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Abstract:

The use of a Nomarski shear-interferometer with a sinusoidal phase modulation and 

four integrating buckets allows one to obtain the displacement field of the surface of a 

micro-cantilever  observed  in  reflection  microscopy.   One can apply an electrostatic 

loading to this micro-object, which is first represented as an unknown pressure field. 

When retrieving both the flexural stiffness field and the load field using the equilibrium 

gap method, one may model the applied loading as a pure pressure field.  This paper 

intends first to assess the effect of a modeling error, and then to test the identifiability 

conditions  if  one  uses  a  parameterized  description  of  the  loading  to  fit  measured 

kinematic data.  The influence of the measurement noise on the identified parameters is 

then  semi-analytically  derived,  and  the  global  identification  algorithm is  applied  to 

experimental data.

Keywords: Full-field measurements / Identification problem / Inverse problem / 

MEMS 
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1. Introduction

In the last years, the decreasing cost of parallel  optical  acquisition systems, such as 

CMOS and CCD arrays, encouraged their use in mechanical engineering to perform 

full-field  instead of  pointwise (thermal  or  mechanical)  measurements  [1].  The large 

amount of data that is then available is used by experimentalists to check for boundary 

conditions in "homogeneous" tests  [2] or  for strain localization [3],  or  to deal  with 

heterogeneous tests to validate constitutive equation parameters [4], to identify stress 

intensity  factors  [5,6,7]  or  elastic  parameters  by  finite  element  updating  [8]  or  the 

virtual  fields  method  [9].  Full-field  measurements  can  also  be  used  to  retrieve 

heterogeneous  properties,  by  minimizing  the  constitutive  equation  error  [10]  or  the 

equilibrium gap [11], or to locate cracks in a medium by using the reciprocity gap [12]. 

All these methods are dependent on hypotheses on the model describing the specimen 

under scrutiny.

The mechanical behavior of micro-electromechanical systems (MEMS) is dominated by 

mechanical-environment  coupling  phenomena  because  of  their  increased  surface  / 

volume  ratio.  These  coupled  effects  are  usually  evaluated  by  using  pointwise 

measurements, and often involve non-contact chemical loading [13]. The development 

of new sensors or actuators involving these new coupling phenomena requires novel 

modelings. Dealing with MEMS to build a coupling modeling represents then a major 

challenge since the geometry of the specimen as well as the techniques used to apply a 

mechanical  loading  on  these  microstructures  are  not  controlled  as  easily  as  at  the 

macroscopic  scale  [14].  In  this  context  of  uncertainty,  using  the  large  amount  of 

experimental data provided by full-field measurements instead of pointwise information 

is thought to be the way to overcome these difficulties. 

After a description of the set-up used to measure out-of-plane displacement fields, the 
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equilibrium gap principles are applied to identify both a stiffness and a loading field for 

a cantilever beam. A semi-analytical analysis is performed to study the sensitivity of 

both  identified  fields  and  the  error  estimator  to  a  measurement  noise.  Since  this 

derivation holds when the measurement noise is the only error source, controlling the 

noise level is a way of detecting other error sources, such as modeling errors. Then an 

algorithm is proposed to retrieve one additional modeling parameter, and to derive an 

identifiability condition and subsequent error bounds on the unknown fields and the 

identified modeling parameter.  Last,  the  algorithm accuracy is  assessed when using 

computer-generated  data,  and  the  whole  identification  process  is  applied  to 

experimental measurements obtained on microcantilevers under an electrostatic loading.

2. Experimental measurements

The  proposed  identification  procedure  is  applied  in  this  paper  to  the  bending  of 

microcantilevers,  so  that  the  first  step  consists  in  building  a  set-up  suitable  for 

measuring the out-of-plane displacement field of reflecting objects. 

