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Abstract

Nowadays, there is a growing interest in machine learning and pattern recognition
for tree-structured data. Trees actually provide a suitable structural representation
to deal with complex tasks such as web information extraction, RNA secondary
structure prediction, computer music, or conversion of semi-structured data (e.g.
XML documents). Many applications in these domains require the calculation of
similarities over pairs of trees. In this context, the tree edit distance (ED) has
been subject of investigations for many years in order to improve its computational
efficiency. However, used in its classical form, the tree ED needs a priori fixed edit
costs which are often difficult to tune, that leaves little room for tackling complex
problems. In this paper, to overcome this drawback, we focus on the automatic
learning of a non parametric stochastic tree ED. More precisely, we are interested in
two kinds of probabilistic approaches. The first one builds a generative model of the
tree ED from a joint distribution over the edit operations, while the second works
from a conditional distribution providing then a discriminative model. To tackle
these tasks, we present an adaptation of the Expectation-Maximization algorithm
for learning these distributions over the primitive edit costs. Two experiments are
conducted. The first is achieved on artificial data and confirms the interest to learn a
tree ED rather than a priori imposing edit costs; The second is applied to a pattern
recognition task aiming to classify handwritten digits.
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1 Introduction

Nowadays, there is a growing interest for tree-structured data due to the po-
tential applications in information extraction from the web, computational
biology or phylogeny. Indeed, the hierarchical structure of trees is more suited
for modeling web pages (XML, HTML), the RNA secondary structure of a
molecule or phylogenetic trees than a flat representation such as strings. In
applications, one often needs similarity measures to compare two different
instances. This is, for example, useful for defining conversion models for deal-
ing with heterogeneous XML data. In this context, many approaches have
extended the well known string edit distance (ED) to trees [1].

The tree ED is defined as the least costly set of basic operations to change
one tree to another. These primitive operations usually consist of substitution,
deletion and insertion of a node. Tree ED-based methods use, in general, a
priori fixed costs for these so-called primitive edit operations. However, in
many domains, an edit cost can mainly depend on the nature of the symbols
used in a given operation. For example, the probability of changing a given
symbol in a RNA structure depends on the probability that a genetic mutation
occurs on this symbol. Thus, the similarity of two trees can vary a lot according
to the specific domain in consideration. A solution could consist of assigning
costs according to an expert valuation. However, this strategy may not be
efficiently done in domains where the expertise is low. Moreover, even if the
expertise level is sufficient, assigning a relevant cost to each edit operation can
become a tricky task. Another way to overcome this drawback would consist
in automatically learning these edit costs from a learning sample. This is the
purpose of this paper. We propose a model of an ED as a stochastic process
and we use probabilistic methods to learn the model. Several strategies can
be used to learn these edit costs. In this paper, the objective function we are
going to minimize is the total distance between training (input,output) pairs of
trees. In this context, the aim is to learn the optimal edit costs that allow us to
transform an input tree into an output one. From an application point of view,
these (input,output) pairs can take many forms. For example, the input tree
would be a noisy data; and the output one is the corresponding unnoisy tree.
The aim may be then to learn the edit costs that allow us to automatically
correct a corrupted instance. In another application, the goal could be to
learn a document conversion model, where the input tree is a given XML
document, and the output tree the corresponding XML conversion satisfying
a DTD schema.

Note that in the context of strings, several approaches have already been pro-
posed during the last decade to learn a stochastic ED in the form of stochastic
transducers [2,3], conditional random fields [4] or pair-Hidden-Markov-Models
(pair-HMM) [5]. A parametric approach has also been presented in [6] in the
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context of graph ED, where each edit operation is modeled by a Gaussian
Mixture Density. With the exception of our preliminary work [7], as far as we
know, no method has been proposed to directly learn edit costs for a stochas-
tic tree ED. The aim of this paper is to fill this gap by a non parametric
stochastic method specifically adapted to trees.

<HTML>

<LI> <LI>

<P> <UL> <P>

<BODY>

(a)

<BODY>

<HTML>

<P> <LI> <LI> <P>

(b)

<BODY>

<HTML>

<P> <P>

(c)

Fig. 1. Strategies to delete a node within a tree.

As we indicated before, the primitive edit operations for the standard tree
ED are the substitution, insertion and deletion of a node. The most efficient
procedures proposed notably by Zhang and Shasha [8] and Klein [9] have a
polynomial complexity of order 4 [10,11]. In these approaches, when a node is
deleted within a tree, all its children are then connected to its father. This may
not be relevant in some cases, for example in an HTML document: considering
a set of items in an unordered list (see Fig. 1.a), it seems clearly irrelevant
to delete the <UL> node without deleting the <LI> items (Fig. 1.b). Thus, to
take into account this phenomenon, and particularly to reduce the algorithmic
complexity, we decided to use the less costly (with a quadratic complexity)
tree ED, initially proposed by Selkow [12], as a base for our stochastic ap-
proach. In this case, only a deletion of an entire (sub)tree can occur, and
its removal implies the deletion of all its nodes (Fig. 1.c). The insertion of a
(sub)tree follows the same principle, i.e. requires the iterative insertion of its
nodes. In other words, this means that Selkow’s approach forbids some edit
operations, such as the insertion/deletion of a single node. Using this strat-
egy, the minimization of the distance between tree pairs will be then achieved
using a subset of edit operations that allow a reduction of the algorithmic
complexity. However, despite this inconvenience, it will be possible to learn
edit operations on single nodes by combining operations on subtrees.

Two approaches are offered in this paper for learning, from a sample of (in-
put,output) pairs of trees, the costs used for computing a stochastic tree ED.
First, we learn a generative model in the form of a joint distribution over edit
operations inspired by [2] in the case of strings. The advantage of such gen-
erative models is to provide an estimate of the unknown joint density with a
small variance. However, it has an important drawback: the estimate is biased
because it depends on the distribution of the node labels of the input trees.
In other words, this generative model will work well if the distribution over
the labels of the learning input trees follows the (usually unknown) underly-
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ing density of the input trees. This constraint justifies our second approach
based on the learning of a discriminative model in the form of a conditional
distribution. This type of model is known [13] to provide an unbiased estimate
(despite a higher variance). Such a strategy will be shown to work whatever
the input distribution is used.

The rest of the paper is organized as follows: After some notations and defini-
tions about the non-stochastic tree ED in Section 2, our two learning methods
are presented in Sections 3 and 4. They are based on an adaptation of the well-
known Expectation-Maximization algorithm (EM) [14]. The expectation step
requires the use of two procedures called forward and backward that we will
adapt for learning a stochastic version of a Selkow’s approach-based tree ED.
Even if the expectation step actually requires a specific adaptation according
to the studied tree ED, we will show that the optimization constraints to sat-
isfy during the maximization stage would remain the same for any stochastic
tree ED. In Section 5, we first carry out some series of experiments on artificial
datasets showing, from a theoretical standpoint, that our approach is able to
learn target distributions. Then, we present results about the behavior of our
approach on a pattern recognition task aiming to classify handwritten digits,
before concluding.

2 Tree ED

2.1 Notations

We assume we handle ordered labeled trees of arbitrary arity. Since we use
only basic concepts on trees, we simply define a tree by v(a1, . . . , aT ) where
v is a node and a1, . . . , aT are trees 1 . Each node of a tree is labeled by a
symbol. We denote by L the set of labels and by λ 6∈ L the empty label.
For convenience, we will denote the labeled tree v(a1, . . . , aT ) by l(a1, . . . , aT ),
where l is the label of v.

Since we often need to handle pairs of trees, we use the detailed notations
l(a1, . . . , aT ) and l′(b1, . . . , bV ) in this paper when the recursive definition of a
tree is necessary. In the opposite case, we use the simple notations x and y.

1 Formal definitions on trees are provided in [15].
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2.2 Edit operations and edit cost functions

The main edit operations are now presented which allow us to change an input
tree l(a1, . . . , aT ) into an output one l′(b1, . . . , bV ). In this paper, we are only
concerned by three possible edit operations on trees: Substitution of the label
l of a (sub)tree root by l′ (denoted (l, l′)), deletion of a subtree ai (denoted
(ai, λ)), and insertion of a subtree aj (denoted (λ, aj)) (see Fig. 2).

