦ

T
k − λ

‖ai‖2
2
sign

(

aiT Ri,kΦ
T
k

)

. This exact solution is

known as soft-thresholding. Hence, the closed-form estimate of the morpho-
logical component ϕik is:

ϕ̃ik = ∆δ

(

1

‖ai‖22
aiT Xi,kΦ

T
k

)

Φk with δ =
λ

‖ai‖22
. (46)

Now, considering fixed {ap}p 6=i and S, updating the column ai is then just a
least-squares estimate:

ãi =
1

‖si‖22



X−
∑

p 6=i

apsp



 sT
i (47)

where sk =
∑D

k=1 ϕik. In a simpler context, this iterative and alternating opti-
mization scheme has already proved its efficiency in (34).

In practice each column of A is forced to have unit ℓ2 norm at each iteration
to avoid the classical scale indeterminacy of the product AS in Equation (2).
The GMCA algorithm is summarized below:
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1. Set the number of iterations Imax and threshold δ(0)

2. While δ(h) is higher than a given lower bound δmin (e.g. can depend on the noise
standard deviation),

For i = 1, · · · , n
For k = 1, · · · ,D
• Compute the term r

(h)
ik assuming the current estimates of ϕ{pq}6={ik},

ϕ̃
(h−1)
{pq}6={ik} are fixed :

r
(h)
ik = ãi(h−1)T

(

X−∑{p,q}6={i,k} ãp(h−1)
ϕ̃

(h−1)
{pq}

)

• Estimate the current coefficients of ϕ̃
(h)
ik by thresholding with threshold

δ(h) :
α̃

(h)
ik = ∆δ(h)

(

r
(h)
ik ΦT

k

)

• Get the new estimate of ϕik by reconstructing from the selected coeffi-

cients α̃
(h)
ik :

ϕ̃
(h)
ik = α̃

(h)
ik Φk

Update ai assuming ap 6=k(h)
and the morphological components ϕ̃

(h)
pq are

fixed:
ãi(h)

= 1

‖s̃
(h)
i ‖2

2

(

X−∑n
p 6=i ã

p(h−1)
s̃
(h)
p

)

s̃
(h)T

i

– Decrease the threshold δ(h).

GMCA is an iterative thresholding algorithm where at each iteration, coarse
versions of the morphological component {ϕik}i=1,··· ,n;k=1,··· ,D for each source
si are first computed. These raw sources are estimated from their most sig-
nificant coefficients in Φ. This first step then amounts to performing a single
mMCA decomposition step in the multichannel representation A ⊗ Φ with
the threshold δ(h).
Following this step, the column ai corresponding to the i-th source is estimated
from the most significant features of si. Each source and its corresponding col-
umn of A are then alternately estimated. The whole optimization scheme then
progressively refines the estimates of S and A as δ decreases towards δmin. This
particular iterative thresholding scheme provides robustness to the algorithm
by working first on the most significant features in the data and then progres-
sively incorporating smaller details to finely tune the model parameters. The
main difference with the mMCA algorithm lies in the mixing matrix update.
Such stage is then equivalent to updating a part of the multichannel dictionary
in which mMCA decomposes the data X.

5.1.1 The dictionary Φ

As an MCA-like algorithm (see (77)), the GMCA algorithm involves multipli-
cations by matrices ΦT

k and Φk. Thus, GMCA is attractive in large-scale prob-
lems as long as the redundant dictionary Φ is a union of bases or tight frames.
For such dictionaries, matrices ΦT

k and Φk are never explicitly constructed,
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and fast implicit analysis and reconstruction operators are used instead (for
instance, wavelet transforms, global or local discrete cosine transform, etc).

5.1.2 Complexity analysis

We here provide a detailed analysis of the complexity of GMCA. We begin
by noting that the bulk of the computation is invested in the application of
ΦT

k and Φk at each iteration and for each component. Hence, fast implicit
operators associated to Φk or its adjoint are of key importance in large-scale
applications. In our analysis below, we let Vk denote the cost of one application
of a linear operator Φk or its adjoint. The computation of the multichannel
residuals for all (i, k) costs O(nDmt) flops. Each step of the double ’For’ loop
computes the correlation of this residual with aiT using O(mt) flops. Next, it
computes the residual correlations (application of ΦT

k ), thresholds them, and
then reconstructs the morphological component ϕik. This costs O(2Vk + T )
flops. The sources are then reconstructed with O(nDt), and the update of
each mixing matrix column involves O(mt) flops. Noting that in our setting,
n ∼ m ≪ t, and Vk = O(t) or O(t log t) for most popular transforms, the
whole GMCA algorithms then costs O(Imaxn

2Dt)+O(2Imaxn
∑D

k=1 Vk+nDT ).
Thus, in practice GMCA could be computationally demanding for large scale
high dimensional problems. In Section 5.3, we prove that adding some more
assumptions leads to a very simple, accurate and much faster algorithm that
enables to handle very large scale problems.

5.1.3 The thresholding strategy

Hard or Soft-thresholding ? Rigorously, we should use a soft-thresholding
operator. In practice, hard-thresholding leads to better results. Furthermore
in (78), it was shown empirically that the use of hard-thresholding is likely
to provide the ℓ0 sparse solution for the single channel sparse decomposition
problem. By analogy, the use of a hard-thresholding operator is assumed to
solve the multichannel ℓ0 quasi-norm problem instead of (41).

Handling noise The GMCA algorithm is well suited to deal with noisy
data. Assume that the noise standard deviation is σN. Then, we simply apply
the GMCA algorithm as described above, terminating as soon as the thresh-
old δ gets less than τσN. Here, τ typically takes its value in the range 3− 4.
This attribute of GMCA makes it a suitable choice for use in noisy applica-
tions. GMCA not only manages to separate the sources, but also succeeds in
removing additive noise as a by-product.
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5.1.4 The Bayesian point of view

We can also consider GMCA from a Bayesian viewpoint. For instance, let’s
assume that the entries of the mixtures {xi}i=1,··· ,m, the mixing matrix A,
the sources {sj}j=1,··· ,n and the noise matrix N are random variables. For
simplicity, N is Gaussian; its samples are iid from a multivariate Gaussian
distribution N (0,ΣN) with zero mean and covariance matrix ΣN. The noise
covariance matrix ΣN is assumed known. For simplicity, the noise samples are
considered to be decorrelated from one channel to the other; the covariance
matrix ΣN is thus diagonal. We assume that each entry of A is generated
from a uniform distribution. Let us remark that other priors on A could be
imposed here; e.g. known fixed column for example.
We assume that the sources {si}i=1,··· ,n are statistically independent from
each other and their coefficients in Φ (the {αi}i=1,··· ,n) are generated from a
Laplacian law:

∀i = 1, · · · , n; fS(αi) =
T
∏

k=1

fS(αi[k]) ∝ exp (−µ‖αi‖1) . (48)

In a Bayesian framework, the use of the Maximum a posteriori estimator leads
to the following optimization problem:

{Ã, S̃} = arg min
A,S
‖X−AS‖2

ΣN
+ 2µ

n
∑

i=1

D
∑

k=1

‖ϕikΦ
T
k ‖1 , (49)

where ‖.‖ΣN
is the Frobenius norm defined by ‖X‖2

ΣN
= Trace

(

XTΣ−1

N
X
)

.

Note that this minimization task is similar to (41) except that here the data
fidelity term involving the norm ‖.‖ΣN

accounts for noise. In the case of ho-
moscedastic and decorrelated noise (i.e. ΣN = σ2

N
Im), problems (41) and (49)

are equivalent with λ = µσ2
N

. Note that in this framework the independence
assumption in Equation (48) does not necessarily entail that the sources are
“truly” independent. Rather it means that there are no a priori assumptions
that indicate any dependency between the sources.

5.2 Results

We illustrate here the performance of GMCA with a simple toy experiment.
We consider two sources s1 and s2 sparse in the union of the DCT and
a discrete orthonormal wavelet basis. Their coefficients in Φ are randomly
generated from a Bernoulli-Gaussian distribution: the probability for a co-
efficient {α1,2[k]}k=1,··· ,T to be non-zero is p = 0.01 and its amplitude is
drawn from a Gaussian distribution with mean 0 and variance 1. The signals
were composed of t = 1024 samples. We define the mixing matrix criterion
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Fig. 2. Evolution of the mixing matrix criterion ∆A as the noise variance varies:
GMCA (solid line), EFICA, (⋆) :, RNA (+). Abscissa : SNR in dB. Ordinate :
mixing matrix criterion value.

CA = ‖I−PÂ−1A‖1,1, where P is a matrix that reduces the scale/permutation
indeterminacy of the mixing model. Indeed, when A is perfectly estimated,
it is equal to Â up to scale and permutation. In the simulation experiments,
the true sources and mixing matrix are obviously known and thus P can be
computed easily. The mixing matrix criterion is thus strictly positive unless
the mixing matrix is perfectly estimated up to scale and permutation. This
mixing matrix criterion is experimentally much more sensitive to separation
errors. Figure 2 illustrates the evolution of CA as the Signal-to-Noise Ratio
SNR = 10 log10 (‖AS‖22/‖N‖22) increases. We compare our method to the Rel-
ative Newton Algorithm (RNA) (29) that accounts for sparsity and EFICA
(21). The latter is a FastICA variant designed for highly leptokurtic sources.
Both RNA and EFICA were applied after “sparsifying” the data via an or-
thonormal wavelet transform. Figure 2 shows that GMCA behaves similarly
to state-of-the-art sparse BSS techniques.

5.3 Speeding up blind-GMCA

5.3.1 Introduction: the orthonormal case

Let us assume that the dictionary Φ is no longer redundant and reduces to an
orthonormal basis. The ℓ0 optimization problem (40) then boils down to the
following one:

{Ã, S̃} = arg min
A,S
‖ΘX −Aα‖2F + 2λ

n
∑

i=1

‖αi‖0 with S = αΦ, (50)
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where each row of ΘX = XΦT stores the decomposition of each observed
channel in Φ. Similarly the ℓ1 norm problem (41) reduces to :

{Ã, S̃} = arg min
A,S
‖ΘX −Aα‖2F + 2λ

n
∑

i=1

‖αi‖1 with S = αΦ . (51)

The GMCA algorithm no longer needs transforms at each iteration as only the
data X have to be transformed once in Φ. Clearly, this case is computationally
much cheaper. Unfortunately, no orthonormal basis is able to sparsely repre-
sent large classes of signals and yet we would like to use “very” sparse signal
representations which motivated the use of redundant representations in the
first place. The next section gives a few arguments supporting the substitution
of (51) for (41) even when the dictionary Φ is redundant.