2.1. Experimental set-up

The interferential microscopy imaging set-up used herein, initially proposed by Gleyzes 

et al. [15], is shown in Fig. 1. A light-emitting diode (LED, λ = 760 nm) illuminates a 

polarization beam-splitter. The beam reflected by the beam-splitter is polarized at 45° of 

the axes of a photoelastic polarization modulator. The Wollaston prism, whose axes are 

parallel with those of the modulator, splits the beam into two orthogonally polarized 

beams at a small angle between each other. These beams are focused on the sample by 

an objective lens. After reflection and recombination by the Wollaston prism, the beam 

goes  through  the  polarization  modulator  and  the  polarization  beam-splitter.  The 
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transmitted beam is  finally  focused on a  CCD array.  The polarization beam-splitter 

behaves as crossed linear polarizers mounted at  45° with respect  to the axes of the 

Wollaston prism and of the polarization modulator. The interference figure is obtained 

as the difference of two topographies of the surface, shifted by the Wollaston prism by a 

distance  d.  The  distance  d is  chosen  to  be  greater  than  the  cantilever  length.  The 

difference between two differential topographies obtained before and after mechanical 

loading  gives  the  out-of-plane  displacement  field.  The  modulation  frequency is  the 

resonance frequency of the modulator, namely 50.3 kHz.

Using a phase integration technique allows one to get the optical phase induced by the 

sample [16]. The optical flux collected by the pixel indexed by (l,m) on the CCD matrix

is formally written as

[ ]0( , , ) cos ( , ) ( )I l m t I A l m tφ ψ= + +

where  A  is  the  amplitude,  φ(l,m),  which  is  to  be  determined,  the  optical  phase 

introduced by the sample and the Wollaston prism. The phase modulation introduced by 

the photoelastic modulator reads

( )0( ) sin 2t ftψ ψ π θ= +

The angles  ψ0 et  θ are two parameters that can be chosen among many couples. The 

algorithm to obtain φ uses four integrating buckets, namely, if T=1/f is the modulation 

period, four images of the interference figure can be acquired during the period  T, so 

that each image results from the integration of the optical flux during a quarter of one 

period. One obtains four images Ep, for p=1,2,3,4

( )
4

1
4

( )
pT

p p TE I t dt−= ∫

It is the possible to determine an optimal couple  (ψ0, θ) that allows one to obtain the 
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phase φ from linear combinations of the four images

( ) 1 2 3 4

1 2 3 4

tan , E E E El m
E E E E

φ − − +=   − + −

By assuming that the measured phase map is the consequence of the topography of the 

surface  of  interest,  out-of-plane  displacement  fields  are  obtained  by  computing  the 

difference  ∆φKA(l,m) between  the  projection  (in  a  least-squares  sense)  onto  a 

kinematically  admissible  basis  of  the  measured  phase  map  φ(l,m) at  different  load 

levels. Then, the displacement field ∆z reads (in air with a refractive index equal to 1)

4 KAz λ φ
π

∆ = ∆

If one neglects quantification effects, the signal recorded by each pixel Emes is subjected 

to amplitude fluctuations  ∆Emes due to the erratic flux of photons impinging on the 

pixel. These fluctuations are modeled by Poisson’s law (see for instance [17])

NEmes ∝∆

where  N is  the  number  of  photons  impinging  on  a  pixel.  If  one  assumes  that  the 

behavior of the array is linear, 

NEmes ∝

 so that the phase measurement is subjected to fluctuations depending on the number of 

photons used to build the interference figure

N
N

E
E

mes

mes ∝
∆

As proven in  Fig.  2,  this  interferometer  is  shot-noise  limited.  The  dots  are  for  the 

measured  reproducibility,  and  the  solid  line  is  for  the  shot  noise  limitation.  The 

achieved reproducibility is 15 pm. Sub-nanometric displacements are then resolved, and 
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the noise level is controlled by the number of accumulated images. Moreover, the noise 

is spatially uncorrelated and follows a Gaussian distribution as shown in Fig. 3. Figure 

3a shows the experimental phase noise probability density, and the solid line for its fit 

by a zero-mean Gaussian distribution. The standard deviation is related to the number 

accumulated images, and is almost 2 mrad for a 1 s exposure. Figure 3b displays the 

autocorrelation function of a typical noise realization. This function is nearly a Dirac, 

thereby proving that the experimental noise is spatially uncorrelated. 