(b)

(a)

(c)

a1

a1 a1

a1a1

a1aT

aT aT

aTaT

aT

aj

l l

l

ll

l′

ai

ai ai

ai−1 ai−1ai+1

ai+1 ai+1

ai+1

Fig. 2. (a) Substitution of l by l′ (b) Deletion of ai (c) Insertion of aj .

Let us define a cost function δt over these edit operations. Since a deletion
or an insertion of a tree are respectively achieved by iteratively removing or
inserting a set of nodes, δt can be directly defined from a cost function δ of
edit operations on labels of the nodes. More formally, δ is a function defined
from (L ∪ {λ})× (L ∪ {λ})\{(λ, λ)} to [0, 1].

The cost of the deletion of a tree can then be recursively computed as follows:

δt(l(a1, . . . , aT ), λ) = δ(l, λ) +
T

∑

i=1

δt(ai, λ).

As this paper’s introduction indicated, the cost matrix δ is usually a priori
fixed. For example, consider the cost matrix δ of Fig. 3 and a given tree b(c, d),
then δt(b(c, d), λ) = δ(b, λ) + δt(c, λ) + δt(d, λ) = δ(b, λ) + δ(c, λ) + δ(d, λ) =
1.5. Based on the same principle, the insertion of a tree requires successive
insertions of its nodes, such that:
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δ λ a b c d

λ − 0.5 0.5 0.5 0.5

a 0.5 0 1 1 1

b 0.5 1 0 1 1

c 0.5 1 1 0 1

d 0.5 1 1 1 0

Fig. 3. A matrix δ.

δt(λ, l′(b1, . . . , bV )) = δ(λ, l′) +
V

∑

j=1

δt(λ, bj).

Finally, the substitution of two labels is defined as follows:

δt(l, l
′) = δ(l, l′).

2.3 Classic tree ED algorithms

Once the cost function δt is established, it is possible to define a tree ED based
on the following notion of edit script.

Definition 1 Let x and y be two trees, an edit script e = e1 · · · en on these
trees, where ei = (li, l

′
i) ∈ (L ∪ {λ})2\{(λ, λ)} is a sequence of edit operations

changing x into y. The cost of an edit script is the sum of the costs of its edit
operations.

Since several scripts can exist (as shown in Fig. 4), one can define the tree ED
as follows:

Definition 2 The tree ED d(l(a1, . . . , aT ), l′(b1, . . . , bV )) between two trees
l(a1, . . . , aT ) and l′(b1, . . . , bV ) is the cost of the minimum cost edit script.

As described in [12], it can be recursively computed as follows:

d(λ, λ)= 0

d(l(a1, . . . , aT ), λ)= δt(l(a1, . . . , aT ), λ)

d(λ, l′(b1, . . . , bV )) = δt(λ, l′(b1, . . . , bV ))

d(l(a1, . . . , aT ), l′(b1, . . . , bV )) = δ(l, l′) + d′(a1, . . . , aT : b1, . . . , bV )
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δt(c(a, b(c)), λ) = 2 δt(d, b) = 1
δt(λ, c) = 0.5

δt(c, λ) = 0.5

δt(d(a, b), λ) = 1.5
δt(c, b) = 1

δt(λ, c) = 0.5

Fig. 4. Two possible edit scripts that are applicable between two trees.

where δt is defined as shown in Section 2.2 and d′ as follows:

d′(λ : λ)= 0

d′(a1, . . . , aT : λ)= d′(a1, . . . , aT−1 : λ) + δt(aT , λ)

d′(λ : b1, . . . , bV )= d′(λ : b1, . . . , bV −1) + δt(λ, bV )

d′(a1, . . . , aT : b1, . . . , bV )= min



























d′(a1, . . . , aT−1 : b1, . . . , bV ) + δt(aT , λ)

d′(a1, . . . , aT : b1, . . . , bV −1) + δt(λ, bV )

d′(a1, . . . , aT−1 : b1, . . . , bV −1) + d(aT , bV )

Note that this distance can be efficiently computed using dynamic program-
ming. However, so far, we assumed that δ was given. While δ is the core of the
computation of a tree ED, its valuation can constitute a tricky task in many
domains. To overcome this drawback, in the next section, we show how it is
possible to automatically learn this matrix δ from a corpus of tree pairs. Our
approach is stochastic and based on an adaptation of the EM algorithm [14],
which aims at estimating the hidden parameters (the matrix δ) of a probabilis-
tic model from a learning sample. In this new context, the tree ED becomes
a stochastic tree ED. Then, we do not use tuned edit costs anymore, but we
turn to learn edit probabilities. For convenience, we decided to keep unchanged
the notation of matrix δ, even if it will represent edit probabilities rather than
edit costs. Thus, δ(l, l′) is designated to represent the probability to change
the symbol l into l′. In this stochastic context, the probability of the edit op-
eration (l, l) will not always be equal to 1. This is because the symbol l could
have a non null probability to be changed into another letter l′.

In the following sections, we illustrate two ways of learning a stochastic edit
distance between two trees. The first one (Section 3) concerns a generative
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model over the edit scripts changing an input tree into an output one, while
the second one (Section 4) learns a so-called discriminative model. The main
difference between both of them occurs during the maximization step of EM.

Note that throughout the following two sections, an estimated probability
from the learned matrix δ will be denoted with a subscript δ.

3 Learning Stochastic Joint Tree Edit Distance

3.1 Definitions

A probabilistic ED supposes that edit operations are applied according to an
unknown random process. Our goal is to learn this underlying probability
distribution δ(l, l′) in order to estimate a joint distribution over sequences
of edit operations, the so-called edit scripts. We use a special symbol # to
denote the end of an edit script. For the sake of convenience, we also denote
the termination probability of a script δ(#) by δ(λ, λ).

The probability of an edit script e = e1 · · · en is the product of the probabilities
of each edit operation, such that:

πδ(e) =
n

∏

i=1

δ(ei)× δ(#).

To model the distance between two trees, we propose to compute the proba-
bility of all ways to change an input tree x into an output one y (as described
in [2] for the case of strings). This probability, denoted pδ(x, y), enables us to
model a stochastic tree ED.

Definition 3 We define E(x, y) as the set of all possible edit scripts for trans-
forming x into y. The stochastic tree ED between two trees is defined by:

ds(x, y) = − log pδ(x, y) = − log
∑

e∈E(x,y)

πδ(e).

Note that we could have used another strategy to obtain a probabilistic ED
consisting of only keeping the most probable script and then computing a
so-called Viterbi distance dv(x, y), defined as:

dv(x, y) = − log max
e∈E(x,y)

πδ(e).
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Achieving this task would only require slight modifications.

3.2 Adapted EM algorithm

To learn the matrix δ and then compute the joint probability pδ(l(a1, . . . , aT ),
l′(b1, . . . , bV )), we use an adaptation of the EM algorithm [14]. EM estimates
the hidden parameters of a probabilistic model by maximizing the likelihood
of a learning sample. In our case, the parameters will correspond to the ma-
trix δ of edit probabilities, and the learning sample will be composed of (in-
put,output) pairs of trees.

EM achieves an expectation step followed by a maximization stage. During
the first step, EM accumulates, from the training corpus, the expectation of
each hidden event (edit operation) for transforming an input tree into an
output one. In the maximization step, EM sets the parameter values (edit
probabilities) in order to maximize the likelihood. To learn a stochastic tree
ED, we adapted EM in the context of trees and more precisely for the learning
of tree edit distances that are based on Selkow’s algorithm.

3.2.1 Forward and Backward functions

To learn the matrix δ, EM uses two auxiliary functions, so-called forward
(α) and backward (β), that are respectively described in Algorithm 1 and
Algorithm 2.

