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Sup-norm convergence rate and sign

concentration property of Lasso and Dantzig

estimators

Karim Lounici ∗

January 29, 2008

Abstract
We derive l∞ convergence rate simultaneously for Lasso and Dantzig

estimators in a high-dimensional linear regression model under a mutual
coherence assumption on the Gram matrix of the design and two di�erent
assumptions on the noise: Gaussian noise and general noise with �nite
variance. Then we prove that simultaneously the thresholded Lasso and
Dantzig estimators with a proper choice of the threshold enjoy a sign con-
centration property provided that the non-zero components of the target
vector are not too small.

Key Words : Linear model, Lasso, Dantzig, Sparsity, Model selection, Sign
consistency.
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1 Introduction

The Lasso is an l1 penalized least squares estimator in linear regression models
proposed by Tibshirani [16]. The Lasso enjoys two important properties. First,
it is naturally sparse, i.e., it has a large number of zero components. Second,
it is computationally feasible even for high-dimensional data (Efron et al. [8],
Osborne et al. [15]) whereas classical procedures such as BIC are not feasible
when the number of parameters becomes large. The �rst property rises the
question of model selection consistency of Lasso, i.e., of identi�cation of the
subset of non-zero parameters. A closely related problem is sign consistency,
i.e., identi�cation of the non-zero parameters and their signs (cf. Bunea [2],
∗Laboratoire de Statistiques CREST 3, avenue Pierre Larousse 92240 Malako� France and
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pl. Jussieu, BP 7012, 75251 Paris Cedex 05, France. Email : lounici@math.jussieu.fr

1



Meinshausen and Bühlmann [12], Meinshausen and Yu [13], Wainwright [19],
Zhao and Yu [21] and the references cited in these papers).

Zou [22] has proved estimation and variable selection results for the adaptive
Lasso: a variant of Lasso where the weights on the di�erent components in the l1
penalty vary and are data dependent. We mention also work on the convergence
of the Lasso estimator under the prediction loss: Bickel, Ritov and Tsybakov [1],
Bunea, Tsybakov and Wegkamp [3], Koltchinskii [10, 11], Van der Geer [17, 18].

Knight and Fu [9] have proved the estimation consistency of the Lasso es-
timator in the case where the number of parameters is �xed and smaller than
the sample size. The l2 consistency of Lasso with convergence rate has been
proved in Bickel, Ritov and Tsybakov [1], Meinshausen and Yu [13], Zhang and
Huang [20]. These results trivially imply the lp consistency, with 2 6 p 6 ∞,
however with a suboptimal rate (cf., e.g., Theorem 3 in [20]). Bickel, Ritov
and Tsybakov [1] have proved that the Dantzig selector of Candes and Tao [6]
shares a lot of common properties with the Lasso. In particular they have shown
simultaneous lp consistency with rates of the Lasso and Dantzig estimators for
1 6 p 6 2. To our knowledge, there is no result on the l∞ convergence rate and
sign consistency of the Dantzig estimator.

The notion of l∞ and sign consistency should be properly de�ned when the
number of parameters is larger than the sample size. We may have indeed
an in�nity of possible target vectors and solutions to the Lasso and Dantzig
minimization problems. This di�culty is not discussed in [2, 12, 13, 19, 20]
where either the target vector or the Lasso estimator or both are assumed to
be unique. We show that under a sparsity scenario, it is possible to derive l∞
and sign consistency results even when the number of parameters is larger than
the sample size. We refer to Theorem 6.3 and the Remark 1, p. 21, in [1] which
suggest a way to clarify the di�culty mentioned above.

In this paper, we consider a high-dimensional linear regression model where
the number of parameters can be much greater than the sample size. We show
that under a mutual coherence assumption on the Gram matrix of the design,
the target vector which has few non-zero components is unique. We do not
assume the Lasso or Dantzig estimators to be unique. We establish the l∞ con-
vergence rate of all the Lasso and Dantzig estimators simultaneously under two
di�erent assumptions on the noise. The rate that we get improves upon those
obtained for the Lasso in the previous works. Then we show a sign concentration
property of all the thresholded Lasso and Dantzig estimators simultaneously for
a proper choice of the threshold if we assume that the non-zero components
of the sparse target vector are large enough. Our condition on the size of the
non-zero components of the target vector is less restrictive than in [19, 20, 21].
In addition, we prove analogous results for the Dantzig estimator, which to our
knowledge was not done before.