2.2. Electrostatic loading set-up

 An electrostatic pressure is applied, using the fact that the present MEMS is covered by 

a conducting gold layer, which can be utilized as an armature of a capacitor.  The other 

armature is a stamped aluminum sheet put above the cantilever (see Fig. 4).  However, 

the used capacitor does not lead to a homogeneous electric field between the armatures 

since the upper one has a hole, and the lower one has many edges.  Consequently, one 

cannot make any assumption concerning the homogeneity of the applied pressure field.

3. Equilibrium gap minimization

The identification problem consists in recovering an elastic contrast field and a pressure 

contrast  by using full-field kinematic measurements. Since only kinematic fields are 

involved, one cannot expect to recover an absolut stiffness and a loading field but only 

contrasts. In the present case, a cantilever beam is considered.  Let us model it as a 

heterogeneous Euler-Bernoulli beam discretized with N elements. The elastic property 

field is assumed to be heterogeneous, and is modeled as a (multiplicative) contrast field 

C, where EICn is the flexural stiffness of the element n, n ∈ { 1 ... Nel} . This element is 

also subjected to a homogeneous pressure, which is modeled by nodal forces  F and 

bending couples B where Fm (resp. Bm) is the force (resp. couple) applied to node m, m 
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∈ { 1 ... Nn} (see Fig. 5).

When the  pressure  and  the  stiffness  field  are  known,  the  direct  (classical)  problem 

consists in finding the nodal displacement field U=(v,θ).  The present analysis aims at 

solving the identification (inverse) problem, i.e. when the nodal displacement field is 

known (since it is measured), to find the stiffness and load fields.  The element length is 

l.  Following the equilibrium gap method [8], the equilibrium of each node is written as 

the stationarity of the potential energy 

( ) ( )∑∑
==

−− +−=
nel N

m
mmmm

N

n
nnnnnpot BvFvvfCEIE

11
11 ,,,

2
θθθ

where f is based on the assumed shape functions (see Appendix A). It follows, for the i-

th node (adjacent to the n-th and the (n+1)-th elements), that
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where v and θ are the components of the measured nodal displacement field Um.  The 

functions g-, g+, h- and h+ are derived from f. In the present case, the pressure field p is 

unknown,  in  addition  to  the  contrast  C.   The  equilibrium  conditions  give  2(N+1) 

equations with  2(N+1) unknowns,  without any assumed boundary condition.   These 

equations can be rewritten as

0M Λ =

with the unknown vector

[ ]
nn NN

t pCpC ,,,, 11 =Λ

where  M is a matrix that depends only on the measured nodal fields, which can be 

projected onto a kinematically admissible basis, on the assumed loading pattern and on 

the  length  of  the  element.   Since  the  problem is  solved  in  the  small  perturbations 
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framework, the behavior of the structure is assumed to be linear.  Using the definition of 

the singular value decomposition of  M

tM HJK=

where J is a diagonal matrix, H and K are orthogonal matrices, the non-trivial solution 

Λ is the right singular vector associated with the least singular value of M, which should 

be approximately equal to 0, within the machine precision.  The solution is then the 

column of  K (i.e. the right singular vector) corresponding  to the least singular value 

[18]. The  mechanical  load  and  the  elastic  property  fields  are  identified  up  to  a 

multiplicative constant, since only kinematic data are considered. The results will thus 

be referred to as load and elastic property contrasts.