Input: Two trees l(a1, . . . , ai) and l′(b1, . . . , bj), 1 ≤ i ≤ T and 1 ≤ j ≤ V

Output: pδ(l(a1, . . . , ai), l′(b1, . . . , bj))

Let α[0..T, 0..V ] be a (T + 1)× (V + 1) matrix
α[0, 0]← δ(l, l′)
for t = 0 to i do

for v = 0 to j do
if (t > 0) or (v > 0) then α[t, v]← 0
if (t > 0) then α[t, v]← α[t, v] + α(at, λ)× α[t− 1, v]
if (v > 0) then α[t, v]← α[t, v] + α(λ, bv)× α[t, v − 1]
if (t > 0) and (v > 0) then α[t, v]← α[t, v] +α(at, bv)×α[t− 1, v− 1]

return α[i][j]

Algorithm 1: Forward function α(l(a1, . . . , ai), l
′(b1, . . . , bj))

These two functions take a pair of trees as input and compute the probabil-
ity of the possible edit scripts between these two trees. From an algorithmic
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Input: Two trees l(ai, . . . , aT ) and l′(bj , . . . , bV ), 1 ≤ i ≤ T and 1 ≤ j ≤ V

Output: pδ(l(ai, . . . , aT ),l′(bj , . . . , bV ))

Let β[0..T, 0..V ] be a (T + 1)× (V + 1) matrix
β[T, V ]← 1
for t = T down to i− 1 do

for v = V down to j − 1 do
if (t < T ) or (v < V ) then β[t, v]← 0
if (t < T ) then β[t, v]← β[t, v] + β(at+1, λ)× β[t + 1, v]
if (v < V ) then β[t, v]← β[t, v] + β(λ, bv+1)× β[t, v + 1]
if (t < T ) and (v < V ) then

β[t, v]← β[t, v] + β(at+1, bv+1)× β[t + 1, v + 1]

if i = 1 and j = 1 then return β[0][0]× δ(l, l′) else return β[i− 1][j − 1]

Algorithm 2: Backward function β(l(a1, . . . , ai), l
′(b1, . . . , bj))

standpoint, this requires recursively calculating the probability of the edit op-
erations on the pairs of subtrees of the same depth. Although they process
differently, these functions are symmetric and provide the same probability:

pδ(l(a1, . . . , aT ), l′(b1, . . . , bV )) =α(l(a1, . . . , aT ), l′(b1, . . . , bV ))× δ(#)

=β(l(a1, . . . , aT ), l′(b1, . . . , bV ))× δ(#).

The forward function visits the roots first and then scans the children from
left to right, while the backward function processes from right to left and fi-
nally visits the roots of the pair of trees. Fig. 5 illustrates these two algorithms
that can be computed with a quadratic complexity using dynamic program-
ming techniques. We can note that all the ways for transforming the input
tree into the output one are taken into account, that explains why we sum,
in both functions, the probabilities of edit scripts. To compute a Viterbi dis-
tance, we would have kept the most probable path, that only requires slight
modifications such as the use of a max function.

a1 at aT b1 bv bV

l l′

(a)

a1 at aT b1 bv bV

l l′

(b)

Fig. 5. (a) Evaluation of α(l(a1, . . . , at), l
′(b1, . . . , bv)) by the forward algorithm. (b)

Evaluation of β(l(at, . . . , aT ), l′(bv , . . . , bV )) by the backward algorithm.
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3.2.2 Expectation Step

During the expectation step, we estimate the expectation of the hidden events,
i.e. the edit operations used to transform an input tree into an output one.
These expectations are stored in an auxiliary matrix γ of dimension (|L| +
1) × (|L| + 1). This process (see Algorithm 3) takes a training pair of trees
(x, y) in input. Then, for all the pairs of subtrees (at, bv), where at is a subtree
of x and bv a subtree of y, and where at and bv are located at the same depth
in x and y, it accumulates the expectations of the three edit operations by
either deleting at, or inserting bv or substituting at by bv. In this algorithm,
lr(at) (resp. lr(bv)) denotes the label of the root of a tree at (resp. bv).

Input: Two trees x and y

Let (at, bv) be a pair of trees where there are: 2 labels l and l′, 2 contexts C[ ],
C ′[ ] with depthc(C[ ]) = depthc(C

′[ ]) and
(T − 1) + (V − 1) trees a1,. . . ,at−1,at+1,. . . ,aT ,b1,. . . ,bv−1,bv+1,. . . ,bV

with x = C[l(a1, . . . , at−1, at, at+1, . . . , aT )]
and y = C ′[l′(b1, . . . , bv−1, bv, bv+1, . . . , bV )]

foreach pair (at, bv) in (x, y) do
if (at 6= λ) then

γ(lr(at), λ)← γ(lr(at), λ)+
αβ(C[ ],C′[ ])α(l(a1,...,at−1),l′(b1,...,bv))α(at,λ)β(l(at+1,...,aT ),l′(bv+1,...,bV ))

α(x,y)

end
if (bv 6= λ) then

γ(λ, lr(bv))← γ(λ, lr(bv))+
αβ(C[ ],C′[ ])α(l(a1,...,at),l′(b1,...,bv−1))α(λ,bv)β(l(at+1,...,aT ),l′(bv+1,...,bV ))

α(x,y)

end
if (at 6= λ) and (bv 6= λ) then

γ(lr(at), lr(bv))← γ(lr(at), lr(bv))+
αβ(C[ ],C′[ ])α(l(a1,...,at−1),l′(b1,...,bv−1))α(at,bv)β(l(at+1,...,aT ),l′(bv+1,...,bV ))

α(x,y)

end
end

Algorithm 3: expectation(x, y)

Since at and bv are subtrees, the calculation of these expectations needs to
take into account not only their siblings but also the rest of each of the two
trees x and y that are not directly concerned by the operations on at and bv,
and that can be formally defined as a context.

Definition 4 A context C[ ] is a non empty tree where exactly one leaf (i.e.
a node without any subtree) is labeled by a symbol $ such that $ 6∈ L ∪ {λ}. If
C[ ] is a context and x a tree, C[x] denotes the tree obtained by substituting
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the node labeled by $ by the tree x (see Figure 6). The depth of a context C[ ],
denoted by depthc(C[ ]), corresponds to the depth of the node labeled by $.

a a

f

f

$a a

f

g

a a

f

g

x C[x]C[ ]

Fig. 6. A tree x, a context C[ ] of depthc(C[ ]) = 1 and the resulting tree C[x].

This definition enables us to now explain the calculations done in Algorithm 3
on two subtrees (at, bv). For the sake of simplicity, let us only focus on the
substitution case as described in Fig. 7:

• The function αβ, described in Algorithm 4, computes the joint probability
of the two contexts C[ ] of at and C ′[ ] of bv. We call this function αβ because
it uses the forward and backward functions to compute respectively the left
and right parts of the contexts.
• The forward and backward functions are used to compute the probability of

the left, i.e. α(l(a1, . . . , at−1), l
′(b1, . . . , bv−1)), and right, i.e. β(l(at+1, . . . , aT ),

l′(bv+1, . . . , bV )) parts of the substitution operation on at and bv.
• The forward function is finally used to calculate the probability of the edit

operation itself. Since this edit operation is carried out on a tree, this implies
a vertical recursion.

The probabilities obtained by the previous functions are then divided by the
whole probability α(x, y) to deduce the required expectations.

 l  l

a1 at−1 at+1at aT b1 bv−1 bv+1bv bV

α(l(a1, . . . , at−1), l
′(b1, . . . , bv−1)) β(l(at+1, . . . , aT ), l′(bv+1, . . . , bV ))

α(at, bv)

C[ ] C ′[ ]

αβ(C[ ], C ′[ ])

Fig. 7. Graphical explanation of a substitution (at, bv).
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Input: Two contexts C[ ] and C ′[ ]

Output: Probability of pair (C[ ], C ′[ ])

if C[ ] = $ and C ′[ ] = $ then
return 1

else
Let l, l′ be two labels, Cl[ ] and Cl′[ ] two contexts and
(T − 1) + (V − 1) trees a1,. . . ,at−1,at+1,. . . ,aT ,b1,. . . ,bv−1,bv+1,. . . ,bV s.t.
C[ ] = l(a1, . . . , at−1, Cl[ ], at+1, . . . , aT ) and
C ′[ ] = l′(b1, . . . , bv−1, Cl′[ ], bv+1, . . . , bV )

A = α(l(a1, . . . , at−1), l
′(b1, . . . , bv−1))× β(l(at+1, . . . , aT ), l′(bv+1, . . . , bV ))

return A×αβ(Cl[ ], Cl′[ ])

Algorithm 4: αβ(C[ ], C ′[ ])

3.2.3 Maximization Step and EM Algorithm

The maximization step is crucial in the EM algorithm. Actually, it describes
the normalization of the expectation values γ(l, l′), obtained during the expec-
tation step, that we must achieve to maximize the likelihood of the learning
set. In our specific case of edit distance learning, this likelihood is computed
from all the edit scripts over the training pairs of trees. Beyond the likelihood
maximization, this normalization must also provide the δ matrix in the form of
a statistical distribution over the edit operations, i.e. satisfying the following
constraint:

∑

(l,l′)∈(L∪{λ})2

δ(l, l′) = 1 with δ(l, l′) ≥ 0 and δ(λ, λ) > 0. (1)

Note that δ(λ, λ) > 0 is equivalent to δ(#) > 0. This means that we must
have at least one learning pair of trees.