The redundant case In this section, we assume Φ is redundant. We con-
sider that each datum {xi}i=1,··· ,m has a unique ℓ0 sparse decomposition (i.e.
SΦ

ℓ0
(xi) is a singleton for any i ∈ {1, · · · , m}). We also assume that the

sources have unique ℓ0 sparse decompositions (i.e. SΦ

ℓ0 (si) is a singleton for
all i ∈ {1, · · · , n}). We then define ΘX = [∆Φ(x1)

T , · · · ,∆Φ(xm)T ]T and
ΘS = [∆Φ(s1)

T , · · · ,∆Φ(sn)T ]T .
Up to now, we believed in morphological diversity as the source of discerni-
bility between the sources we wish to separate. Thus, distinguishable sources
must have “ discernibly different” supports in Φ. Intuition then tells us that
when one mixes very sparse sources their mixtures should be less sparse. Two
cases have to be considered:

• Sources with disjoint supports in Φ : the mixing process increases the ℓ0
norm : ‖∆Φ(xj)‖ℓ0 > ‖∆Φ(si)‖ℓ0 for all j ∈ {1, · · · , m} and i ∈ {1, · · · , n}.
When Φ is made of a single orthogonal basis, this property is exact.
• Sources with δ-disjoint supports in Φ : the argument is not so obvious; we

conjecture that the number of significant coefficients in Φ is higher for
mixture signals than for the original sparse sources with high probability :
Card (Λδ(xj)) > Card (Λδ(si)) for any j ∈ {1, · · · , m} and i ∈ {1, · · · , n}.

Owing to this “intuitive” viewpoint, even in the redundant case, the method
is likely to solve the following optimization problem :

{Ã, Θ̃S} = arg min
A,ΘS

‖ΘX −AΘS‖2F + 2λ‖ΘS‖0 . (52)

Obviously, (52) and (40) are not equivalent unless Φ is orthonormal. When Φ
is redundant, no rigorous mathematical proof is easy to derive. Nevertheless,
experiments will show that intuition leads to good results. In (52), note that
a key point is still doubtful : sparse redundant decompositions (operator ∆Φ)
are non-linear and in general no linear model is preserved. Writing ∆Φ (ΘX) =
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A∆Φ (ΘS) at the solution is then an invalid statement in general. The next
section will focus on this source of fallacy.

When non-linear processes preserve linearity Whatever the sparse de-
composition used ( e.g. Matching Pursuit (87), Basis Pursuit (47), etc), the
decomposition process is non-linear. The simplification we made earlier is no
longer valid unless the decomposition process preserves linear mixtures. Let
us first focus on a single signal : assume that y is the linear combination of m
original signals (y could be a single datum in the BSS model) :

y =
m
∑

i=1

νiyi . (53)

Assuming each {yi}i=1,··· ,m has a unique ℓ0 sparse decomposition, we define
αi = ∆Φ(yi) for all i ∈ {1, · · · , m}. As defined earlier, SΦ

ℓ0
(y) is the set of

ℓ0 sparse solutions perfectly synthesizing y: for any α ∈ SΦ

ℓ0 (y); y = αΦ.
Amongst these solutions, one is the linearity-preserving solution α⋆ defined
such that:

α⋆ =
m
∑

i=1

νiαi . (54)

As α⋆ belongs to SΦ

ℓ0
(y), a sufficient condition for the ℓ0 sparse decomposition

to preserve linearity is the uniqueness of the sparse decomposition. Indeed,
(46) proved that, in the general case, if

||α||0 < (µ−1
Φ

+ 1)/2 , (55)

then this is the unique maximally sparse decomposition, and that in this case
SΦ

ℓ1
(y) contains this unique solution as well. Therefore, if all the sources have

sparse enough decompositions in Φ in the sense of inequality (55), then the
sparse decomposition operator ∆Φ(.) preserves linearity.

In (78), the authors showed that when Φ is the union of D orthonormal
bases, MCA is likely to provide the unique ℓ0 pseudo-norm sparse solution to
the problem (13) under the assumption that the sources are sparse enough.
Furthermore, in (78), experiments illustrate that the uniqueness bound (55)
is too pessimistic. Uniqueness should hold, with high probability, beyond the
bound (55). Hence, based on this discussion and the results reported in (78),
we consider in the next experiments that the operation ∆Φ(y) which stands
for the decomposition of y in Φ using MCA, preserves linearity.
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In the BSS context In the BSS framework, recall that each observation
{xi}i=1,··· ,m is the linear combination of n sources :

xi =
n
∑

j=1

aijsj . (56)

Owing to the last paragraph, if the sources and the observations have unique
ℓ0-sparse decompositions in Φ then the linear mixing model is preserved, that
is:

∆Φ (xi) =
n
∑

j=1

aij∆Φ (sj) , (57)

and we can estimate both the mixing matrix and the sources in the sparse
domain by solving (52).

5.3.2 The Fast blind GMCA algorithm

According to the last section, a fast GMCA algorithm working in the sparse
transform domain (after decomposing the data in Φ using a sparse decom-
position algorithm) could be designed to solve (50) (respectively (51)) by an
iterative and alternate estimation of ΘS and A. There is an additional impor-
tant simplification when substituting problem (51) for (41). Indeed, as m ≥ n,
it turns out that (51) is a multichannel overdetermined least-squares error
fit with ℓ1-sparsity penalization. We again use an alternating minimization
scheme to solve for A and ΘS:

• Update the coefficients: when A is fixed, the marginal optimization problem
has a unique solution given by the forward-backward proximal fixed-point
equation, see (70, Proposition 3.1):

Θ̃S = ∆δ

(

Θ̃S + M(ΘX −AΘ̃S)
)

(58)

where M is a relaxation descent-direction matrix such that the spectral
radius of I −MA is bounded above by 1. Choosing M = Ã† (pseudo-

inverse of A which is full column-rank), gives Θ̃S = ∆δ

(

Ã†ΘX

)

, ∆δ is a

thresholding operator (hard for (50) and soft for (51)) and the threshold δ
decreases with increasing iteration count assuming.

• Update the mixing matrix A by a least-squares estimate: Ã = ΘXΘ̃T

S

(

Θ̃SΘ̃
T

S

)−1
.

Note that the latter two step estimation scheme has the flavor of the alter-
nating Sparse coding/Dictionary learning algorithm presented in (88) in a
different framework.

The two stages iterative process leads to the following fast GMCA algorithm:
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1. Perform a MCA to each data channel to compute ΘX :
ΘX = [∆Φ (xi)

T ]T .
2. Set the number of iterations Imax and threshold δ(0).
3. While each δ(h) is higher than a given lower bound δmin (e.g. can depend on the
noise standard deviation),

– Proceed with the following iteration to estimate the coefficients of the sources
ΘS at iteration h assuming A is fixed:

ΘS
(h+1) = ∆δ(h)

(

A†(h)
ΘX

)

.

– Update A assuming ΘS is fixed :

Ã(h+1) = ΘXΘ̃
(h)T

S

(

Θ̃
(h)
S

Θ̃
(h)T

S

)−1

.

– Decrease the threshold δ(h).
4. Stop when δ(h) = δmin.

In the same vein as in subsection 5.1, the coarse to fine process is also the
core of this fast version of GMCA. Indeed, when δ(h) is high, the sources are
estimated from their most significant coefficients in Φ. Intuitively, the coeffi-
cients with high amplitude in ΘS are (i) less perturbed by noise and (ii) should
belong to only one source with overwhelming probability. The estimation of
the sources is refined as the threshold δ decreases towards a final value δmin.
Similarly to the previous version of the GMCA algorithm, the optimization
process provides robustness to noise and helps convergence even in a noisy
context. Experiments in Section 5.6 illustrate the good performances of this
fast GMCA algorithm.

Complexity analysis When the approximations we make are valid, the
fast simplified GMCA version requires only the application of MCA on each
channel, which is faster than the non-fast version (see subsection 5.1.2). In-
deed, once MCA is applied on each channel, the rest of the algorithm requires
O(Imaxn

2Dt) flops.

5.3.3 A fixed point algorithm

Recall that the GMCA algorithm is composed of two steps: (i) estimating S
assuming A is fixed, (ii) Inferring the mixing matrix A assuming S is fixed. In
the simplified GMCA algorithm, the first step boils down to a least-squares
estimation of the sources followed by a thresholding as follows :

Θ̃S = ∆δ

(

Ã†ΘX

)

. (59)

The next step is a least-squares update of A:

Ã = ΘXΘ̃T

S

(

Θ̃SΘ̃
T

S

)−1
. (60)
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Define Θ̂S = Ã†ΘX such that Θ̃S = ∆δ

(

Θ̂S

)

and rewrite the previous
equation as follows:

Ã = ÃΘ̂S∆δ

(

Θ̂S

)T
(

∆δ

(

Θ̂S

)

∆δ

(

Θ̂S

)T
)−1

. (61)

Interestingly, (62) turns out to be a fixed point algorithm with the following
stationarity condition :

Θ̂S∆δ

(

Θ̂S

)T
= ∆δ

(

Θ̂S

)

∆δ

(

Θ̂S

)T
. (62)

This fixed point condition constrains Θ̂S∆δ

(

Θ̂S

)T
to be symmetric. In the

next section we give a precise probabilistic interpretation to this condition.

5.3.4 Convergence study

In this paragraph, we give some heuristics that enlighten the convergence
behavior of the above fast-GMCA algorithm. From a statistical point of view,
the sources sp and sq are assumed to be random processes. We assume that
the entries of αp[k] and αq[k] are identically and independently generated
from a sparse prior with a heavy-tailed probability density function (pdf )
which is assumed to be unimodal at zero, even, monotonically increasing for
negative values. For instance, any generalized Gaussian distribution verifies
these hypotheses. Figure 3 represents the joint pdf of two independent sparse
sources (on the left) and the joint pdf of two mixtures (on the right). We then
take the expectation of both sides of (62):

∑

k∈Λδ(α̂q)

E{α̂p[k]α̂q[k]} =
∑

k∈Λδ(α̂p)∩Λδ(α̂q)

E{α̂p[k]α̂q[k]} , (63)

and symmetrically,

∑

k∈Λδ(α̂p)

E{α̂p[k]α̂q[k]} =
∑

k∈Λδ(α̂p)∩Λδ(α̂q)

E{α̂p[k]α̂q[k]} . (64)

Intuitively the sources are correctly separated when the branches of the star-
shaped contour plot (see Figure 3 on the left) of the joint pdf of the sources
are aligned with the axes.
The question is then: do conditions (63) and (64) lead to a unique solution
? do acceptable solutions belong to the set of fixed points ? Note that if the
sources are perfectly estimated then E{∆δ (ΘS)∆δ (ΘS)T} is diagonal and
E{ΘS∆δ (ΘS)} = E{∆δ (ΘS)∆δ (ΘS)}. As expected, the set of acceptable
solutions (up to scale and permutation) verifies the convergence condition.
Let us assume that α̂p and α̂q are uncorrelated mixtures of the true sources
αp and αq. Hard-thresholding then correlates α̂p and ∆δ(α̂q) (respectively α̂q

and ∆δ(α̂p)) unless the joint pdf of the estimated sources αp and αq has the
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Fig. 3. Contour plots of a simulated joint pdf of 2 independent sources generated
from a generalized Gaussian law f(x) ∝ exp(−µ|x|0.5). Left : joint pdf of the
original independent sources. Right : joint pdf of 2 mixtures.
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Fig. 4. Contour plots a simulated joint pdf of 2 independent sources generated from
a generalized Gaussian law that have been hard-thresholded. Left : joint pdf of the
original independent sources that have been hard-thresholded. Right : joint pdf of
2 mixtures of the hard-thresholded sources.

