Global Sensitivity Analysis of Stochastic Computer Models with joint metamodels

Abstract : The global sensitivity analysis method, used to quantify the influence of uncertain input variables on the response variability of a numerical model, is applicable to deterministic computer code (for which the same set of input variables gives always the same output value). This paper proposes a global sensitivity analysis methodology for stochastic computer code (having a variability induced by some uncontrollable variables). The framework of the joint modeling of the mean and dispersion of heteroscedastic data is used. To deal with the complexity of computer experiment outputs, non parametric joint models (based on Generalized Additive Models and Gaussian processes) are discussed. The relevance of these new models is analyzed in terms of the obtained variance-based sensitivity indices with two case studies. Results show that the joint modeling approach leads accurate sensitivity index estimations even when clear heteroscedasticity is present.
Type de document :
Autre publication
Unpublished. 2009
Liste complète des métadonnées

Littérature citée [39 références]  Voir  Masquer  Télécharger
Contributeur : Bertrand Iooss <>
Soumis le : lundi 8 juin 2009 - 11:34:57
Dernière modification le : lundi 1 octobre 2018 - 16:03:26
Document(s) archivé(s) le : jeudi 23 septembre 2010 - 17:53:55


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00232805, version 3
  • ARXIV : 0802.0443



Bertrand Iooss, Mathieu Ribatet, Amandine Marrel. Global Sensitivity Analysis of Stochastic Computer Models with joint metamodels. Unpublished. 2009. 〈hal-00232805v3〉



Consultations de la notice


Téléchargements de fichiers