To ensure this statistical constraint, while maximizing the likelihood of the
edit scripts on the learning pairs of trees, we can prove, in the joint case,
that the optimal normalization is achieved by the Algorithm 5. It simply
consists of dividing each expectation γ(l, l′) by the total accumulator TA =
∑

l∈L∪{λ}

∑

l′∈L∪{λ} γ(l, l′). We don’t show here the proof of this optimal nor-
malization because we will detail it, in Section 4, for the conditional case which
deserves more technical explanations.

By combining Algorithms 1, 2, 3, 4 and 5, we can now draw the general
learning algorithm of a joint stochastic tree ED (see Algorithm 6). Note that
the process is repeated until convergence. This is reached either when the
probability of each edit operation does not significantly change between two
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iterations (that can be achieved using a statistical test), or when an a priori
fixed number of iterations has been run.

Input: A matrix of accumulators γ

Output: A matrix of joint stochastic edit costs δ

TA← 0
foreach (l, l′) ∈ (L ∪ {λ})2 do

TA← TA + γ(l, l′)

foreach (l, l′) ∈ (L ∪ {λ})2 do

δ(l, l′)← γ(l,l′)
TA

Algorithm 5: joint maximization(γ)

Input: LS a learning set of pairs of trees

repeat
foreach (l, l′) ∈ (L ∪ {λ})2 do

γ(l, l′)← 0

γ(λ, λ) = |LS|
foreach (l(a1, . . . , aT ), l′(b1, . . . , bV )) ∈ LS do

expectation(l(a1, . . . , aT ), l′(b1, . . . , bV ))

joint maximization(γ)

until convergence

Algorithm 6: expectation − maximization

3.2.4 Example

In order to help the reader to test his own implementation and to improve the
understandability of the previous technical sections, we present here the run-
ning of our algorithm on a simple example. Consider an alphabet L = {a, b, c}

and a training set composed of only one pair of trees
(

a(b, a(b, c)), a(c, a(c))
)

graphically described in Fig.8.

OutputInput

a

a

a

a

b

b

c

c

c

Fig. 8. (input,output) pair of trees.

Matrix δ is uniformally initialized with the value
1

16
for each edit operation.

14
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Matrix γ obtained after the first iteration is described in Fig.9 while the cor-
responding matrix δ is presented in Fig.10.

γ λ a b c Total

λ − 0.0053 0.0 0.2045 0.2098

a 0.0053 1.9931 0.0 0.0016 2

b 0.6585 0.0016 0.0 1.339 2

c 0.5460 0.0 0.0 0.4540 1

Fig. 9. Matrix γ at the end of the first iteration. The column Total describes the
input tree distribution, i.e. the number of times each letter of L is used in the input
tree. The value 0.2098 corresponds to the expected number of insertions, according
to the current distribution δ. We omit γ(λ, λ) = γ(#) here which has the value 1.0
after the first iteration.

δ λ a b c

λ − 0.00086 0.0 0.03294

a 0.00086 0.32096 0.0 0.00025

b 0.10604 0.00025 0.0 0.21577

c 0.0879 0.0 0.0 0.0731

Fig. 10. Matrix δ at the end of the first iteration. Note that δ(#) = δ(λ, λ) = .16107.

After 10 iterations, we obtain an optimum described in matrices γ and δ

of Fig.11 and 12. We can note that our algorithm has correctly learned one
possible target, i.e. a symbol c is always deleted, a letter b is always changed
into a c, while the symbol a is kept unchanged.

By analyzing the final values of δ, we can be surprised by the behavior of our
algorithm that excludes some possible operations. Actually, we can note that
at the end of the process, the edit operation corresponding to the deletion of
the symbol b has a null probability (δ(b, λ) = 0). Such a value could appear
amazing since, considering the deepest leaves of the pair of trees, this edit
operation seems to be definitely possible. In fact, we can easily explain this
behavior: At the end of the first iteration, this edit operation has a non-null
probability (0.10604). However, taking into account all the edit operations
achieved between the two trees, the substitution (b, c) is more probable, be-
cause it is applicable twice (resulting in a probability of 0.21577). Since the
iterative process of EM aims to maximize the likelihood of the edit scripts, it
explains why the probability δ(b, λ) converges towards 0.
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γ λ a b c

λ − 0.0 0.0 0.0

a 0.0 2.0 0.0 0.0

b 0.0 0.0 0.0 2.0

c 1.0 0.0 0.0 0.0

Fig. 11. Matrix γ after 10 iterations. Note that γ(#) = γ(λ, λ) = 1.

δ λ a b c

λ − 0.0 0.0 0.0

a 0.0 0.3333 0.0 0.0

b 0.0 0.0 0.0 0.3333

c 0.1667 0.0 0.0 0.0

Fig. 12. Matrix δ after 10 iterations. Note that δ(#) = δ(λ, λ) = .1667, this means
that the termination symbol is taken into account as the other symbols of the
alphabet and appears with a probability of 1

6 . So the values of δ actually sum to 1.

3.2.5 Discussion

Note that the core of the maximization step is the normalization that allows
us to learn a joint distribution over edit operations and to define a joint prob-
ability pδ(x, y). However, in order to use such a model in a classification task
(for example for converting a structured document x into another one y), we
would need to have the conditional probability pδ(y|x) rather than a joint one.
Actually, in such a context, the input tree is known and we are looking for the
optimal corresponding output one. A simple solution would consist of com-
puting pδ(y|x) from the joint distribution such that pδ(y|x) = pδ(x,y)

p(x)
. However,

this implies a dependence on the input distribution p(x), that generates a bias.

One solution to overcome this drawback consists of directly learning a condi-
tional distribution pδ(y|x), usually called a discriminative model. The advan-
tage of this approach is to remove the statistical bias of generative models.
This is the goal of the next section.

4 Learning Stochastic Conditional Tree Edit Distance

Since we aim to learn a discriminative model, we will consider in this section
conditional edit operations (l′i|li), of probabillity δ(l′i|li), where l′i is a label of
the output tree y and li a label of the input one x. Then, an edit script will
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represent in the following a sequence of conditional edit operations. Except
this modification of notations, the forward, backward and expectation functions
already presented for the joint case remain unchanged in this conditional con-
text. The only one important modification occurs during the maximization
step, for which we suggest another normalization of the accumulators under
new statistical constraints. This allows us to directly obtain a conditional
probability pδ(y|x) at each stage of EM.

4.1 New Statistical Constraints

To achieve the learning of a conditional model, we have to draw the new
optimization constraints corresponding to this conditional context pδ(y|x). In
fact, it is possible to model the edit script distribution conditionally to an input
tree x in the form of a non deterministic probabilistic finite state automaton.
Let us take a simple example to explain this principle. We assume that the
input tree a(b(b), a) is the one described in Fig. 13(a). Since we use a breadth-
first scanning for computing the ED, it is possible to model the possible edit
scripts in the form of the automaton of Fig. 13(b). By using this graphical
representation, note that our objective is not to model the tree language of
the possible output trees, but rather to express the statistical constraints of
our model.

The cycles of each state correspond to the possible insertions before and after
the reading of an input symbol. States with a double circle are final states and
correspond to the end of the reading of the input tree. Note that in Fig. 13(b)
there are three final states. This amazing fact is actually justified by the fact
that we are using a Selkow’s tree edit distance-based approach. In this case,
the deletion of a node implies the removal of its entire corresponding subtree.
This explains the path from state 0 to state 2 which begins with the deletion
of the tree root a (implying the deletion of the whole tree) and then admitting
only insertions. The path beginning from state 1 to state 4 follows the same
principle: the deletion of the symbol b (first child of root a) implies the deletion
of its unique child b. Then, it only remains to deal with the leaf a before the
end of the reading of the input tree. The rest of the automaton is easy to
interpret since it follows the reading of the input tree (by excluding deletions
of symbols already taken into account by the previously mentioned paths).