same symmetries as the thresholding operator (this property has also been
outlined in (26)). Figure 4 gives a rather good empirical point of view of the
previous remark. On the left, Figure 4 depicts the joint pdf of two unmixed
sources that have been hard-thresholded. Note that whatever thresholds we
apply, the thresholded sources are still decorrelated as their joint pdf has the
same symmetries as the thresholding operator. On the contrary, on the right
of Figure 4, the hard-thresholding process further correlates the two mixtures.
For a fixed δ, several fixed points lead to decorrelated coefficient vectors α̂p

and α̂q. Figure 4 provides a good intuition: for fixed δ the set of fixed points
is divided into two different categories: (i) those which depend on the value of
δ (plot on the right) and (ii) those that are valid fixed points for all values of δ
(plot on the left of Figure 4). The latter solutions lead to acceptable sources up
to scale and permutation. Remark that those conditions must hold for every
threshold δ ≥ δ⋆, where δ⋆ is the minimum scalar δ such that the sources sp and
sq are δ-disjoint. As fast-GMCA involves a decreasing thresholding scheme, the
final fixed points are stable if they verify the convergence conditions (63) and
(64) for all δ. To conclude, if the fast-GMCA algorithm converges, it should
converge to the true sources up to scale and permutation.

We finally note that noise is naturally handled in the accelerated GMCA as
for the original version. For instance, in presence of noise, the MCA used in
the first step to get the sparse decomposition of the observations, is stopped
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at typically 3 − 4σN. This strategy will be supported by the experiments of
Section 5.6.

5.4 When the number of sources is unknown

In blind source separation, the number of sources is assumed to be a fixed
known parameter of the problem. In practical situations, the number of sources
is often rarely known and has to be estimated. In an ideal theoretical setting,
the number of sources is the dimension of the subspace of R

m (recall that
m is the number of observations or channels) in which the data lies. A mis-
estimation of the number of sources n may entail several difficulties:

• Under-estimation : in the GMCA algorithm, under-estimating the number
of sources will clearly lead to solutions that are made of linear combinations
of “true” sources. The solution may then be sub-optimal with respect to
the sparsity of the estimated sources.
• Over-estimation : in case of over -estimation, the GMCA algorithm may

have to cope with a mixing matrix estimate that has not a full column-
rank. The optimization problem at hand can be ill-conditioned.

Henceforth, estimating the number of sources is a crucial and strenuous issue.
To our knowledge, only a few work have already focused on the estimation of
the number of sources n. Recently, the author in (89) approached the problem
using the minimum description length.In this paper, we introduce a sparsity-
based method to estimate n within the GMCA framework.
It is possible, as in (89), to use classical model selection criteria in the GMCA
algorithm. Such criteria, including AIC (90), BIC (91), would provide a bal-
ance between the complexity of the model (here the number of sources ) and its
ability to faithfully represent the data. It would amount to add a penalty term
in (40). This penalty term would merely prevent a high number of sources.

In the sparse BSS framework, we propose an alternative approach. Indeed, for
a fixed number of sources p < n, the sparse BSS problem amounts to solving
the following optimization task :

min
A,α

∣

∣

∣ColDim(A)=p

‖α‖1 s.t. ‖X−AαΦ‖F < ǫ . (65)

where ColDim (A) is the number of columns of the matrix A. The general
algorithm we would like to deal with is then the following :

min
p















min
A,α

∣

∣

∣ColDim(A)=p

‖α‖1 s.t. ‖X−AαΦ‖F < ǫ















. (66)
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Let us write Pp,ǫ the problem in Equation (65). Interestingly, if p < n, there
exists a minimal value ǫ⋆(p) such that if ǫ < ǫ⋆(p), problem Pp,ǫ has no solution.
For a fixed p < n, this minimal value ǫ⋆(p) is obtained by approximating the
data X with its largest p singular vectors.
Furthermore, in the noiseless case, for p < n, ǫ⋆(p) is always strictly positive
as the data lies in a subspace the whose dimension is exactly n. Then, when
p = n, the problem Pn,ǫ has at least one solution for ǫ = ǫ⋆(n) = 0. Then,
devising a joint estimation scheme for the mixing matrix A, the sources S and
the number of sources n is possible via a constructive approach. Indeed, we
propose to look for the solutions of Pp,ǫ for increasing values of p ≥ 1 and
varying values of ǫ. As the GMCA algorithm is likely to provide the solution
of Pp,ǫ⋆(p) for a fixed p, we propose the following GMCA-based algorithm :

While ‖X−AαΦ‖F > ǫ⋆(n) and p ≤ m :

1- Increase p by adding a new column to A - this step is described below.

2- Solve Pp,ǫ⋆(p) using the GMCA algorithm for a fixed p :

min
A,α

∣

∣

∣ColDim(A)=p
‖α‖1 s.t. ‖X−AαΦ‖F < ǫ⋆(p) .

The role of the GMCA algorithm : The above algorithm then strives to
find a particular path described by a sequence {pi, ǫi}i of solutions to Ppi,ǫi

.
Ideally, an optimal scheme would provide the sequence {i, ǫ⋆(i)}i=1,··· ,n of so-
lutions to Pi,ǫ⋆(i) thus leading to the optimal value ǫ⋆(n) = 0 when i = n.
Nevertheless, this sequence is hard to obtain in practice : the optimal se-
quence {i, ǫ⋆(i)}i=1,··· ,n is unknown a priori. Hopefully, for a fixed p, the way
the threshold decreases and stops in the GMCA algorithm (Step 2 of the
above algorithm) should enable GMCA to provide a solution close to Pp,ǫ⋆(p).
Indeed, in the GMCA framework, there is a bijective map between a value of
ǫ in Equation (65) and the threshold δ used in the GMCA algorithm such
that both formulations share the same solution. Obviously, when ǫ→ 0 then
δ → 0. Then, in practice, for a fixed value of p, managing the threshold such
that it tends to 0 in the GMCA algorithm should lead to a solution close to
Pp,ǫ⋆(p).
In the noiseless case, Step 2 of the above algorithm then amounts to running a
whole GMCA estimation of A and S = αΦ for a fixed p with a final threshold
δmin = 0.
Let us remark that the sequence {i, ǫ⋆(i)}i=1,··· ,n can be estimated in advance.
Indeed, for a fixed number of components p = i, the optimal approximation
error is given by the projection on the subspace of dimension p spanned by
the p singular vectors related to the p highest singular values of X. A pre-
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processing step would require to compute the singular value decomposition of
X to estimate the optimal sequence {i, ǫ⋆(i)}i=1,··· ,n. In practical situations,
the use of GMCA avoids this pre-processing step.

Increasing iteratively the number of components : In the aforemen-
tioned algorithm, Step 1 amounts to adding a column vector to the current
mixing matrix A. The most simple choice would amount to choose this vec-
tor at random. Wiser choices can also be made based on additional priori
information :

• Decorrelation : if the mixing matrix is assumed to be orthogonal, the new
column vector can be chosen as being orthogonal to the subspace spanned
by the columns of A with ColDim (A) = p− 1.
• Known spectra : if a set of spectra are known a priori, the new column

can be chosen amongst the set of unused spectra. The new spectrum can
be chosen based on its coherence with the residual. Let A denote a set of
spectra {ηl ∈ A}l=1,··· ,Card(A)

and let note Ac the set of unused spectra (i.e.

spectra that have not been chosen previously), then the pth column of A is
chosen such that :

ηl⋆ = arg max
ηl∈Ac

∣

∣

∣

∣

∣

t
∑

k=1

1

‖ηl‖2ℓ2
ηT

l [X−AS]k
∣

∣

∣

∣

∣

, (67)

where [X−AS]k is the kth column of X−AS.

Any other prior information can be taken into account which will guide the
choice of a new column vector of A.

The noisy case : In the noisy case, the parameter ǫ2 can be interpreted
as a bound on noise (for bounded noise such as the case of Gaussian white
noise with covariance matrix σ2

N
I). In the second probabilistic case, the noise

is known to be bounded above and below by ±πσN with probability higher
than 1− exp(−π2/2). In practice, in Step 2 of the above algorithm, the final
threshold of the GMCA algorithm is chosen as δmin ≃ 3σN. The choice π = 3
then guarantees the noise to be bounded with probability higher than 0.98.

A simple experiment

In this experiment, the data are assumed to be the linear combination of n
sources as stated by the classical instantaneous mixture model. The entries of
S have been independently drawn from a Laplacian probability density with
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scale parameter µ = 1 (Φ is chosen as the Dirac basis). The entries of the
mixing matrix are independently drawn form a zero-mean Gaussian distribu-
tion of unit-variance. The data are not contaminated by noise.
This experiment will focus on comparing the classical PCA (the popular sub-
space selection method), and the GMCA algorithm assuming n is unknown.
In the absence of noise contaminating the data, only the n highest eigenval-
ues provided by the PCA, which coincide with the Frobenius norm of each
product {aisi}i=1··· ,n, are non-zero. PCA therefore provides the true number
of sources. In Figure 5, the aforementioned GMCA algorithm has been ap-
plied to the same data in order to estimate the number of sources. In this
experiment, the number of channels is m = 64. Each observation has t = 256
samples. The number of sources n varies from 2 to 20. Each point has been
computed from 25 trials. Figure 5 depicts the mean value of the number of
sources estimated by GMCA. For each of the 25 trials, GMCA provides ex-
actly the true number of sources.
In Figure 6, we compare the performances of PCA and GMCA in recov-
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Fig. 5. Estimating the number of sources with GMCA- Abscissa : True
number of sources. Ordinate : Estimated number of sources with GMCA. Each
point is the mean number of sources computed from 25 trials. For each point, the
estimation variance is zero.

ering the true input sources. In this experiment, the number of channels is
m = 128. Each channel has t = 2048 samples. The top panel of Figure 6
shows the mean recovery SNR in dB of the estimated sources. Clearly, the
GMCA provides sources that are closer to the true sources than PCA. Let us
define the following ℓ1-norm based criterion:

Cℓ1 =

∑n
i=1 ‖aisi − ãis̃i‖1
∑n

i=1 ‖aisi‖1
, (68)
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where symbol ∼ means estimated parameters. Cℓ1 provides a sparsity-based
criterion that quantifies the deviation between the estimated sources and the
true sparsest sources. The panel at the bottom of Figure 6 shows the evolution
of Cℓ1 when the number of sources varies. As expected, the GMCA-based
algorithm also provides the sparsest solutions.
These preliminary examples point out that GMCA is able to find the true
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Fig. 6. GMCA (dots) versus PCA (solid) - Abscissa : Input number of sources.
Ordinate - Top : Recovery SNR in dB Bottom : ℓ1 sparsity criterion. Each point
is an average value over 25 trials.

dimension of the subspace in which the data lies (i.e. the true number of
sources). Furthermore, GMCA provides far sparser solutions than PCA with
much smaller recovery errors. Further work is needed to better characterize
the behavior of GMCA when the number of sources is unknown. This is clearly
one perspective to consider in a future work.

