A memetic algorithm with a large neighborhood crossover operator for the generalized traveling salesman problem

Abstract : The Generalized Traveling Salesman Problem (GTSP) is a generalization of the well-known Traveling Salesman Problem (TSP), in which the set of nodes is divided into mutually exclusive clusters. The objective of the GTSP consists in visiting each cluster exactly once in a tour, while minimizing the sum of the routing costs. This paper addresses the solution of the GTSP using a Memetic Algorithm procedure. The originality of our approach rests on the crossover procedure that uses a large neighborhood search. This algorithm is compared with other algorithms on a set of 41 standard test problems with up to 442 nodes. The obtained results show that our algorithm is efficient in both solution quality and computation time.
Type de document :
Article dans une revue
Computers and Operations Research, Elsevier, 2010, 37 (11), pp.1844-1852. 〈10.1016/j.cor.2009.05.004〉
Liste complète des métadonnées

Littérature citée [34 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00238472
Contributeur : Christian Artigues <>
Soumis le : lundi 25 mai 2009 - 12:51:50
Dernière modification le : samedi 27 octobre 2018 - 01:20:41
Document(s) archivé(s) le : mercredi 22 septembre 2010 - 13:09:39

Fichier

bontoux_artigues_feillet.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Boris Bontoux, Christian Artigues, Dominique Feillet. A memetic algorithm with a large neighborhood crossover operator for the generalized traveling salesman problem. Computers and Operations Research, Elsevier, 2010, 37 (11), pp.1844-1852. 〈10.1016/j.cor.2009.05.004〉. 〈hal-00238472v2〉

Partager

Métriques

Consultations de la notice

360

Téléchargements de fichiers

481