Representing the possible edit scripts in this form of an automaton helps us to
define the new constraints. Actually, it is well known that to model a statistical
distribution, a probabilistic automaton must notably satisfy the following two
conditions:

(1) First, probabilities of the outgoing transitions of each state must sum to
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a

a

b

b

(a)

0

2

1

4

3

6

5 7

a|λ

b|λ

a|a

b|a

λ|a

a|λ

b|λ

a|λ

b|λ
λ|b

a|b

b|b

λ|a
a|a

b|a

a|λ

b|λ

λ|a
a|a

b|a

a|λ

b|λ

a|λ

b|λ

λ|b
a|b

b|b

a|λ

b|λ

(b)

Fig. 13. Output distribution conditionally to an input tree. The transition λ|a be-
tween states 0 and 2 corresponds to the deletion of the root of the tree a(b(b), a).
This deletion implies the removal of all the nodes of the tree. For the sake of clar-
ity, we omit the transitions corresponding to the deletion of the three other nodes.
Then, only insertion operations can occur from state 2. The same remark holds for
the transition between states 1 and 4 corresponding to the deletion of the two nodes
b.

1. More formally,

∀l ∈ L,
∑

l′∈L∪{λ}

δ(l′|l) +
∑

l′∈L

δ(l′|λ) = 1, (2)

(2) Second, probabilities from the final states must also describe a distribu-
tion. More formally,

∑

l′∈L

δ(l′|λ) + δ(#) = 1, (3)

where # is the termination symbol of the tree and δ(#) > 0.

By fulfilling these two constraints, Appendix A proves that we actually learn
a distribution over all the edit scripts definable from a given tree. Despite the
fact that this proof is not necessary for showing the optimal normalization
that we are going to present, it ensures that we really define a distribution
over the possible transformations of an input tree into an output one and so
that we have a consistent stochastic model.

It is interesting to note that constraints (2) and (3) remain true whatever the
tree edit distance we aim to learn in the form of a stochastic model. Actually,
Fig. 13(b) is nothing else but a particular case of Fig. 14 where the deletion of
a node does not automatically imply the deletion of its corresponding subtree.
In this case, you can note that constraints (2) and (3) remain exactly the same,
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except that there is only one final state. So, the optimal normalization we are
going to present in the next section is directly adaptable to the learning of any
tree edit distance. Thus, we claim that the extension of our stochastic approach
“only” requires an adaptation of the forward and backward procedures to the
specific tree edit distance.

0 1 2 3 4

a|λ

b|λ

λ|a
a|a

b|a

a|λ

b|λ

λ|b
a|b

b|b

a|λ

b|λ

λ|a
a|a

b|a

a|λ

b|λ

λ|b
a|b

b|b

a|λ

b|λ
Fig. 14. Output distribution conditionally to an input tree where a node deletion
operation is possible without removing the whole subtree.

4.2 Optimal Normalization

The optimal normalization under these new constraints is the solution of an
optimization problem as that presented in Dempster et al. [14]. In the follow-
ing, we show how to obtain it by adapting to trees the principle of the proof
presented by Oncina and Sebban in [3] in the case of string pairs.

Let O and U be two spaces of respectively observable and unobservable data
whose distributions are assumed linked by a parameter vector θ. The objective
of our algorithm consists of finding the optimal vector θ that maximizes the
likelihood function L(O, θ) = ln(p(O|θ)), for a given set O ⊂ O of observed
data. Dempster et al. [14] showed that it is possible to build, from a given
estimate θt of θ, a better estimate θt+1 by maximizing the following function:

Q(θn, θn+1) = E[ln(p(O,U|θn+1))|O, θn]

where E is a conditional expectation over the distribution U .

In our case, the vector θ represents the edit probabilities of the matrix δ. Let
us denote T (L) the set of all labeled trees buildable from the alphabet L.
By splitting the learning set of pairs of trees LS ⊂ (T (L))

2

into an input set
LSin = {x : (x, y) ∈ LS} and an output set LSout = {y : (x, y) ∈ LS}, we can
rewrite the likelihood function to maximize as follows:

L(LSout, θ, LSin) = ln(p(LSout|θ, LSin)) = ln
∏

(x,y)∈LS

p(y|θ, x).

The transformation of an input tree x into an output one y can be expressed in
the form of an edit script e = e1...en of n edit operations. We say that x is the
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a

a

a

a

b

b

b

b

c

c

c

c

d

d

e = (a, a)(b, b)(c, c)(λ, d)

e = (a, a)(b, b)(c, c)(λ, d)

Fig. 15. Example of an edit script e corresponding to two different pairs of trees.

corresponding input tree of e (noted x = in(e)) if and only if x is composed of
the successive nodes labeled by l1 . . . ln according to a breadth-first reading of
the tree (where a symbol lk can be the empty string). Symmetrically, we say
that y is the output tree of e (noted y = out(e)) if and only if y is composed
of the successive nodes labeled by l′1 . . . l′n.

As we can see in Figure 15, several x and/or y can correspond to a given edit
script e. However, since each node could be characterized by its location in
the considered tree, we can consider in the following that in(e) and out(e) are
in fact unique.

According to an input tree in(e), the probability of a conditional edit script
e = e1 · · · en, where ei = (l′i|li) ∈ (L ∪ {λ})2\{(λ, λ)}, is:

πδ(e|in(e)) =
n

∏

i=1

δ(l′i|li)δ(λ|λ) =
n

∏

i=1

δ(ei)δ(λ|λ).

To each learning pair of trees (x, y), we can associate a set E(y|x) of possible
scripts for transforming x into y as:

E(y|x) =
{

e ∈
(

(L ∪ {λ})2
)∗

: x = in(e), y = out(e)
}

.

It is easy to see that

p(y|x) =
∑

e∈E(x,y)

πδ(e|x).

Moreover, let us define E(LS) as:

E(LS) =
⋃

(x,y)∈LS

E(y|x).
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According to the previous notations, the Q function can be rewritten as fol-
lows:

Q(θn, θn+1) = E
[

ln
(

p(LSout, e|θt+1, LSin)
)

|LSout, θt, LSin

]

=
∑

e∈

(

(L∪{λ})2
)

∗

πδ(e|LSout, θt, LSin) ln p(LSout, e|θt+1, LSin)

as πδ(e|y, θt, x) = 0 if x 6= in(e) or y 6= out(e)

=
∑

e∈E(LS)

πδ

(

e|out(e), θt, in(e)
)

ln πδ

(

out(e), e|θt+1, in(e)
)

=
∑

e∈E(LS)

πδ

(

e|out(e), θt, in(e)
)

ln πδ

(

e|θt+1, in(e)
)

=
∑

e∈E(LS)

πδ

(

e|out(e), θt, in(e)
)





|e|
∑

i=0

ln δ
(

out(ei)|θt+1, in(ei)
)

+ ln δ(λ|θt+1, λ)





=
∑

ej∈(L∪{λ})2

∑

eeje′∈E(LS)

πδ

(

eeje
′|out(eeje

′), θt, in(eeje
′)

)

ln δ(e|θt+1)

+
∑

e∈E(LS)

πδ

(

e|out(e), θt, in(e)
)

ln δ
(

(λ|λ)|θt+1

)

=
∑

ej∈(L∪{λ})2

γ(ej) ln δ(ej |θt+1) + |LS| ln δ
(

(λ|λ)|θt+1

)

.

Now we have to choose θt+1 that minimizes the Q(θt, θt+1) function fulfilling
the constraints of Equations 2 and 3.

Using the Lagrange Multipliers

LaMu =
∑

e∈(L∪{λ})2

γ(e) ln δ(e|θt+1) + |LS| ln δ
(

(λ|λ)|θt+1

)

−
∑

l∈L

µl





∑

l′∈L

δ
(

(l′|l)|θt+1

)

+
∑

l′∈L

δ
(

(l′|λ)|θt+1

)

+ δ
(

(λ|l)|θt+1

)

− 1





− µ





∑

l′∈L

δ
(

(l′|λ)|θt+1

)

+ δ
(

(λ|λ)|θt+1

)

− 1



 .
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Calculating the derivatives and equating to zero results in:

δ
(

(l′|l)|θt+1

)

=
γ

(

(l′|l)
)

µl

δ
(

(l′|λ)|θt+1

)

=
γ

(

(l′|λ)
)

∑

l µl + µ

δ
(

(λ|l)|θt+1

)

=
γ

(

(λ|l)
)

µl

δ
(

(λ|λ)|θt+1

)

=
|LS|

µ
.