5.5 Variations on sparsity and independence

Up to now, we considered the data X as a collection of m channels each of
which having t entries or samples. Considering instead X as a collection of t
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signals having m entries (the columns of the matrix X) leads to an interesting
point of view. In this paragraph, we assume that the data X has already been
decomposed in the spatial dictionary Φ such as in Section 5.3. We then handle
the coefficients of X in Φ defined as follows :

X = ΘXΦ . (69)

For the sake of simplicity, we will assume that Φ is a nice orthonormal matrix;
ΘX then has the same dimension as X. We will also assume that m = n and
that the mixing matrix A is invertible. Similarly, the sources are represented
in Φ via their decomposition coefficients ΘS. We assume that each entry of ΘS

is random and generated from a Laplacian distribution with scale parameter
µ. The entries of ΘS are mutually independent. Recalling that the {i, j}th
entry of ΘS is written αij , the probabilistic model is defined as follows :

∀i = 1, · · · , n : j = 1, · · · , t; f (αij) ∝ exp (−µ|αij|) . (70)

The matrix ΘS can be viewed has the concatenation of t n×1 column vectors
{θk

S}k=1,··· ,T such that:

∀k = 1, · · · , t; i = 1, · · · , n; θk
S[i] = αij . (71)

Clearly, the set of vectors {θk
S}k=1,··· ,T are mutually independent and their

individual probability function is as follows :

fS(θk
S) =

n
∏

i=1

fS(θk
S[i]) ∝ exp

(

−µ‖θk
S‖1

)

. (72)

The noiseless sparse BSS problem then amounts to looking for the matrix
B = A−1 that minimizes the sparsity of the estimated sources. From the
point of view of optimization, the problem can be rewritten as follows :

min
A,{θk

S
}

t
∑

k=1

∥

∥

∥θk
S

∥

∥

∥

ℓ1
s.t. ΘX = AΘS. (73)

Assuming A is fixed, the problem above is equivalent to recovering the sparse
decomposition of each column of ΘX separately in the dictionary A. In the
general case, the mixing matrix A is unknown. The problem in Equation (73)
is then equivalent to seeking the basis (not necessarily orthogonal) A in which
the columns of ΘX are jointly the sparsest. This problem is then quite similar
to the search for the “best sparsifying basis” described in (92).
In this framework, the sparse BSS issue is equivalent solving the “best spar-
sifying basis” problem for an ensemble of vectors. In the next paragraphs we
go further and exhibit close links between different problems as summarized
in the diagram:

Best Sparsifying/Unconditional Bases ↔ Sparse BSS ↔ ICA
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Sparse BSS and unconditional bases

In the probabilistic framework described in (72), the set of vectors {θk
S}k=1,··· ,T

belongs with high probability (if C ≫ 1/µ) to the ℓ1-ball Ω = {θ
∣

∣

∣‖θ‖1 ≤ C}.
Furthermore, each column vector θk

S is, by definition, the transformed version
of the original source column vectors θk

S :

∀k = 1, · · · , t; θk
X = Aθk

S (74)

We further assume that A has columns with unit ℓ2-norm. It follows that the
set of mixed vectors {θk

X}k=1,··· ,T belongs, with high probability, to AΩ the
image of the ℓ1-ball Ω by A.
In this particular framework, we can find very close connections with the
work of Donoho in (43) in a different context. Inspired by this work, we
can transpose exactly the same results to our framework. Indeed, the vec-
tors {θk

X}k=1,··· ,T must have a kind of unique “unconditional basis” (see (43))
which turns out to be A−1. Conversely, looking for the sparsest representa-
tion of the set of vectors {θk

X}k=1,··· ,T (with respect to the ℓ1 metric) solves
the sparse BSS issue. Inspired by (43), the following proposition gives mild
conditions proving that the sparsest solution provides the sparse BSS solution.

Proposition 3 Assume that the sources, in the sparse domain, ΘS have en-
tries independently and identically distributed from a Laplacian density. As-
sume that the mixing matrix A is invertible, has columns with unit ℓ2 norm.
Then, the norm ‖ · ‖1,1 is a “contrast” function :

E {‖ΘS‖1} ≤ E {‖AΘS‖1} . (75)

The proof is inspired by that of Lemma 4 in (43).
The latter viewpoint of the sparse BSS problem yields several conclusions:

• Contrast function : The ℓ1-norm is a contrast function. Indeed, looking for
the sparsest solutions provides the solutions of the BSS problem.
• Unconditional basis : Looking for a demixing matrix can be equivalently

done by seeking the “unconditional basis” of the set of vectors {θk
X}k=1,··· ,T .

Note that in harmonic analysis, the search for unconditional bases is motivated
by their ability to provide the so-called “diagonal” processes. In the sparse BSS
framework, the “diagonality” property is no more than the independence of
the entries of the column vectors {θk

S}k=1,··· ,T . This remark clearly stresses the
interplay between apparently different concepts, namely sparse BSS, uncon-
ditional bases and ICA. Interestingly, Meyer in (93) has already pointed out
the intuitive link between ICA and unconditional basis.
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Sparse BSS and sparse ICA

From the ICA viewpoint, the Laplacian prior may be exploited via a Maximum
Likelihood approach. Estimating the sources in the ML framework amounts
to solving the following optimization problem :

min
B
‖BΘX‖1 − log |det (B)| . (76)

In the noiseless case, the equality condition ΘX = AΘS enables to recast the
above problem as follows :

min
A,ΘS

‖ΘS‖1 , s.t. ΘX = AΘS (77)

which is valid when log |det (A)| is constant (for instance in the orthogonal
case). Then, the above problem is directly equivalent to the sparse BSS prob-
lem described in Equation (73). As a consequence, sparse ICA is equivalent
to sparse BSS.

5.6 Results

The sparser, the better

Up to now we used to claim that sparsity and morphological diversity are the
clue for good separation results. The role of morphological diversity is twofold:

• Separability : the sparser the sources in the dictionary Φ (redundant or
not), the more “separable” they are. As we noticed earlier, sources with
different morphologies are diversely sparse ( i.e. they have δ-disjoint sup-
ports in Φ with a “small” δ). The use of a redundant Φ is thus motivated
by the grail of sparsity for a wide class of signals for which sparsity means
separability.
• Robustness to noise or model imperfections : the sparser the sources,

the less dramatic the noise. In fact, sparse sources are concentrated on very
few significant coefficients in the sparse domain for which additive noise is
a slight perturbation. As a sparsity-based method, GMCA should be less
sensitive to noise.

Furthermore, from a signal processing point of view, dealing with highly sparse
signals leads to easier and more robust models. To illustrate those points,
let us consider n = 2 unidimensional sources with t = 1024 samples. These
sources are the Bump and HeaviSine signals available in the WaveLab toolbox
- see (94). The first column of Figure 7 shows the two synthetic sources. The
sources are randomly mixed, and a Gaussian noise with variance corresponding
to SNR=19dB is added so as to provide m = 2 observations portrayed in the
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second column of Figure 7. We assumed that MCA preserves linearity for
such sources and mixtures (see our choice of the dictionary later on). The
mixing matrix is assumed to be unknown. The third and fourth columns of
Figure 7 depict the GMCA estimates computed with respectively (i) a single
orthonormal discrete wavelet transform (DWT) and (ii) a union of DCT and
DWT. Visually, GMCA performs quite well in both cases.
Figure 8 gives the value of the mixing matrix criterion CA (defined in section
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Fig. 7. The sparser the better - first column: the original sources. Second
column: mixtures with additive Gaussian noise (SNR = 19dB). Third column:
sources estimated with GMCA using a single Discrete Orthogonal Wavelet Trans-
form (DWT). Fourth column: Sources estimated with GMCA using a redundant
dictionary made of the union of a DCT and a DWT.

5.2) as the SNR increases. In Figure 8, the dashed line corresponds to the
behavior of GMCA in a single DWT; the solid line depicts the results obtained
using GMCA when Φ is the union of the DWT and the DCT. On the one hand,
GMCA gives satisfactory results as CA is rather low for both experiments. On
the other hand, the values of CA provided by GMCA in the MCA-domain
are approximately 5 times better than those given by GMCA using a unique
DWT. This simple toy experiment clearly confirms the benefits of sparsity for
blind source separation. Furthermore it underlines the effectiveness of “very”
sparse representations provided by non-linear decompositions in overcomplete
dictionaries. This is an occurrence of what D.L. Donoho calls the ”blessing of
dimensionality” (95).

GMCA is able to provide the sparsest solution

In this paragraph, we have run a simple noiseless experiment. The data X
consists of 4 mixtures (Figure 10) each of which is the linear combination
of 4 sources (Figure 9). The mixing matrix has been chosen at random. The
GMCA algorithm has been performed in the biorthogonal wavelet domain;
see (71). The estimated sources are shown in Figure 11. These results were
obtained using the GMCALab toolbox (96).
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We previously emphasized on GMCA as being able to provide the sparsest
sources in the sense advocated by the sparse BSS framework. Figure 12 pro-
vides the evolution of the sparsity divergence ‖S̃‖1−‖S‖1 along the 500 GMCA
iterations. Clearly, the GMCA algorithm tends to estimate sources with in-
creasing sparsity. Furthermore, the GMCA solution has the same sparsity
(with respect to the sparsity divergence ) as the true sources. This simple
experiment then points out that GMCA is able to recover the solution having
the correct sparsity level.

Fig. 9. The 256× 256 source images.
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Fig. 10. The 256× 256 noiseless mixtures.

Fig. 11. The sources estimated using GMCA.

Dealing with noise

The last paragraph emphasized on sparsity as the key for very efficient source
separation methods. In this section, we will compare several BSS techniques
with GMCA in an image separation context. We chose 3 different reference
BSS methods:

• JADE : the well-known ICA (Independent Component Analysis) based on
fourth-order statistics (see (16)).
• Relative Newton Algorithm : the seminal sparsity-based BSS technique of
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Fig. 12. GMCA provides the sparsest solution - Abscissa : Iteration number.
Ordinate : Sparsity divergence ‖S̃‖1 − ‖S‖1.