4. Sensitivity study

By  using  the  results  developed  in  Ref.[19],  one  can  compute  the  Jacobian  of  the 

singular value decomposition described above with respect to any parameter.  One may 

be  first  interested  in  computing  the  Jacobian  of  the  K matrix  with  respect  to  the 

displacement field.  This calculation is semi-analytical since it involves solving a large 

number of linear systems, and returns a Jacobian  JK that  can be analyzed.   A more 

detailed analysis would exhibit a single non-singular direction of unit vector Up so that

0K pJ U ≠

Therefore,  when  the  measured  displacement  field  is  subjected  to  a  kinematically 

admissible measurement noise δU, the error on the identified fields depends only on the 

scalar value of  δUt . Up.  Performing a singular value decomposition (SVD) of JK 

t
K K K KJ R S T=

where the singular values are sorted in decreasing order provides Up  as the first column 
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of T

1i ip KU T=

and 

( ) 11 1i

i
K Kt

p

S R
U Uδ

∂ Λ =
∂

By using the experimental characterization carried out in Section 1, the noise corrupting 

the measured field is modeled as an uncorrelated Gaussian white noise b (variance σ2). 

One has to get  the resulting root-mean-square error on the identified fields  δΛt.∆Λ. 

According to the definition of an SVD, the columns of TK are an orthonormal basis for 

the displacement fields, so that one can write δU = κ Up + W s, where W is the matrix 

obtained by concatenating the columns of TK that are orthogonal to Up.  The projection 

of b onto a kinematically admissible basis reads

( ) ( )min t
b bU

M U b M U b
δ

δ δ − − 

and yields 

( )1t t t t
p b bA U M b W W Mκ −= − Ξ ∆

with the definitions

( )1t t
p p

t t

t
b b

A U W W U

W W
M M

−= Ξ − Ξ ∆ Ξ

∆ = Ξ
Ξ =

Moreover, the displacement partition yields, using the orthogonality conditions

2 2t t t
b bU U B b M FM b

A
δ δ κ= −

by assuming
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( )
1 1

1

1 t
p p

t t

t t t
p p p p

B U U

W W W W

F U U W W U U

− −

−

= + Ξ Θ Ξ

Θ = ∆ ∆

= − ∆ Ξ Ξ Θ + Θ

Then,

2
2 1 1 2 :E F

B A
σκ − −   = Ξ Ξ + Ξ    

so that

11

2 2t
KE S Eδ δ κ   Λ Λ =   

The  variance  of  the  identified  fields  grows  proportionally  to  σ2.  To  assess  the 

identification quality, one may use the equilibrium gap Fr as an error indicator

( )r GF M M M K U Mδ δ δ δ δ= Λ = Λ + Λ = + Λ

where KG  is the stiffness matrix of the structure.  Using the previous analysis, E[Fr
t . Fr] 

grows as E[κ2] and σ2, so that when the only error source is a measurement noise, the 

projection error, the identification error and the equilibrium gap are proportional to each 

other.  Previous studies [20,11] focused on the definition of a scalar global indicator, as 

wr, defined by 

( ) ( )r m
i

r
s

F i U i
w

E

±

=
∑

where Um±  is the measured displacement field from which the rigid body motion of the 

two considered elements has been removed, Es is the elastic energy of the structure.  It 

has been shown that this indicator can assess the noise level when the assumed model is 

correct.  It  is  straightforward  to  show  from  the  previous  development  that  the  wr 

indicator grows propotionally to σ2, so that the wr value is a measure of the noise level if 

the assumed model is suitable. For a 2-element discretization with a 1% noise/signal 
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ratio, the wr value lies in the 10-2 range [20]. 

5. Retrieving a modeling parameter

5.1. Identification assuming no modeling error

The unknowns of the identification problem are the multiplicative elastic contrast and 

the pressure applied to each element, which is assumed to be constant along the element 

(see Fig.  5). The displacement field is obtained with the set-up described in Section 1 

under conditions that ensure a reproducibility of almost 100 pm, and is displayed in Fig. 

9a.  Since the noise/signal ratio is of the order of one percent, one would expect a value 

of  wr  in  the  10-2 range  provided  the  used  model  is  suitable.   Figure  9b shows the 

identified fields when assuming that the cantilever is subjected only to a pressure field. 