Substituting in the normalization equations (2) and (3) yields:

∑

l′ γ
(

(l′|λ)
)

∑

l µl + µ
+

∑

l′ γ
(

(l′|l)
)

µl

+
γ

(

(λ|l)
)

µl

= 1, ∀l ∈ L

∑

l′ γ
(

(l′|λ)
)

∑

l µl + µ
+
|LS|

µ
= 1

where δ
(

(λ|λ)|θt+1

)

is equivalent to δ(#).

Now, this is a system with |L|+ 1 equations and |L|+ 1 unknowns. It is easy
to see that

µ = |LS|
N

N −N(λ)
µl = N(l)

N

N −N(λ)

with

N =
∑

e∈(L)2

γ(e) + |LS| =
∑

e∈(L∪{λ})2

γ(e)

N(λ) =
∑

l′∈L

γ
(

(l′|λ)
)

N(l) =
∑

l′∈L∪{λ}

γ
(

(l′|l)
)

is a solution to the system. We can now use these parameters in the maxi-
mization step presented in Algorithm 7 for learning a conditional distribution.

4.3 Example

As we did for the joint case, we run our algorithm on the simple example al-
ready presented in Fig.8. We used the same uniform initialization for matrix δ.
Fig.16 and 17 show the results obtained after respectively 1 and 10 iterations.
As expected, we can see that the target concept is correctly learned. Actu-
ally, when a symbol b is read, it is always changed into a letter c, while when
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Input: A matrix of accumulators γ

Output: A matrix of conditional stochastic edit costs δ

N ←
∑

e∈(L∪{λ})2 γ(e)

N(λ)←
∑

l′∈L γ(l′|λ)
foreach l ∈ L do

N(l)←
∑

l′∈L∪{λ} γ(l′|l)

δ(λ|λ)← N−N(λ)
N

foreach (l, l′) ∈ L2 do

δ(l′|l)← γ(l′|l)
N(l)

N−N(λ)
N

foreach l ∈ L do
δ(λ|l)← γ(λ|l)

N(l)
N−N(λ)

N

foreach l′ ∈ L do
δ(l′|λ)← γ(l′|λ)

N

Algorithm 7: conditional maximization(γ)

the input symbol is a c, it is always removed. The difference with the joint
model presented previously is that now, the learned model is independent of
the input tree distribution. In other words, whatever the distribution we use
to generate the input tree (here, for instance, whatever the number of times
the letter b occurs), we will learn the same model. Let us show this behavior
in the next experimental section.

δ λ a b c

λ − 0.0011 0.0 0.0415

a 0.0028 0.9535 0.0 0.0008

b 0.3198 0.0008 0.0 0.6365

c 0.5255 0.0 0.0 0.4317

Fig. 16. Matrix δ after the first iteration of our EM algorithm. Note that
δ(#) = δ(λ|λ) = 0.9573.

δ λ a b c

λ − 0.0 0.0 0.0

a 0.0 1.0 0.0 0.0

b 0.0 0.0 0.0 1.0

c 1.0 0.0 0.0 0.0

Fig. 17. Matrix δ after 10 iterations of our EM algorithm. Note that
δ(#) = δ(λ|λ) = 1.0.
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5 Experiments

5.1 Artificial experiments: Learning a target concept

We carried out experiments to assess the relevance of our two models (joint
and conditional) of stochastic tree ED to correctly estimate the parameters
of a target model. If we are able to learn them, i.e. to converge to the target
distribution, this would mean that a learned stochastic tree ED would out-
perform any classic tree ED with a priori hand-tuned costs. Actually, in the
best case, these costs would be equivalent to the probabilities of the learned
matrix δ.

We use the following experimental setup: First, we generate a target distribu-
tion defined by a theoretical matrix δ∗ (describing either a joint or a condi-
tional distribution). Then, we generate a sample of input trees according to
a given input distribution I. This was done by using a target probability for
each symbol of the alphabet (here L = {a, b, c}), and fixing two parameters
limiting the allowed width and depth of the generated trees. To build a learn-
ing set LS of pairs of trees, we assign to each input instance an output tree.
This one is generated using the input tree and the edit operations described
by the target distribution δ∗. Note that such a generation of an output tree
according to a target matrix δ∗ is a difficult task and probably deserves spe-
cific and further investigations from a theoretical standpoint. But this is not
the aim of this paper. So, from a practical point of view, to carry out our
series of experiments, we simply scan here the input tree with a bottom up
analysis, and for each node we apply an edit operation according to the target
distribution. Fig.18 shows a simple example explaining the principle of our
generation.

Note that in real world applications, these learning pairs of trees could be
obtained from a more natural way. For instance, if the aim is to learn a noise
model, a pair of trees could represent a couple of (noisy, unnoisy) trees. On the
other hand, in a pattern recognition task, such as the one we will tackle in the
next section, each pair of trees could be built from an instance and its nearest-
neighbor. In this case, the aim would be to learn the possible distortions
between two instances of a same class (for example, the different ways to
write a digit, or to play a same piece of music).

In this section, the aim is to learn δ∗ from LS (constituted from a growing
number of pairs of trees) using both of our generative and discriminative mod-
els. To assess the effect of the input distribution I on the learned model, we
use different densities to generate the input trees. The performance criterion
we use is the normalized distance dis(δ, δ∗) between the learned and the target

24



Acc
ep

te
d m

an
usc

rip
t 

δ∗ λ a b c

λ − 0.0 0.0 0.0

a 0.0 0.3333 0.0 0.0

b 0.0 0.0 0.0 0.3333

c 0.1667 0.0 0.0 0.0

(a) Matrix δ∗ where δ(#) = δ(λ, λ) = .1667

OutputInput

a

a

a

a

b

b

c

c

c

(b) input and output trees

Fig. 18. To build an output tree from an input tree and a joint matrix δ∗, we
process the tree bottom up, randomly choosing an edit operation applicable on the
considered node. In this simple example, the label b is always changed into a c,
while the label c is always removed.

distributions. In the case of a joint model,

dis(δ, δ∗) =

∑

l∈L∪{λ}

∑

l′∈L∪{λ}

∣

∣

∣δ(l, l′)− δ∗(l, l′)
∣

∣

∣

2
.

Normalized in this way, dis(δ, δ∗) is a value in the range [0, 1]. To do the same
thing in the case of a conditional model, we define dis(δ, δ∗) as follows:

dis(δ, δ∗) =

(

A + B |L|
)

2 |L|

where
A =

∑

l∈L

∑

l′∈L∪{λ}

∣

∣

∣δ(l′|l)− δ∗(l′|l)
∣

∣

∣

and
B =

∑

l′∈L∪{λ}

∣

∣

∣δ(l′|λ)− δ∗(l′|λ)
∣

∣

∣.

In a first series of experiments, we focus on the generative model. In this case,
we build two sets of input trees. In order to bring to the fore the bias problem
of a generative model, the first one is obtained using the marginal distribution
of δ∗ which is defined as follows: ∀l ∈ L ∪ {λ}, δ∗(l) =

∑

l′∈L∪{λ} δ∗(l, l′). The
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second one is randomly generated according to a distribution different from
the marginal one. The chart of Fig.19 shows the results. As expected, the only
way to learn the target requires the use of its marginal distribution to generate
the input trees. The use of a non marginal density leads to a bias, character-
ized by a large distance between the target and the learned model. Does this
remark challenge the interest of a generative model? Probably not, even if we
can not answer this question in the negative without taking some risks. Actu-
ally, we accept the assumption in the Machine Learning community that the
learning examples correctly represent the distribution of the unknown theoret-
ical concept. However, the new automatic data acquisition technologies, such
as the web, could call nowadays into question this hypothesis 2 . In this new
context, directly learning a conditional model could consist of an interesting
approach to overcome this problem.
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Fig. 19. Results for the joint case.

We use the same experimental setup during the second series of experiments
that aims to learn a conditional target model. In this case, we test three dif-
ferent input distributions (among them one is the marginal one). The chart
of Fig.20 confirms that whatever the input distribution we use, our discrim-
inative model is able to learn the target model. However, we must make the
following remark. It could appear that such a model is requiring more learn-
ing pairs of trees to converge. This would be a normal behavior and can be
easily explained. The discriminative models are known to have a higher vari-
ance than the generative ones [13]. Actually, since they model a conditional
distribution, each probability is estimated only on a part of the learning set,
leading to a higher variance, which – however – decreases with a growing num-

2 See for instance the recent Pascal Network Challenge ”Learning when test and
training inputs have different distributions”.
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ber of examples. Thus, as mentioned in [13], asymptotically, a discriminative
classifier should typically be preferred.
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Fig. 20. Results for the conditional case.