The paper is organized as follows. In Section 2 we present the Gaussian linear
regression model, the assumptions, the results and we compare them with the
existing results in the literature. In Section 3 we consider a general noise with
zero mean and �nite variance and we show that the results remain essentially
the same, up to a slight modi�cation of the convergence rate. In Section 4 we
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provide the proofs of the results.

2 Model and Results

Consider the linear regression model

Y = Xθ∗ + W, (1)

where X is an n×M deterministic matrix, θ∗ ∈ RM and W = (W1, . . . ,Wn)T is
a zero-mean random vector such that E[W 2

i ] 6 σ2, 1 6 i 6 n for some σ2 > 0.
For any θ ∈ RM , de�ne J(θ) = {j : θj 6= 0}. Let M(θ) = |J(θ)| be the
cardinality of J(θ) and ~sign(θ) = (sign(θ1), . . . , sign(θM ))T where

sign(t) =


1 if t > 0,

0 if t = 0,

1 if t < 0.

For any vector θ ∈ RM and any subset J of {1, . . . ,M}, we denote by θJ the
vector in RM which has the same coordinates as θ on J and zero coordinates on
the complement Jc of J . For any integers 1 6 d, p < ∞ and z = (z1, . . . , zd) ∈

Rd, the lp norm of the vector z is denoted by |z|p
∆=
(∑d

j=1 |zj |p
)1/p

, and

|z|∞
∆= max16j6d |zj |.

Note that the assumption of uniqueness of θ∗ is not satis�ed if M > n.
In this case, if a vector θ∗ = θ0 satis�es (1), then there exists an a�ne space
Θ∗ = {θ∗ : Xθ∗ = Xθ0} of dimension > M − n of vectors satisfying (1). So
the question of sign consistency becomes problematic when M > n because we
can easily �nd two distinct vectors θ1 and θ2 satisfying (1) such that ~sign(θ1) 6=
~sign(θ2). However we will show that under our assumption of sparsity θ∗ is
unique.

The Lasso and Dantzig estimators θ̂L, θ̂D solve respectively the minimization
problems

min
θ∈RM

1
n
|Y −Xθ|22 + 2r|θ|1, (2)

and

min
θ∈RM

|θ|1 subject to
∣∣∣∣ 1nXT (Y −Xθ)

∣∣∣∣
∞

6 r, (3)

where r > 0 is a constant. A convenient choice in our context will be r =
Aσ
√

(log M)/n, for some A > 0. We denote respectively by Θ̂L and Θ̂D the set
of solutions to the Lasso and Dantzig minimization problems (2) and (3).

The de�nition of the Lasso minimization problem we use here is not the
same as the one in [16], where it is de�ned as

min
θ∈RM

1
n
|Y −Xθ|22 subject to |θ|1 6 t,
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for some t > 0. However these minimization problems are strongly related, cf.
[5]. The Dantzig estimator was introduced and studied in [6]. De�ne Φ(θ) =
1
n |Y − Xθ|22 + 2r|θ|1. A necessary and su�cient condition for a vector θ to
minimize Φ is that the zero vector in RM belongs to the subdi�erential of Φ at
point θ, i.e., {

1
n (XT (Y −Xθ))j = sign(θj)r if θj 6= 0,∣∣ 1
n (XT (Y −Xθ))j

∣∣ 6 r if θj = 0.

Thus, any vector θ ∈ Θ̂L satis�es the Dantzig constraint∣∣∣∣ 1nXT (Y −Xθ)
∣∣∣∣
∞

6 r. (4)

The Lasso estimator is unique if M < n, since in this case Φ(θ) is strongly
convex. However, for M > n it is not necessarily unique. The uniqueness of
Dantzig estimator is not granted neither. From now on, we set Θ̂ = Θ̂L or Θ̂D

and θ̂ denotes an element of Θ̂.
Now we state the assumptions on our model. The �rst assumption concerns

the noise variables.

Assumption 1. The random variables W1, . . . ,Wn are i.i.d. N (0, σ2).

We also need assumptions on the Gram matrix

Ψ
4
=

1
n

XT X.