One can note a repulsive pressure near the clamped part of the cantilever, and the value 

of wr reaches 2.8, thereby proving the poor quality of the identification results.  Since wr 

is significantly different from the expected value, one can assume a modeling error. 

When looking at the measured displacement field in Fig. 9a, one can note a change in 

the cantilever  curvature near its  free end.   Therefore,  the edge effects  are  not  fully 

described with the chosen modeling, and this should be modified. 

5.2. Effect of a modeling error

Let us deal with the simple case of an additional unknown nodal couple MS acting on 

the free end of the cantilever. It is described by a single degree of freedom using the 

parameter 

ref

S

M
M

=β

Following the same procedure as in Section 2, the equilibrium gap has an additional 

contribution due to a modeling error
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r ru rmF F F= +

where  Fru denotes  the residual  due to  the noise  on  measured  fields,  and  Frm is  the 

residual  corresponding to  the modeling error.  When dealing with a single  modeling 

parameter, one can plot a 2-D map of the norm of the equilibrium gap versus  β − βsol 

and δUt . Up..  Such a map, obtained with noisy computer-generated displacement fields, 

is shown in Fig. 6. 

One can note a steep and narrow valley, which corresponds to a zero-gradient direction 

in the (β,δUt . Up.) plane. Let us denote by λ this zero-gradient direction, and by λ⊥ the 

orthogonal one.  Then, using the static criterion ||Fr||=0 restricts the solution subspace to 

a line, whose direction is  λ, thereby proving that a static criterion is not sufficient to 

find a solution for β.

To achieve this goal, one can note that moving to the solution is also recovering the 

projection  onto  a  kinematically  admissible  basis  of  the  measurement  noise.  By 

extending the analysis carried out in Section 3 to the second moment of the distribution 

of κ2 leads to an additional probabilistic kinematic criterion, which is plotted in Fig. 7a, 

proving its complementarity to the equilibrium gap, and yielding a probability density 

function for given points along the λ axis. The use of this kinematic criterion allows one 

to restrict the solution subspace to a part of the λ axis.

5.3. Identifiability condition and identification procedure

From the previous analysis, one can locate a region in the (β,δUt .  Up.) plane when 

combining the static criterion ||Fr||=0, which sets the position along the λ⊥ direction, and 

the computed probability density that defines a likely region on the λ axis.  A β value 

can be specified if the two criteria are complementary, that is if the λ direction is not 

orthogonal to the δUt . Up direction.  Since the λ direction is defined such that 
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0r r
r

F FF U
U

δ δ δ β
β

∂ ∂= + =
∂ ∂

this condition reduces to 

0rF
β

∂ ≠
∂

which  is  automatically  satisfied  if  the  modeling  error  introduces  an  additional 

contribution  to  the  equilibrium  gap.   Last,  one  gets  a  probability  density  for  the 

parameter  β (see Fig.  7b),  which may be integrated to give error bounds.  This last 

probability density is obtained by a rescaling of the probability density of κ by using a 

ratio r expressed as

r

r

F
Ur
F
β

∂
∂=
∂
∂

thus defining the identification sensitivity of the modeling parameter.

5.4. Retrieving a modeling parameter and identified fields

A way of improving the modeling used in Section 4.1 is to consider that the electrostatic 

pressure applies on all the metallic faces of the cantilever, so that the pressure on the 

end surface will lead to an extra couple MS acting on the end of the cantilever (see Fig. 

8).  This extra couple is modeled by a dimensionless parameter  β, which is the ratio 

between the nodal couple due to the pressure field arising on the last element Mref and 

this extra couple MS. With standard cubic interpolating functions, Mref is given by

12
lpM

elNref −=

To identify the unknown value β, one uses a relaxation algorithm:

•find  a  rough  estimate  β0,  as  the  minimizer  of  ||Frm|| with  respect  to  β,  using  the 
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measured displacement field,

•use the computed Jacobian and a Newton-Raphson algorithm, move down the valley of 

the static criterion,

•define the λ direction, and compute the probability density arising from the kinematic 

criterion along it. Project the region of interest onto the  β axis and get a probability 

density function for β. 