Zibulevsky (29) we already reviewed. In the experiments reported hereafter,
we used the Relative Newton Algorithm (RNA) on the data transformed by
a basic orthogonal 2D wavelet transform (2D-DWT).
• EFICA : this separation method improves the FastICA algorithm for sources

following generalized Gaussian distributions (leptokurtic marginals with
heavy tails). We also applied EFICA on data transformed by a 2D-DWT
where the leptokurticity assumption on the source marginal statistics is
valid.

Figure 13 shows the original sources (top pictures) and the 2 mixtures (bot-
tom pictures). The original sources s1 and s2 have a unit variance. The ma-
trix A that mixes the sources is such that x1 = 0.25s1 + 0.5s2 + n1 and
x2 = −0.75s1 + 0.5s2 + n2 where n1 and n2 are Gaussian noise vectors (with
decorrelated samples) such that SNR=10dB. The noise covariance matrix ΣN

is diagonal.
In section 5.6 we claimed that a sparsity-based algorithm would lead to more
robustness to noise. The comparisons we carry out here are twofold: (i) we
evaluate the separation quality in terms of the correlation of the original and
estimated sources as the noise variance varies; (ii) as the estimated sources are
also perturbed by noise, correlation coefficients are not always very sensitive
to separation errors so that we also assess the performances of each method by
computing the mixing matrix criterion CA. The GMCA algorithm was applied
using a dictionary consisting of the union of a Fast Curvelet Transform (avail-
able online - see (74; 97)) and a Local Discrete Cosine Transform (LDCT).
The union of the curvelet transform and LDCT are often well suited to a wide
class of “natural” images.
Figure 14 portrays the evolution of the correlation coefficient of source 1 (left
picture) and source 2 (right picture) as a function of the SNR. At first glance,
GMCA, RNA and EFICA are very robust to noise as they give correlation co-
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Fig. 13. Top : the 256 × 256 source images. Bottom : two different mixtures.
Gaussian noise is added such that the SNR is equal to 10dB.
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Fig. 14. Evolution of the correlation coefficient between original and estimated
sources as the noise variance varies: solid line : GMCA, dashed line: JADE, (⋆)
: EFICA, (+) : RNA. Abscissa : SNR in dB. Ordinate : correlation coefficients.

efficients close to the optimal value 1. On these images, JADE behaves rather
badly. It might be due to the correlation between these two sources. For higher
noise levels (SNR lower than 10dB), EFICA tends to perform slightly worse
than GMCA and RNA. As we noted earlier, in our experiments, a mixing
matrix-based criterion turns out to be more sensitive to separation errors and
then better discriminates between the methods. Figure 15 depicts the behavior
of the mixing matrix criterion as the SNR increases. Recall that the correla-
tion coefficient was not able to discriminate between GMCA and RNA. The
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mixing matrix criterion clearly reveals the differences between these meth-
ods. First, it confirms the dramatic behavior of JADE on that set of mixtures.
Secondly, RNA and EFICA behave rather similarly. Thirdly, GMCA seems
to provide far better results with mixing matrix criterion values that are up
to 10 times better than JADE and approximately 2 times better than with
RNA or EFICA.

To summarize, the findings of this experiment confirm the key role of sparsity
in blind source separation:

• Sparsity brings better results : remark that, amongst the methods we
used, only JADE is not a sparsity-based separation algorithm. Whatever
the method, separating in a sparse representation enhances the separation
quality : RNA, EFICA and GMCA clearly outperform JADE.
• GMCA takes better advantage of overcompleteness and morpho-

logical diversity: RNA, EFICA and GMCA provide better separation
results with the benefit of sparsity. Nonetheless, GMCA takes better ad-
vantage of overcomplete sparse representations than RNA and EFICA.
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Fig. 15. Evolution of the mixing matrix criterion ∆A as the noise variance varies:
solid line : GMCA, dashed line : JADE, (⋆) : EFICA, (+) : RNA. Abscissa : SNR
in dB. Ordinate : mixing matrix criterion value.

Higher dimension problems and computational cost

In this section, we propose to analyze how GMCA behaves when the dimen-
sion of the problem increases. Indeed, for a fixed number of samples t, it would
be more difficult to separate mixtures with a high number of sources n. In the
following experiment, GMCA is applied on data that are random mixtures of
n = 2 to 15 sources. The number of mixtures m is set to be equal to the num-
ber of sources : m = n. The sources are selected from a set of 15 images (of size
128×128 pixels). These sources are depicted in Figure 16. GMCA was applied
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Fig. 16. The set of 15 sources used to analyze how GMCA scales when the number
of sources increases.

using the Fast Curvelet transform (74). Hereafter, we analyze the convergence
of GMCA in terms of the mixing matrix criterion CA. This criterion is normal-
ized as follows C̄A = CA

n2 to be independent of the number of sources n. The
plot on the left of Figure 17 shows how GMCA behaves when the number of
iterations Imax varies from 2 to 1000. Whatever the number of sources, the nor-
malized mixing matrix criterion drops when the number of iterations is higher
than 50. When Imax > 100, the GMCA algorithm tends to stabilize. Then,
increasing the number of iterations does not lead to a substantial separation
enhancement. When the dimension of the problem increases, the normalized
mixing matrix criterion at convergence gets slightly larger (Imax > 100). As
expected, for a fixed number of samples t, the separation task is likely to be
more difficult when the number of sources n increases. Fortunately, GMCA
still provides good separation results with low mixing matrix criterion (lower
than 0.025) values up to n = 15 sources.
The plot on the right of Figure 17 illustrates how the computational cost 6

of GMCA scales when the number of sources n varies. Recall that the fast
GMCA algorithm is divided into two steps : i) sparsifying the data and com-
pute ΘX, ii) estimating the mixing matrix A and ΘS. This plot shows that
the computational burden obviously increases when the number of sources n
grows. Let us point out that, when m = n, the computational burden of step i)
is proportional to the number of sources n and independent of the number of
iterations Imax. Then, for high Imax values, the computational cost of GMCA
tends to be proportional to the number of iterations Imax.

6 Dealing with Hyperspectral Data

6.1 Specificity of hyperspectral data

Considering the objective function in the minimization problem (27) from a
Bayesian perspective, the ℓ1 penalty terms imposing sparsity are easily inter-
preted as coming from Laplacian prior distributions on the components sk

and problem (27) is akin to a Maximum A Posteriori estimation of the model

6 The experiments were run with IDL on a PowerMac G5 - 2Ghz computer.
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Fig. 17. Left : Evolution of the normalized mixing matrix criterion when the number
of GMCA iterations Imax increases. Abscissa: Number of iterations. Ordinate :
Normalized mixing matrix criterion. The number of sources varies as follows solid
line : n = 2, dashed line : n = 5, (2) : n = 10, (◦) : n = 15. Right :. Behavior of
the computational cost when the number of sources increases. Abscissa: Number
of sources. Ordinate : Computational cost in seconds. The number of iterations
varies as follows solid line : Imax = 10, dashed line : Imax = 100, (◦) : Imax = 1000.

parameters A and S. Interestingly, there is a striking asymmetry in the treat-
ment of A and S and this is in fact a common feature of the great majority of
BSS methods. Invoking a uniform improper prior distribution for the spectral
parameters A is standard practice. On the one hand, this unbalanced treat-
ment may not seem so unfair when A and S actually do have very different
roles in the model and very different sizes. As mentioned earlier, A is often
simply seen as a mixing matrix of small and fixed size while each row si of the
source matrix S, is usually seen as a collection of t samples from a process in
time or pixels in an image, which can grow very much larger than the number
of channels m as more data is collected. On the other hand, there are applica-
tions in which one deals with data from instruments with a very large number
of channels which are well organized according to some physically meaningful
index. A typical example is hyperspectral data where images are collected in
a large number of, what is more, contiguous regions of the electromagnetic
spectrum. It then makes sense to consider the continuity, the regularity, etc.
of some physical property from one channel to its neighbor. For instance the
spectral signatures of the objects in the scene may be known a priori to have a
sparse representation in some specified possibly redundant dictionary of spec-
tral waveforms.
In what follows, the term hyperspectral is used generically to identify data
with the following specific properties regardless of other definitions or models
living in other scientific communities :

(1) High dimensionality : The number of channels m in common hyper-
spectral imaging devices can be greater than a hundred. Consequently,
problems involving hyperspectral data often have very high dimensions.
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(2) Contiguity : The large number of channels in the instrument achieve a
regular / uniform sampling of some additional and meaningful physical
index (wavelength, space, time). We refer to this added dimension as the
spectral dimension.

(3) Morphospectral Coherence : Hyperspectral data is assumed to be
structured a priori according to the linear mixture model given in equa-
tion (3).

We describe next an extension of the GMCA algorithm for hyperspectral data
processing when it is known a priori that the underlying objects of interest
Xk = aksk exhibit sparse spectral signatures and sparse spatial morphologies
in dictionaries of spectral and spatial waveforms specified a priori.

6.2 GMCA for Hyperspectral BSS

6.2.1 Principle

A well known property of the linear mixture model (3) is its scale and permu-
tation invariance : without additional prior information, the indexing of the
Xk in the decomposition of data X is not meaningful and, ak, sk can trade a
scale factor in full impunity. A consequence is that, unless a priori specified
otherwise, information on the separate scales of ak and sk is lost, and solely
a joint scale parameter for ak, sk can be estimated. In a Bayesian perspective,
this a priori knowledge of the multiplicative mixing process and of the loss
of information it entails, needs to be translated into a practical joint prior
probability distribution for Xk = aksk.
The relevant distribution after the multiplicative mixing is the distribution of
Xk = aksk, which has the obvious property of being a function of ak and sk

through their product only. Actually, the variables that matter are γk and νk

which are the sparse coefficient vectors representing respectively ak in Ξ and
sk in Φ :

Xk = ΞαkΦ = ΞγkνkΦ = aksk , (78)

where αk = γkνk is a rank one matrix of coefficients. For the sake of simplicity
Φ and Ξ are two orthonormal bases. Unfortunately, deriving the distribution
of the product of two independent random vectors γk and νk starting from
assumptions on their separate distribution functions is notoriously cumber-
some. We propose instead that the following pπ is a good candidate joint
sparse prior distribution for γk and νk after the loss of information induced
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by multiplication :

pπ(γk, νk) = pπ(γkνk, 1) ∝ exp(−λk‖γkνk‖1) ∝ exp(−λk

∑

i,j

|γk[i]νk[j]|) ,

(79)
where γk[i] is the ith entry in γk and νk[j] is the jth entry in νk. The property
‖γkνk‖1,1 = ‖γk‖1‖νk‖1 is obvious. Thus, the proposed distribution has the
nice property, for subsequent derivations, that the conditional distributions of
γk given νk and of νk given γk are Laplacian distributions which are commonly
and conveniently used to model sparse distributions. This distribution provides
us with a convenient and formal expression for our prior knowledge of the
sparsity of both ak and sk in dictionaries of spectral and spatial waveforms
and of the multiplicative mixing process. Inserting this prior distribution in a
Bayesian maximum a posteriori estimator leads to the following minimization
problem :

min
{γk,νk}

∥

∥

∥

∥

∥

X−
n
∑

k=1

ΞγkνkΦ

∥

∥

∥

∥

∥

2

ΣN

+
n
∑

k=1

λk‖γkνk‖1 . (80)