5.2 Application on a Handwritten Digit Recognition Task

We showed in the previous section that our discriminative model is able to
correctly learn artificial target concepts without any assumption about the
input distribution. In this section, we study the behavior of our approach in
a real world application and show that a learned ED is always better than a
classic tree ED. To achieve this task, we use a part of the well known NIST
Special Database 3 of the National Institute of Standards and Technology,
describing a set of handwritten characters (letters and digits).

So far, the majority of the learning algorithms that dealt with this pattern
recognition problem were numerical approaches. In this series of experiments,
a novel way to proceed using a tree-based representation of the handwritten
characters is shown. This way enables us to apply our edit distance learning
algorithm. However, it is important to underline that our main objective in
this experimental study is more to assess the relevance of learning a stochastic
tree ED rather than trying to outperform the state of the art methods on
this specific task. This explains why we are going to concentrate our efforts
particularly on the comparison of our learned tree ED with non learned tree
edit distances. For the reasons mentioned in the previous section, note that
we only run in this part our discriminative learning algorithm.

To allow future comparisons of models, we implemented our learning algo-
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Fig. 21. Example of a tree representation-based digit.

rithms in a JAVA platform, called SEDiL for Software for Edit Distance
Learning 3 . All the results presented in this section have been obtained using
this software.

5.2.1 Tree construction from bitmap images

We focus on handwritten digits consisting of 128 × 128 bitmap images. We
use a learning set of about 8000 digits and a test sample of 2000 instances.
In order to be able to apply our learning tree ED algorithm, one must handle
tree representation-based examples. To do this, we code each bitmap image in
the form of a tree built over an octal alphabet. We run the feature extraction
algorithm proposed in [16] and that we have adapted to generate trees. To
code a given digit, we first build a root labeled by the fictive symbol “-1”. The
algorithm then scans the bitmap, left-to-right and starting from the top, until
encountering the first point. It follows then the border of the character until
it returns to the starting pixel. During this traversal, the algorithm builds the
tree using the absolute direction of the next pixel in the border (the so-called
Freeman codes) and generating a new child of the root. If the same code is
found various times, each repetition becomes a child of the current node. Fig.
21 describes an example on a given “3”. The structured representation of the
digit in the form of a tree is presented at the bottom right of the figure.

Even if we are aware that many tree representations are possible for coding a
digit, we use this one for the following two reasons:

3 http://labh-curien.univ-st-etienne.fr/informatique/SEDiL/
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Fig. 22. Interest of a tree representation. To transform the left tree into the right
one, the tree edit distance will require only few subtree deletions.

• First, it allows us to keep the structural information of the image.
• Second, the transformation of a digit into a smaller character of the same

class only requires simple edit operations with this representation, such as
the deletion of a subtree. This remark shows the interest for this pattern
recognition task to use a Selkow-based tree edit distance permitting us to
remove entire subtrees. For instance, Fig. 22 shows two “3”, a normal and a
small one. We can note at the bottom of the figure that they both share the
same first level of the tree, and that one needs only some subtree deletions
to transform the first tree into the second one.

5.2.2 Experimental comparisons

Our goal is to bring to the fore the interest of learning a tree ED. So, we
decided to compare in this series of experiments the behavior of our learned
tree ED with the performances of non learned tree EDs. We performed four
comparisons:

(1) The first one concerns the comparison with the classic Selkow’s ED al-
gorithm using standard weights for each edit operation. Without any
information about the domain, a value of 1 is usually assigned to each
basic edit operation. We use such costs in this first comparison.

(2) According to [17], a more relevant strategy would consist of assigning
edit operation weights proportionally to the relative angle between the
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Ws 0 1 2 3 4 5 6 7

0 0 1 2 3 4 3 2 1

1 1 0 1 2 3 4 3 2

2 2 1 0 1 2 3 4 3

3 3 2 1 0 1 2 3 4

4 4 3 2 1 0 1 2 3

5 3 4 3 2 1 0 1 2

6 2 3 4 3 2 1 0 1

7 1 2 3 4 3 2 1 0

Table 1
Substitution costs Ws according to the relative angle between two directions. The
insertion and deletion costs are fixed to 1.

Freeman codes used for describing a digit. To test such a strategy we also
used the matrix described in Table 1.

(3) We also performed a comparison with another tree edit distance. Even if
our learning algorithm is based on Selkow’s approach (for the algorithmic
reasons mentioned before), we decided to compare our results with those
obtained with Zhang and Shasha’s edit distance, that admits the deletion
of single nodes. A value of 1 is assigned here to each basic edit operation.

(4) Finally, a last comparison is achieved with the same Zhang and Shasha’s
algorithm using this time the costs of Table 1.

5.2.3 Constitutions of the set of pairs

As previously mentioned, our method requires a set of (input,output) pairs of
trees for learning the probabilistic ED. As already illustrated in [18] in the
string case, a possible solution consists of building pairs of “similar” exam-
ples that describe the possible variations or distortions between instances of
each class. Such pairs can be drawn by an expert of the area. In this series of
experiments on handwritten digits, we decided rather to automatically build
pairs of (input,output) trees, where an input is a learning tree of the learning
set LS, and the output is a prototype of the input. We used as prototype the
corresponding 1-nearest-neighbor in LS of each input. On the one hand, this
choice is motivated from an algorithmic standpoint. Actually, with a learning
set constituted of |LS| examples, such a strategy does not increase the com-
plexity of the algorithm using |LS| pairs of trees too. On the other hand, by
attributing the nearest tree to each character, we ensure that our model is
able to learn the main possible distortions between digits in each class.
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5.2.4 Results and Discussion

The results presented in Fig. 23 have been obtained from different sizes of
the learning set, from 50 to 8000 trees. The test accuracy was computed with
a test set TS containing always 2000 instances. Each tree of TS has been
labeled by the class of its nearest neighbor in LS using one of the considered
tree ED algorithms (Selkow, Zhang and Shasha or our EM-based algorithm)
and a given matrix of edit costs (for our case, a learned matrix, for the others
an a priori fixed one). From Fig. 23, we can make the following remarks.
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Fig. 23. Results on a handwritten digit recognition task. ED1 uses standard weights
(i.e. a value of 1 assigned to each operation), while ED2 uses edit costs of Table 1.

First of all, learning a probabilistic tree ED on this pattern recognition task is
indisputably more relevant than using standard tree edit distances. Whatever
the size of the learning set LS we use, the test accuracy obtained using our
learned ED is higher than all the others. Note that using a Student paired
t-test, these differences can be shown to be statistically significant.

Second, as already noted in [17], the use of the matrix of costs of Table 1
provides better results than the naive configuration that consists of using
the same cost for the three edit operations. This remark is confirmed for
both Selkow and Zhang & Shasha distances. However, this is not sufficient to
outperform our learned tree ED.
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W ′

s 0 1 2 3 4 5 6 7

0 0 1.2 2.3 2.9 2.7 2.5 1.8 2.5

1 1 0 2.1 2.8 2.7 2.5 2.2 2.6

2 2.3 2 0 2.5 2.1 2.3 2.3 2.6

3 3.7 2.8 1.7 0 0.2 0.9 2.8 3.9

4 2.6 2.5 2.2 2.5 0 1.2 2 2.9

5 2.7 2.5 2.5 2.7 0.5 0 1.9 2.9

6 2.2 2.3 2.2 2.7 2.2 2.1 0 2.6

7 0.5 0 3.4 5.7 4.7 1.2 0.5 0

Table 2
Substitution costs W ′

s learned from 8000 trees by our discriminative algorithm.

Moreover, let us observe the learned edit matrix from the whole set of learning
trees (i.e. of size 8000) in Table 2. Note that the values presented in this table
are edit costs and have been deduced from the edit probabilities learned by
our algorithm. We changed them into edit costs to compare this table with
edit costs of Table 1 that have been manually tuned to take into account
the relative angle between two Freeman codes. Interestingly, we can note that
our algorithm has automatically learned almost the same “trend”, i.e. an
edit operation between close codes is less costly than an operation concerning
two opposite directions. Despite this similarity between these two matrices,
we can note that the test accuracy is significantly in favor of our algorithm.
This clearly means that slight modifications on each edit operation can have
large consequences on the final performances of the tree ED. This confirms
once again the difficulty to manually tune the edit operations in a real world
problem and the interest to automatically learn them.