For this case, the r ratio is computed, and r = 4.5.  Figure 9d shows the final probability 

density for β. When integrating it, one is able to show for example that P[−1.53 < β < −

1.38]=0.9.  By  choosing  a  particular  point  in  the  previous  range,  one  can  get  new 

identified fields, which are displayed in Fig. 9c. These fields do not vary significantly in 

the considered β range. The pressure field is attractive everywhere along the cantilever, 

which is consistent with the identified field. Moreover, the wr value lies in the 10-2 range 

throughout the whole β range, as expected from the sensitivity study performed in Ref. 

[20]. 

6. Conclusion

The  use  of  an  imaging  interferometric  set-up  is  proposed  to  retrieve  out-of-plane 

displacement fields of MEMS cantilevers. One uses a phase integration technique, so 

that the measurement is shot-noise limited and the reproducibility is controlled by the 

number  of  accumulated  images  (i.e. the  integration  time),  up  to  reach  an  optimal 

reproducibility in the 10 pm range. The noise corrupting the measured fields is shown to 

be described by a Gaussian distribution, without any spatial correlation.

After introducing the basis of the equilibrium gap method, the effects of a measurement 

noise on the identified fields were semi-analytically assessed, thereby proving the close 

relationship between the noise level on displacement measurement and different static 
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criteria used to assess the identification quality when the model used to describe the 

structure and the external loading is suitable. 

The  knowledge  of  the  noise  level,  when  compared  to  the  static  criterion,  may  be 

sufficient  to  detect  a  modeling  error.  An  identifiability  condition  and  a  modeling 

parameter sensitivity index are then defined, together with a relaxation algorithm, to 

retrieve a single modeling parameter and bounds on the identified fields. 

This  technique  was  applied  when  using  experimental  data,  obtained  on  a  micro-

cantilever subjected to an electrostatic loading. The poor description of sharp-tip effects 

is  detected,  and,  since  the  identifiability  condition  is  satisfied,  an  extra  modeling 

parameter  is  recovered  from  the  statistical  description  of  the  noise  corrupting  the 

measured field.

16



References

[1]     Rastogi, P.K. (Edt.) (2000) Photomechanics. Springer, Berlin (Germany).

[2]     Chevalier, L., Calloch, S., Hild, F., Marco, Y. (2001) Digital Image Correlation 
used to Analyze the Multiaxial Behavior of Rubber-Like Materials. Eur. J. Mech. 
A/Solids 20, 169-187.

[3]     Desrues, J., Lanier, J., Stutz, P. (1985) Localization of the Deformation in Tests 
on Sand Samples. Eng. Fract. Mech. 21 (4), 251-262.

[4]     Périé,  J.N.,  Calloch,  S.,  Cluzel,  C.,  Hild,  F. (2002)  Analysis of a Multiaxial Test on a 
C/C Composite by Using Digital Image Correlation and a Damage Model. Exp. Mech. 42 
(3), 318-328.

[5]     McNeill, S.R., Peters, W.H., Sutton, M.A. (1987) Estimation of stress intensity 
factor by digital image correlation. Eng. Fract. Mech. 28 (1), 101-112.

[6]     Forquin, P., Rota, L., Charles, Y., Hild, F. (2004) A Method to Determine the 
Toughness Scatter of Brittle Materials. Int. J. Fract. 125 (1), 171-187.

[7]     Réthoré,  J.,  Gravouil,  A.,  Morestin,  F.,  Combescure,  A.  (2005)  Estimation of 
mixed-mode  stress  intensity  factors  using  digital  image  correlation  and  an 
interaction integral. Int. J. Fract. 132, 65-79.

[8]     Kavanagh, K.T. (1971) Finite Element Applications in the Characterization of 
Elastic Solids. Int. J. Solids Struct. 7, 11-23.