Interestingly, this can be expressed slightly differently as follows :

min
αk

∥

∥

∥

∥

∥

X−
n
∑

k=1

Xk

∥

∥

∥

∥

∥

2

ΣN

+
n
∑

k=1

λk‖αk‖1 (81)

with Xk = ΞαkΦ and ∀k, rank(Xk) ≤ 1

thus uncovering a nice interpretation of our problem as that of approximating
the data X by a sum of rank one matrices Xk which are sparse in the specified
dictionary of rank one matrices. This is the usual ℓ1 minimization problem as
in Equation (38), but with the additional constraint that the Xk are all rank
one at most. The latter constraint is enforced here mechanically through a
proper parametric representation of Xk = aksk or αk = γkνk.
Let us note that rescaling the parameters A and S is not as much a prob-
lem now as with GMCA, since it does not affect the objective function (80).
Indeed, rescaling the columns of the so-called mixing matrix, A ← ρA while
applying the proper inverse scaling to the lines of the source matrix, S← 1

ρ
S,

leaves both the quadratic measure of fit and the ℓ1 sparsity measure in equa-
tion (80) unaltered. Although renormalizing is still worthwhile numerically, it
is no longer dictated by the lack of scale invariance of the objective function
and the need to stay away from trivial solutions, as in GMCA. In the next
section, we will emphasize on the extension of the GMCA algorithm to the
hyperspectral BSS issue.
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6.2.2 The algorithmic viewpoint

Let us consider now in detail the case where the multichannel dictionary
Ψ = Ξ ⊗ Φ is an orthonormal basis obtained as the tensor product of two
orthonormal bases Ξ and Φ of respectively spectral and spatial waveforms.
As noted previously, when non-unitary or redundant transforms are used, the
above are no longer strictly valid. Nevertheless, simple shrinkage still gives
satisfactory results in practice as studied in (86; 70). We also assume that A
is left-invertible and that S is right invertible. In this case, the minimization
problem (80) is best formulated in coefficient space, leading to a slightly dif-
ferent however much faster algorithm since there is only one transformation
to be applied and this needs to be done only once. For the sake of clarity, we
assume that the noise covariance matrix reduces to the ΣN = σ2

N
I. With these

additional assumptions, problem (80) can be rewritten as follows :

min
{γk ,νk}

1

σN
2

∥

∥

∥

∥

∥

α−
n
∑

k=1

γkνk

∥

∥

∥

∥

∥

2

F

+
n
∑

k=1

λk‖γk‖1‖νk‖1 , (82)

where we have written α = ΞTXΦT the coefficients of the data matrix X in
the multichannel dictionary Ψ = Ξ ⊗ Φ. In other words, we are seeking a
decomposition of a matrix α into a sum of sparse rank one matrices αk = γkνk

by minimizing

min
γ,ν

1

σN
2
‖α− γν‖2F +

n
∑

k=1

λk‖γkνk‖1 , (83)

The minimization problem in (83) has at least one solution by coercivity, and is
non-convex. But, for fixed γ (resp. ν), the marginal minimization problem over
ν (resp. γ) is convex. As solutions of problem (83) have no explicit formulation,
we again propose solving it by means of a block-coordinate relaxation iterative
algorithm by alternately minimizing with respect to γ holding ν fixed, and
vice versa. Thus, by classical ideas in convex analysis, a necessary condition
for (γ, ν) to be a minimizer is that the zero is an element of the subdifferential
of the objective at (γ, ν). Using (70, Proposition 3.1), this can be written as
the system of coupled proximal forward-backward fixed-point equations :











ν = ∆η

(

ν + 1
σN

2 βνγ
T (α− γν)

)

γ = ∆ζ

(

γ + 1
σN

2 (α− γν) νT βγ

)
, (84)

where βν and βγ are relaxation matrices of appropriate sizes such that the
spectral radius of I− 1

σN
2 βνγ

Tγ and I− 1
σN

2νν
T βγ is bounded above by 1. By

assumption on left invertibility of A and the right invertibility of S, 1
σN

2γ
Tγ

and 1
σN

2νν
T are symmetric and invertible. Hence, taking βν = σN

2
(

γTγ
)−1

and βγ = σN
2
(

ννT
)−1

, the above are rewritten as the following update rules
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on the coefficient matrices γ and ν :














ν = ∆η

(

(

γTγ
)−1

γTα
)

γ = ∆ζ

(

ανT
(

ννT
)−1

) . (85)

η is a vector of size n, each of its entries η[k] =
λkσN

2‖γk‖ℓ1

2‖γk‖2
ℓ2

, and similarly ζ

is a vector of size n the entries of which ζ [k] =
λkσN

2‖νk‖ℓ1

2‖νk‖
2
ℓ2

. The multichannel

soft-thresholding operator ∆η acts on each row k with threshold η[k] and ∆ζ

acts on each column k of γ with threshold ζ [k].

Both update rules can be interpreted as a soft-thresholding operator applied
onto the result of a weighted least-squares regression in the Ξ ⊗ Φ represen-
tation. Finally, in the spirit of the fast GMCA algorithm described in sec-
tion 5.3.2, it is proposed here that a solution to the above set of coupled
equations (84) can also be approached efficiently using a symmetric iterative
alternating least-squares scheme in conjunction with a shrinkage operator with
a progressively decreasing threshold. In the present case, the transformation
into Ξ ⊗Φ space is applied only once which has a major impact on compu-
tation speed, especially when dealing with large hyperspectral datasets. The
two stage iterative process leads to the following fast hypGMCA algorithm:

1. Set the number of iterations Imax and initial thresholds λ
(0)
k

2. Transform the data into X into α

3. While λ
(h)
k are higher than a given lower bound λmin,

– Update ν assuming γ is fixed:
ν(h+1) = ∆λ(h)

(

(γT γ)−1γT α
)

– Update γ assuming ν is fixed:
γ(h+1) = ∆λ(h)

(

ανT (ννT )−1
)

– Decrease the thresholds λ
(h)
k .

4. Stop when λ
(h)
k < λmin.

5. Transform back the coefficients to get X = ΞγνΦ.

The coarse to fine process is again the core of this fast version of GMCA for
hyperspectral data. With the threshold successively decreasing towards zero
with each iteration, the current sparse approximation is progressively refined
by including finer structures alternatingly in the different morphological com-
ponents, both spatially and spectrally. Here again, soft thresholding results
from the use of an ℓ1 sparsity measure, which as explained earlier comes as a
good approximation to the desired ℓ0 quasi-norm solution. Towards the end of
the iterative process, applying a hard threshold instead leads to better results.
The final threshold should vanish in the noiseless case or it may be set to a
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multiple of the noise standard deviation in the presence of noise as in common
detection or denoising methods.

6.3 Comparison with GMCA

Comparison between GMCA and its extension to the hyperspectral case

According to the linear instantaneous mixture model, the data X are modeled
as the linear combination of n sources. In this toy example, the sources will
be drawn randomly for a set of 128× 128 images featured in Figure 18. The
number of drawn sources is n = 5. The spectra are generated from a Lapla-
cian probability density with scale parameter µ = 1 in an orthogonal wavelet
domain. The spectra are to be positive; note that the GMCA algorithm is
flexible enough to account for this assumption. In the next experiments, as
we want to assess the impact of the spectral sparsity constraint, we won’t
take advantage of this prior information. The number of channels is m = 128.
White Gaussian noise with covariance matrix ΣN = σ2

N
I is added.

In the next experiment, we first compare the original GMCA algorithm to
its extension for hyperspectal data. This first test will give emphasis on the
enhancements provided by the sparse spectral constraint when the signal to
noise ratio (SNR) varies from 0 to 40 dB. Figure 19 features 6 out of 128
noisy channels with SNR = 20dB. The GMCA algorithms are computed in
the curvelet domain with 100 iterations. Figure 20 depicts the sources esti-
mated by the original GMCA algorithm (panels on the left) and by the GMCA
algorithm with spectral sparsity constraints (panels on the left). Visual im-
pression clearly favors the results provided by GMCA with spectral sparsity
constraints. More quantitative results are given in Figure 21 which pictures
the evolution of the mixing matrix criterion CA when the SNR varies from
0 to 40dB. Clearly, accounting for additional prior information provides bet-
ter recovery results. Furthermore, as shown in Figure 21, the morphospectral
sparsity constraint provides more robustness to noise.

Behavior in higher dimensions

In the previous paragraph, we emphasized on the robustness to noise provided
by the morphospectral sparsity constraint. Intuitively, for fixed numbers of
samples t and channels m, increasing the number of sources entails estimating
an increasing number of parameters thus making the separation task more dif-
ficult. Accounting for the spectral sparsity assumption should lead to better
results when the number of sources increases.
In this 1D toy-example experiment, the entries of S have been independently
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Fig. 18. Image data set used in the experiments.

drawn from a Laplacian probability density with scale parameter µ = 1 (Φ is
chosen as the Dirac basis). The entries of the mixing matrix are independently
drawn from a Laplacian probability density with scale parameter µ = 1 (Ξ
is also chosen as the Dirac basis). The data are not contaminated by noise.
The number of samples is t = 2048; the number of channels is m = 128.
Figure 22 depicts the comparisons between GMCA and its extension to the
hyperspectral setting. Each point of this figure has been computed as the mean
over 100 trials. The panel on the left of Figure 22 features the evolution of
the recovery SNR when the number of sources varies from 2 to 64. At low
number of sources, the morphospectral sparsity constraint leads to a slight
enhancement of the separation results. When the number of sources increases
(n > 15), the spectral sparsity constraint clearly enhances the recovery results.
For instance, when n = 64, the GMCA algorithm with the spectral sparsity
constraint outperforms the original GMCA up to 12dB. The panel on the
right of Figure 22 shows the behavior of the GMCA algorithms with respect
to the sparsity-based criterion Cℓ1 introduced in Equation (68). As expected,
accounting for the sparsity of the spectra yields sparser results. Furthermore,
as the number of sources increases, the deviation between the aforementioned
methods becomes wider.
This experiment enlightens the impact of the morphospectral sparsity con-
straint on the recovery results. As expected, adding further assumptions leads
to enhanced performances. In these experiments we illustrated that the mor-
phospectral sparsity constraint yields : i) a better stability with respect to
noise contamination, ii) more robustness when the dimensionality (i.e. the
number of sources) of the problem increases.
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Fig. 19. Six 128× 128 mixtures out of the 128 channels. The SNR is equal to 20dB.