Finally, an interesting remark has to be made by observing the accuracy of
Zhang and Shasha’s results. Actually, while this algorithm has almost the same
performances as Selkow’s algorithm using the value 1 for each edit operation,
we can note that using the matrix of Table 1, it leads to promising results (even
if it does not outperform our learned ED). This clearly means that adapting
our EM-based strategy on Shasha’s algorithm should lead to better results.
However, due to the computational constraints of this algorithm, this requires
further investigations.

6 Conclusion

In this paper, we proposed two original approaches for learning a stochastic
tree ED. This is, as far as we know, the first attempt to learn such a dis-
tance specifically adapted to trees. With this paper, we illustrate a first step
forward in laying down a theoretical foundation to make tree representation
more suitable for real world applications. In the first approach, we modeled
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this distance as a joint distribution over edit scripts. This model has the ad-
vantage of having a small variance but has the drawback to generate a bias
on the input distribution. Thus, such a model is suited for dealing with real
applications where the instances are not numerous but describing well the un-
derlying distribution. To overcome this drawback, we also proposed to learn
a stochastic edit distance from a conditional distribution that allows us to
remove this bias. Such a way to proceed is interesting overall when the size
of the learning set is sufficiently large, reducing then the variance of such a
model. The experimental results on artificial and real world datasets confirm
the interest of both approaches.

We think that several perspectives about this work deserve further investiga-
tions. First, we plan to extend it to the learning of stochastic models able to
take into account edit costs that vary according to the tree context. Actually,
the cost of an edit operation can depend on the location where it occurs in the
tree, that is not taken into account with our current structures. This implies
to learn more complex models, such as stochastic tree transducers or tree con-
ditional random fields. Second, with our proposed method, some edit scripts
can not occur, such as those using a single node deletion. This means that
we only consider a semi-distribution over the edit scripts, or in other words, a
distribution with those scripts having a null probability. This limitation could
be overcome by extending our model to other stochastic edit distances, such
as the one of Zhang and Shasha which allows the deletion of only one internal
node rather than the entire subtree.
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A Appendix

We show here that constraints 2 and 3 presented in Section 4.1 enable us to
define a conditional distribution over all the possible edit scripts.

Let e = e1 · · · en an edit script between two trees with n edit operations.

We define the probability of a single edit script as π′
δ(e) = δ(e1)× · · · × δ(en).

As already defined in Section 3.1, the final probability of the script is evaluated
by πδ(e) = π′

δ(e)× δ(#), where δ(#) represents the probability of termination
of the script. Note that the probability π′

δ(ǫ) of the empty edit script ǫ is 1.

33



Acc
ep

te
d m

an
usc

rip
t 

Let x be a non empty tree of T (L) (the set of all labeled trees buildable from
the alphabet L) with its sequential representation l1 . . . ln corresponding to the
labels of its nodes according to a breadth-first reading. In the following, we
show that if conditions 2 and 3 are fulfilled one can define a distribution over
the whole set Ein(l1 . . . ln) of edit scripts applicable to transform the input
tree x into an output one, such that:

∑

e∈Ein(l1...ln)

πδ(e) = 1.

For the sake of convenience, we will also denote Ein(l1 . . . ln) by Ein(x). Let
us define Ein(l1 . . . ln)+ = Ein(x)+ as the set of edit scripts with at least one
(non empty) edit operation.

First, let us consider the case when x = λ

∑

e∈Ein(λ)

π′
δ(e) = 1 +

∑

e∈E+

in
(λ)

π′
δ(e)

= 1 +
∑

e′e∈E+

in
(λ)

π′
δ(e

′e)

= 1 +
∑

e′e∈E+

in
(λ)

δ(l′|λ)π′
δ(e) with e′ = (l′|λ)

= 1 +
∑

l′∈L

δ(l′|λ)
∑

e∈Ein(λ)

π′
δ(e).

Then,

∑

e∈Ein(λ)

π′
δ(e)



1−
∑

l′∈L

δ(l′|λ)



 = 1 and so

∑

e∈Ein(λ)

π′
δ(e) =



1−
∑

l′∈L

δ(l′|λ)





−1

.

Let us now consider the complete case. Let x be a non empty tree, with
its sequential representation l1 . . . ln corresponding to the labels of its nodes
according to a breadth-first reading and let x2 be the sequence of symbols such
that x2 = l2 . . . ln. Let EN

in(x) be the set of edit scripts such that the output
tree can not be the empty tree.
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∑

e∈Ein(l1x2)

π′
δ(e) =

∑

e∈E(λ|l1x2)

π′
δ(e) +

∑

(l′|l)e∈EN
in

(l1x2)

π′
δ((l

′|l)e)

=
∑

e∈E(λ|l1x2)

π′
δ(e) +

∑

(l′|l)e∈EN
in

(l1x2)

δ(l′|l)π′
δ(e)

=
∑

e∈E(λ|l1x2)

π′
δ(e) +

∑

l′∈L

δ(l′|l1)
∑

e∈Ein(x2)

π′
δ(e)+

∑

l′∈L

δ(l′|λ)
∑

e∈Ein(l1x2)

π′
δ(e) + δ(λ|l1)

∑

e∈EN
in

(x2)

π′
δ(e)

= δ(λ|l1)
∑

e∈Ein(x2)

π′
δ(e) +

∑

l′∈L

δ(l′|l1)
∑

e∈Ein(x2)

π′
δ(e) +

∑

l′∈L

δ(l′|λ)
∑

e∈Ein(l1x2)

π′
δ(e)

=



δ(λ|l1) +
∑

l′∈L

δ(l′|l1)





∑

e∈Ein(x2)

π′
δ(e) +

∑

l′∈L

δ(l′|λ)
∑

e∈Ein(l1x2)

π′
δ(e).

Then

∑

e∈Ein(l1x2)

π′
δ(e)



1−
∑

l′∈L

δ(l′|λ)



 =



δ(λ|l1) +
∑

l′∈L

δ(l′|l1)





∑

e∈Ein(x2)

π′
δ(e)

and

∑

e∈Ein(l1x2)

π′
δ(e) =



1−
∑

l′∈L

δ(l′|λ)





−1 

δ(λ|l1) +
∑

l′∈L

δ(l′|l1)





∑

e∈Ein(x2)

π′
δ(e).

Applying this equation recursively on the size of x and taking into account
that the base case is

∑

e∈Ein(λ)

π′
δ(e) =



1−
∑

l′∈L

δ(l′|λ)





−1

,

we have

∑

e∈Ein(l1...ln)

π′
δ(e) =

n
∏

i=1









1−
∑

l′∈L

δ(l′|λ)





−1 

δ(λ|li) +
∑

l′∈L

δ(l′|li)









×



1−
∑

l′∈L

δ(l′|λ)





−1

and
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∑

e∈Ein(l1...ln)

πδ(e) =
n

∏

i=1









1−
∑

l′∈L

δ(l′|λ)





−1 

δ(λ|li) +
∑

l′∈L

δ(l′|li)









×



1−
∑

l′∈L

δ(l′|λ)





−1

× δ(#).

A sufficient condition for
∑

e∈Ein(l1...ln) πδ(e) = 1 is that each element of the
terms that appear in the product is equal to 1 and that the final product is
also 1. Then, concerning the first part of the right-hand side,



1−
∑

l′∈L

δ(l′|λ)





−1 

δ(λ|li) +
∑

l′∈L

δ(l′|li)



 = 1

1−
∑

l′∈L

δ(l′|λ) = δ(λ|li) +
∑

l′∈L

δ(l′|li)

∑

l′∈L

δ(l′|λ) + δ(λ|li) +
∑

l′∈L

δ(l′|li) = 1

∑

l′∈L

δ(l′|λ) +
∑

l′∈L∪{λ}

δ(l′|li) = 1

∑

l′∈L

δ(l′|λ) +
∑

l′∈L∪{λ}

δ(l′|l) = 1

that gives Constraint 2. Now, considering the second part of the right-hand
side,



1−
∑

l′∈L

δ(l′|λ)





−1

× δ(#) = 1

1−
∑

l′∈L

δ(l′|λ) = δ(#)

∑

l′∈L

δ(l′|λ) + δ(#) = 1

and we have Constraint 3.

Note that these equations are not valid if
∑

l′∈L δ(l′|λ) = 1, but this is impos-
sible since δ(#) > 0.
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