[9]     Grédiac, M. (1989) Principe des travaux virtuels et identification. C. R. Acad Sci.  
Paris 309 (Série II), 1-5.

[10]   Geymonat, G., Hild, F., Pagano, S. (2002) Identification of elastic parameters by 
displacement field measurement. C. R. Mecanique 330, 403-408.

[11]   Claire,  D.,  Hild,  F.,  Roux, S.  (2004)  A finite  element  formulation to  identify 
damage fields: The equilibrium gap method.  Int. J. Num. Meth. Engng. 61 (2), 
189-208.

[12]   Andrieux,  S.,  Abda,  A.B.,  Bui,  H.D.  (1999)  Reciprocity  Principle  and  Crack 
Identification. Inverse Problems 15, 59-65.

[13]   Lavrik, N.V., Sepaniak, M.J., Datskos, P.G. (2004) Cantilever transducers as a 
platform for chemical and biological sensors. Review of Scientific Instruments 75 
(7), 2229-2253.

[14]   Sharpe Jr.,  W.N. (2001) Mechanical properties of MEMS materials.  In  Mems 
Handbook, CRC Press.

[15]   Gleyzes,  P.,  Boccara,  A.C.,  Saint-Jalmes,  H.  (1997)  Multichannel  Nomarski 
microscope with polarization modulation: performance and applications.  Optics 
Letters 22 (20), 1529-1531.

[16]   Dubois,  A.  (2001)  Phase-map measurements  by interferometry with  sinuoidal 
phase modulation and four integrating buckets. J. Opt. Soc. Am. A 18, 1972-1979.

[17]   Gabor, D. (1975) The transmission of information by coherent light. I. Classical 
theory. J. Phys. E: Sci. Instrum. 8, 73-78.

17



[18]   Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P. (1992) Numerical  
Recipes in C. Cambridge University Press, Cambridge (UK).

[19]   Mathai, A.M. (1997) Jacobians of matrix transformations and functions of matrix  
argument. World Scientific Publishers.

[20]   Amiot,  F.,  Hild,  F.,  Roger,  J.P.  (2004)  Measuring  the  displacement  field  of 
microcantilevers  under  electrostatic  loading  to  identify  their  mechanical 
properties. Proc. SEM X, SEM, 6p.

18



Appendix A

The function f is based on standard Hermite cubic polynomials

( ) ( ) ( )nnnnnnnnnnnnnnnnnn vvvv
ll

vv
l

vvf θθθθθθθθθθ −−+++++−= −−−−−−−−− 111121
2

1
22

1311
12412),,,(

where l is the element length.  The functions g-, g+, h- and h+ are then derived from f
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The functions g-  and g+ correspond to the contributions of two adjacent elements (of a 

given  node  i) to  the  equilibrium  equation  with  respect  to  the  nodal  out-of-plane 

displacement, whereas the functions  h-  and  h+ are those of the same elements to the 

equilibrium with respect to the nodal rotation of the node i.
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Figure 1. Description of the Nomarski shear-interferometer to measure out-of-plane 

displacement fields of MEMS.
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Figure 2. Estimation of the reproducibility on the measurement of a differential 

topography as a function of the number of accumulated images.
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Figure 3. a) Experimental noise probability density (circles), and a zero-mean Gaussian 

distribution fit (solid line) b) Dimensionless autocorrelation function of a typical noise 

realization.
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Figure 4. Schematic of the set-up used to apply an electrostatic pressure on a 

microcantilever.
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Figure 5. Description of the FE model.
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Figure 6. Norm of the residual in arbitrary units in the (β,δUt . Up.) plane.
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Figure 7. a) Probability density for κ in the (β,δUt . Up.) plane. b) Probability density for β.
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Figure 8. FE model for the experimental problem when an end couple is added.
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Figure 9. a) Measured displacement field b,c) Identified fields before and after 

accounting for a modeling error d) Probability density for β.
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