7 Applications

7.1 Application to multivalued data restoration

Looking for a sparser representation

In Section 5.5 we enlightened the close links between sparse BSS and best
sparsifying/unconditional bases in harmonic analysis. In this context, sparse
BSS algorithms are able to provide a basis/representation in which a set of
signals (i.e the columns of the data matrix in the BSS framework) are jointly
sparse. In the BSS framework, we proved in Section 5.5 that this nice property
leads to the solution of the sparse BSS problem.
Interestingly, in a wide range of multichannel inverse problems, there is a
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need for multichannel sparse representations 7 . We illustrated in (81; 98) that
looking for an adaptive multichannel representation Ψ = Ξ ⊗ Φ in which
the data X are very sparse improves the solution to some classical inverse
problems (denoising, inpainting). Let us consider the following general model
for inverse problems :

Y = F (X) + N . (86)

where again N models noise. The mapping F is able to represent a variety of
degradation operators involved in classical inverse problems (denoising, decon-
volution, inpainting to quote a few). We assume that N is a white Gaussian
noise with covariance matrix σ2

N
I. We also assume that the data X are sparse

in the multichannel dictionary Ψ = Ξ ⊗ Φ. Solving the aforementioned in-
verse problem is about looking for the solution to the following optimization
problem :

min
α
λ ‖α‖1 +

1

2
‖Y − F (ΞαΦ)‖2F . (87)

Looking for an adaptive multichannel representation amounts to adapting the
dictionaries Ξ and Φ to the data X. For instance, assuming Ξ is square in-
vertible, adapting Ξ is equivalent to seeking a spectral representation in which
the columns of the data matrix X are jointly sparse. Although no mixture
model is available, this task can be performed by applying GMCA on the data
X using Φ as the spatial dictionary.
Nevertheless, when the data X are not known up to noise contamination (for
instance if F is different from the identity), estimating Ξ with GMCA is not
possible. In the scope of adaptive restoration issues, several approaches can be
used :

• Offline scheme : if the data X are known up to noise contamination (this is
the case when F is the identity mapping), GMCA can be applied on Y to
estimate an appropriate sparser spectral representation Ξ. The restoration
problem can then be solved assuming Ξ and Φ are fixed. This so-called
offline scheme is applied for solving a multichannel denoising issue in Sec-
tion 7.
• Online scheme : if the data X are degraded by a non-linear mapping F ,

estimating an adapted spectral representation Ξ cannot be performed using
GMCA. We propose to adapt the original GMCA algorithm to solve some
inverse problems such as those in Equation (86) while adapting the spectral
representation Ξ. More precisely, this so-called online scheme is applied for
solving a multichannel inpainting problem in Section 8.

Adapting the representation to the data has also been introduced in various
fields ((99; 100) to quote a few). In (101), Peyré proposed, in the monochannel
case, such an adaptive dictionary learning process assuming that the sparse

7 More precisely, a multichannel dictionary Ψ = Ξ⊗Φ as introduced in Section 4
in which the data X are sparse.
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representation lies in a class of tree-based multiscale transforms (e.g. wavelet
and cosine packets (71), bandlets (75), etc). Note also that learning patch-
based spatial/spectral dictionaries could also be a way of adapting a sparse
representation to the data (see (100; 102)).
In the multichannel case, such an adaptive recovery would have to be applied
both on the spectral dictionary Ξ and spatial dictionary Φ. Note that if the
dimension of the data X are not too high (not exceeding a thousand samples
per channel), the GMCA algorithm could be used to adapt the spatial dictio-
nary Φ. In practical situations, the spatial dimension t is often much higher
than the spectral dimension m. In high dimensions, the GMCA algorithm is
no longer relevant for adapting sparse representations. The quest for effective
learning algorithm in high dimensions is still a strenuous and open problem.
In the next section, we assume that the spatial dictionary Φ is known and
fixed. We only look for an adaptive spectral dictionary Ξ.

An offline approach - application to color image denoising

In the previous paragraph we emphasized on the crucial importance of sig-
nal representations. We claimed that accounting for both spatial and spectral
coherence or structure should enhance multichannel data restoration. In this
section, we address the issue of multichannel color image denoising. In this
context, the data X are made of three color layers (Red, Green and Blue).
Each color layer is a

√
t ×
√
t image. The denoising problem boils down to

choosing the perturbation mapping F in Equation (86) as the identity so that:

Y = X + N (88)

A first straightforward solution consists in denoising each layer separately.
Hopefully, accounting for inter-channel structures or coherence would lead to
better results. The top-left picture of Figure 23 portrays a noisy color image
with a SNR=15dB. The top-right picture shows the RGB denoised image ob-
tained using a classical wavelet-based denoising method on each color plane 8

using Φ as the Undecimated Discrete Wavelet Transform (UDWT).
In Section 5.1, we described a GMCA-based BSS algorithm. We showed that
this algorithm is able to seek an adapted spectral basis Ξ in which the pro-
cessed multichannel data are sparser. We can then apply this algorithm to
estimate such a sparse spectral representation of different color images. The
results are displayed at the bottom of Figure 23. This kind of learning step
leads to a GMCA-based algorithm that adapts the sparse representation to
the data. Such an adaptive process will also be applied to the inpainting prob-
lem in Section 8; for further details we refer the reader to (35).
Figure 23 on the right is obtained by applying the GMCA algorithm with the
following choices : Φ is the UDWT, Ξ is the adaptive basis obtained with

8 All color images can be downloaded at http://perso.orange.fr/jbobin/gmca2.html.
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the GMCA-based BSS algorithm described in 5.1. Visually, denoising in the
“adaptive color space” performs better than in the RGB space. Figure 24
zooms on a particular part of the previous images. Visually, the contours are
better restored. We also applied this denoising scheme with other non-adaptive
spectral representations Ξ (which is equivalent to choosing a different color
space representations : YUV, YCC (Luminance and chrominance spaces). For
comparative purposes, we also applied the ICA algorithm JADE described in
(16) on the original color images to determine yet another adaptive color rep-
resentation in which to run the same denoising algorithm. A natural question
that arises is the following: is it worth denoising in a different space (YUV,
YCC, JADE or GMCA-based) instead of denoising in the original RGB space
? Figure 25 shows the SNR improvement (in dB) as compared to denois-
ing in the RGB space obtained by each method (YUV, YCC, JADE and
GMCA-based). Figure 25 shows that YUV and YCC representations lead to
the same results. Note that the YCC color standard is derived from the YUV
one. With this particular color image, JADE gives satisfactory results as it
can improve denoising up to 1 dB. Finally, as expected, a sparsity-based rep-
resentation such as the GMCA-based spectral representation provides better
results. Here, the use of the sparsest GMCA-based representation enhances
denoising up to 2dB. This series of tests confirms the visual impression that
we get from Figure 23. According to our claim, accounting for inter-channel
coherence improves multichannel data denoising quality.

An online approach - application to color image inpainting

Throughout this paper, we focused on accounting for both spectral and spatial
coherence/structures to better solve multichannel inverse problems such as
inpainting or denoising issues. Furthermore, in Section 7, we used the GMCA
algorithm to devise a spectral basis to better (i.e. sparsely) represent the multi-
channel data. We showed that adapting the representation to the data greatly
enhances denoising results. Designing adaptive algorithms is then of crucial
importance for restoration issues.

In this section, we consider the particular case of color image inpainting. Again,
the data X consist of 3 observed channels corresponding to each color layer
(for instance red, green and blue) which cannot be strictly called spectra. Note
that restoring color images in a different color basis (i.e. YUV) may sometimes
enhance the restoration performance.

We then propose recovering masked color images using the proposed GMCA-
inpainting method which seeks to adapt the color space to the data X. In
this context, we assume that Ξ is a 3 × 3 invertible matrix. In the GMCA
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framework, D′ = 1 and the data X are the linear combination of D multi-
channel morphological components. Adapting the spectral basis Ξ (i.e. the
color space) to the data then amounts to estimate an “optimal” matrix Ξ.
The GMCA algorithm is then adapted such that at each iteration h the matrix
Ξ is updated by its least-squares estimate:

Ξ(h+1) = arg min
Ξ

∥

∥

∥

∥

∥

∥

Y(h) − Ξ
D
∑

j=1

α
(h)
j Φj

∥

∥

∥

∥

∥

∥

2

F

. (89)

This problem has a unique minimizer defined as follows:

Ξ(h+1) = Y(h)





D
∑

j=1

α
(h)
j Φj





†

, (90)

where
[

∑D
j=1 α

(h)
j Φj

]†
is the pseudo-inverse of the matrix

∑D
j=1 α

(h)
j Φj .

The GMCA algorithm is then adapted as follows:

1. Set the number of iterations Imax and threshold λ(0).
2. While λ(h) is higher than a given lower bound λmin (e.g. can depend on the noise
variance),

a. Compute Y(h) = Y +Mc ⊙ X̃(h−1).
b. Initialize to zero each residual morphological components { ˜̟ j}(h−1).
For j = 1, · · · ,D
• Compute the residual term R

(h)
j assuming the current estimates of ̟{p}6={j},

˜̟
(h−1)
p 6=j are fixed:

R
(h)
j = Y(h) −∑p 6=j ˜̟

(h−1)
p .

• Estimate the current coefficients of ˜̟
(h)
j by thresholding with threshold λ(h):

α̃
(h)
j = ∆λ(h)

(

Ξ(h)TR
(h)
j ΦT

j

)

.

• Get the new estimate of ̟j by reconstructing from the selected coefficients

α̃
(h)
j :

˜̟
(h)
j = Ξ(h)α̃

(h)
j Φj .

c. Update the hypercube X̃(h) =
∑D

j=1 ˜̟
(h)
j .

d. Update the spectral basis Ξ :

Ξ(h+1) = Y(h)
[

∑D
j=1 ̟

(h)
j Φj

]†
.

3. Decrease the threshold λ(h) following an appropriate strategy (e.g. linear, mMOM).

We remind the reader that the mMOM strategy was described in subsection
4.3.1.

The top-left picture in Figure 26 shows the original Barbara color image.

62



The top-right picture depicts the masked color image where 90% of the color
pixels are missing. The bottom-left picture portrays the recovered image us-
ing GMCA in the original RGB color space, which amounts to performing a
monochannel MCA-based inpainting on each channel; see (103; 104). The last
bottom-right picture shows the image recovered with the color space-adaptive
GMCA algorithm. The zoom on the recovered images in Figure 27 shows that
adapting the color space avoids chromatic aberrations and hence produces a
better visual result. This visual impression is quantitatively confirmed by SNR
measurements, where the color space-adaptive GMCA improves the SNR by
1dB.

7.2 Application to the Planck data

Introduction to the Planck data set

Investigating Cosmic Microwave Background (CMB) data is of huge scientific
importance as it improves our knowledge of the Universe (105). Indeed, most
cosmological parameters can be derived from the study of CMB data. In the
last decade several experiments (Archeops, Boomerang, Maxima, WMAP -
(106)) have already provided large amounts of data and astrophysical infor-
mation. The forthcoming Planck ESA mission will provide new accurate data
requiring effective data analysis tools. More precisely, recovering useful scien-
tific information requires disentangling in the CMB data the contribution of
several astrophysical components namely CMB itself, Galactic emissions from
dust and synchrotron, Sunyaev-Zel’dovich (SZ) clusters (107) to name a few.
In the frequency range used for CMB observations (108), the observed data
combines contributions from distinct astrophysical components the recovery
of which falls in the frame of component separation.
Following a standard practice in the field of component or source separation,
which has physical grounds here, the observed sky is modeled as a linear
mixture of statistically independent components. The observation with de-
tector i is then a noisy linear mixture of n independent sources {sj}j=1,··· ,n :
xi =

∑n
j=1 aijsj + ni. The coefficient aij reflects the emission law of source sj

in the frequency band of the i-th sensor; ni models instrumental noise.

Applying GMCA to simulations

The GMCA method described above was applied to synthetic data composed
of m = 6 mixtures of n = 3 sources : CMB, galactic dust emission and SZ
maps illustrated in Figure 28 and 29. The synthetic data mimic the observa-
tions that will be acquired in the six frequency channels of Planck-HFI namely
: 100, 143, 217, 353, 545 and 857 GHz, as shown on Figure 29. White Gaussian
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noise N is added with diagonal covariance matrix ΣN reflecting the foreseen
Planck-HFI noise levels. Experiments were led with 7 global noise levels with
SNR from 1.7 to 16.7dB such that the experimental noise covariance ΣN was
proportional to the nominal noise covariance. Note that the nominal Planck-
HFI global noise level is about 10dB. Each measurement point was computed
from 30 experiments involving random noise, randomly chosen sources from a
data set of several simulated CMB, galactic dust and SZ 256×256 maps. The
astrophysical components and the mixture maps were generated as in (109)
according to equation (2) based on model or experimental emission laws, possi-
bly extrapolated, of the individual components. Separation was obtained with
GMCA using a single 2D-DWT. Figure 30 depicts the average correlation co-
efficients over experiments between the estimated source maps and the true
source maps. Figure 30 upper left panel shows the correlation coefficient be-
tween the true simulated CMB map and the one estimated by JADE (dotted
line with 2), SMICA (dashed line with ◦) and GMCA (solid line). The CMB
map is well estimated by SMICA, which indeed was designed for the blind sep-
aration of stationary colored Gaussian processes, but not as well using JADE
as one might have expected. GMCA turns out to perform similarly to SMICA.
In the second line on the left of Figure 30, galactic dust is well estimated by
both GMCA and SMICA. The SMICA estimates seem to have a slightly higher
variance than GMCA estimates for higher global noise levels (SNR lower than
5 dB). Finally, the picture in the third line on the left shows that GMCA
gives better estimates of the SZ map than SMICA when the noise variance
increases. The right panels provide the dispersion (i.e. standard deviation) of
the correlation coefficients of the sources estimates. It appears that GMCA is
a general method yielding simultaneous SZ and CMB estimates comparable
to state-of-the-art blind separation techniques which seem mostly dedicated
to individual components.
In a noisy context, assessing separation techniques turns out to be more accu-
rate using a mixing matrix criterion, as it is experimentally much more sensi-
tive to separation errors. The bottom right panel of Figure 30 illustrates the
behavior of the mixing matrix criterion CA with JADE, SMICA and GMCA
as the global noise variance varies. GMCA clearly outperforms SMICA and
JADE when applied to CMB data.

Adding some physical constraint : the versatility of GMCA

In practice, the separation task is only partly blind. Indeed, the CMB emission
law is extremely well-known. In this section, we illustrate that GMCA is versa-
tile enough to account for such prior knowledge. In the following experiment,
CMB-GMCA has been designed by constraining the column of the mixing
matrix A related to CMB to its true value. This is equivalent to placing a
strict prior on the CMB column of A; that is P (acmb) = δ(acmb− acmb

0 ) where
δ(.) is the Dirac distribution and acmb

0 is the true simulated CMB emission law
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in the frequency range of Planck-HFI. Figure 31 shows the correlation coef-
ficients between the true source maps and the source maps estimated using
GMCA with and without the CMB prior. As expected, the top left picture
of Figure 31 shows that assuming acmb

0 is known improves the estimation of
CMB. Interestingly, the galactic dust map (top right of Figure 31) is also
better estimated. Furthermore, the CMB-GMCA SZ map estimate is likely
to have a lower variance (lower panel of Figure 31). Moreover, it is likely to
provide more robustness to the SZ and galactic dust estimates thus enhancing
the global separation performances.

Software

A website have been designed that gives an overview of some applications
based on morphological diversity : http://www.morphologicaldiversity.org.
A Matlab toolbox coined GMCALab is available online at http://perso.orange.fr/jbobin/.

8 Conclusion

In this paper, we overview the application of sparsity and morphological di-
versity in the scope of blind source separation problems. The contribution
of this paper is twofold : (i) it gives new insights into how sparsity enhances
blind source separation, (ii) it provides a new sparsity-based source separation
method coined Generalized Morphological Component Analysis (GMCA) that
takes better advantage of sparsity giving good separation results. GMCA is
able to improve the separation task via the use of recent sparse overcomplete
(redundant) representations. Numerical results confirm that morphological di-
versity clearly enhances source separation. When the number of sources is un-
known, we introduce a GMCA-based heuristic that provide good separation
performances. Further will clearly enlighten the behavior of GMCA when the
number of sources has to be estimated. This paper also extends the GMCA
framework to the particular case of hyperspectral data. Numerical results are
given that illustrates the reliability of morphospectral sparsity constraints.
In a wider framework, GMCA is shown to provide an effective basis for solv-
ing classical multivariate restoration problems such as color image denoising
or inpainting. Further work will focus on extending GMCA to the under-
determined BSS case (when the number of sources is higher than the number
of observations). Finally, GMCA also provides promising prospects in other
application such as multivalued data restoration. As GMCA provides a gen-
eral tool for multivariate data analysis, our future work will also emphasize
on the use of GMCA-like methods to other multivalued data applications.
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[102] G. Peyré, Texture synthesis and modification with a patch-valued
wavelet transform, in: SSVM 07, 2007.

[103] M. J. Fadili, J.-L. Starck, F. Murtagh, Inpainting and zooming using
sparse representations, The Computer Journal - in pressIn press.

[104] M. Elad, J.-L. Starck, D. Donoho, P. Querre, Simultaneous cartoon
and texture image inpainting using morphological component analysis
(MCA), ACHA 19 (3) (2005) 340–358.

[105] G. Jungman, M. Kamionkowski, A. Kosowsky, D. N. Spergel, Cosmolog-
ical parameter determination with microwave background maps, Phys.
Rev. D 54 (1996) 1332–1344.

71



[106] C. Bennett, et al., First year wilkinson microwave anisotropy probe
(WMAP) observations : preliminary maps and basic results, ApJ. Suppl.
148 (1).

[107] R. Sunyaev, Y. Zel’dovich, The velocity of cluster of galaxies to the
microwave background. the possibility of its measurement, Ann. Rev.
Astron. Astrophys. 18 (1980) 537.

[108] R. Bouchet, R. Gispert, Foregrounds and cmb experiments: I. semi-
analytical estimates of contamination, New Astronomy 4 (443).

[109] Y. Moudden, J.-F. Cardoso, J.-L. Starck, J. Delabrouille, Blind compo-
nent separation in wavelet space: Application to CMB analysis, Eurasip
Journal on Applied Signal Processing 15 (2005) 2437–2454.

72



Fig. 20. Pictures on the left : Sources estimated with the original GMCA al-
gorithm. Pictures on the right : Sources estimated with GMCA with spectral
sparsity constraints.
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Fig. 21. Evolution of the mixing matrix criterion CA as a function of the
SNR in dB. Solid line : recovery results with GMCA. • : recovery results with
GMCA with spectral sparsity constraint.
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Fig. 22. Abscissa : Number of sources. Ordinate - left : Recovery SNR. Right :
sparsity-based criterion Cℓ1. Solid line : recovery results with GMCA. • : recovery
results with GMCA with spectral sparsity constraint.

74



Fig. 23. Top-Left : Original 256×256 image with additive Gaussian noise. The SNR
is equal to 15 dB. Top-Right : Wavelet-based denoising in the RGB space. Bottom
: Wavelet-based denoising in the curvelet-GMCA-based spectral representation.

75



Fig. 24. Zoom the test images. Top-Left : Original image with additive Gaussian
noise. The SNR is equal to 15 dB. Top-Right : Wavelet-based denoising in the
RGB space. Bottom : Wavelet-based denoising in the curvelet-GMCA space.

76



30252015105 

2.5

2  

1.5

1  

0.5

0   

−0.5 

SNR in dB

S
N

R
 G

ai
n 

Fig. 25. Denoising color images. Abscissa : Mean SNR in dB. Ordinate : Gain
in terms of SNR in dB compared to a denoising process in the RGB color space.
Solid line: GMCA-based, dashed-dotted line: JADE, ′•′ YUV, ′+′: YCC.
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Fig. 26. Recovering color images. (a) Original Barbara color image. (b) Masked
image - 90% of the color pixels are missing. (c) Inpainted image using the original
MCA algorithm on each color channel. (d) Inpainted image using the adaptive
GMCA algorithm.
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Fig. 27. Zoom on recovered Barbara color image. (a) Original Barbara color image.
(b) Masked image - 90% of the color pixels are missing. (c) Inpainted image using
the original MCA algorithm on each color channel. (d) Inpainted image using the
adaptive GMCA algorithm.

Fig. 28. The simulated sources - Left: CMB. Middle: galactic dust emission.
Right: SZ map.
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Fig. 29. The observed CMB data - global SNR = 2.7dB
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Fig. 30. Left Column : Correlation coefficients between the estimated
source map and the true source map - Left Column : Dispersion of these
correlation coefficients : First line : CMB. Second line: galactic dust. Third
line: SZ map. Fourth line: mixing matrix criterion CA. Legend : JADE : dotted
line with 2 - SMICA : dashed line with ◦ - GMCA : solid line. Abscissa : SNR in
dB.
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Fig. 31. Left Column : Mean value of the correlation coefficients between
the estimated source map and the true source map - Right Column :
Dispersion of these correlation coefficients : First line : CMB. Second
line: galactic dust. Third line: SZ map. Legend : GMCA assuming that the
CMB emission law is known : dotted line - GMCA : solid line. Abscissa : SNR in
dB.
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