Assumption 2. The elements Ψi,j of the Gram matrix Ψ satisfy

Ψj,j = 1, ∀1 6 j 6 M, (5)

and

max
i 6=j

|Ψi,j | 6
1

α(1 + 2c0)s
, (6)

for some constant α > 1, where c0 = 1 if we consider the Dantzig estimator,
and c0 = 3 if we consider the Lasso estimator.

The notion of mutual coherence was introduced in [7] where the authors
required that maxi 6=j |Ψi,j | were su�ciently small. Assumption 2 is stated in a
slightly weaker form in [1]-[4].

Consider two vectors θ1 and θ2 satisfying (1) such that M(θ1) 6 s and
M(θ2) 6 s. Denote θ = θ1− θ2 and J = J(θ1)∪J(θ2). We clearly have Xθ = 0
and |J | 6 2s. Assume that θ 6= 0. Under Assumption 2, similarly as we derive
the inequality (11) in Section 4 below and using the fact that |θ|1 6

√
2s|θ|2,

we get that
|Xθ|22
n|θ|22

> 0.
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This contradicts the fact that Xθ = 0. Thus we have θ1 = θ2. We have proved
that under Assumption 2 the vector θ∗ satisfying (1) with M(θ∗) 6 s is unique.

Our �rst result concerns the l∞ rate of convergence of Lasso and Dantzig
estimators.

Theorem 1. Take r = Aσ
√

(log M)/n and A > 2
√

2. Let Assumptions 1,2 be
satis�ed. If M(θ∗) 6 s, then

P

(
sup
θ̂∈Θ̂

∣∣∣θ̂ − θ∗
∣∣∣
∞

6 c2r

)
> 1−M1−A2/8,

with c2 = 3
2

(
1 + (1+c0)

2

(1+2c0)(α−1)

)
.

Theorem 1 states that in high dimensions M the set of estimators Θ̂ is
necessarily well concentrated around the vector θ∗. Similar phenomenon was
already observed in [1], cf. Remark 1, page 21, for concentration in lp norms,
1 6 p 6 2. Note that c2 in Theorem 1 is an absolute constant. Using Theorem
1, we can easily prove the consistency of the Lasso and Dantzig estimators
simultaneously when n →∞. We allow the quantities s, M , Θ̂, θ∗ to vary with
n. In particular, we assume that

M →∞ and lim
n→∞

log M

n
= 0,

as n →∞, and that Assumptions 1,2 hold true for any n. Then we have

sup
θ̂∈Θ̂

∣∣∣θ̂ − θ∗
∣∣∣
∞
→ 0 (7)

in probability, as n →∞. The condition (log M)/n → 0 means that the number
of parameters cannot grow arbitrarily fast when n →∞. We have the restriction
M = o(exp(n)), which is natural in this context.

A result on l∞ consistency of Lasso has been previously stated in Theorem
3 of [20], where θ̂L was assumed to be unique and under another assumption on
the matrix Ψ. It is not directly related to our Assumption 2, but can be deduced
from a restricted version of Assumption 2 where α is taken to be substantially
larger than 1. The result in [20] is a trivial consequence of the l2 consistency, and
has therefore the rate |θ̂L − θ∗|∞ = OP(s1/2r) which is slower than the correct
rate given in Theorem 1. In fact, the rate in [20] depends on the unknown
sparsity s which is not the case in Theorem 1. Note also that Theorem 3 in [20]
concerns the Lasso only, whereas our result covers simultaneously the Lasso and
Dantzig estimators.

We now study the sign consistency. We make the following assumption.

Assumption 3. There exists an absolute constant c1 > 0 such that

ρ
∆= min

j∈J(θ∗)
|θ∗j | > c1r.
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We will take r = Aσ
√

(log M)/n. We can �nd similar assumptions on ρ in
the work on sign consistency of the Lasso estimator mentioned above. More
precisely, the lower bound on ρ is of the order s1/4r1/2 in [13], n−δ/2 with
0 < δ < 1 in [19, 21],

√
(log Mn)/n in [2] and

√
sr in [20]. Note that our

assumption is the less restrictive.
We now introduce thresholded Lasso and Dantzig estimators. For any θ̂ ∈ Θ̂

the associated thresholded estimator θ̃ ∈ RM is de�ned by

θ̃j =

{
θ̂j , if |θ̂j | > c2r,

0 elsewhere.

Denote by Θ̃ the set of all such θ̃. We have �rst the following non-asymptotic
result that we call sign concentration property.

Theorem 2. Take r = Aσ
√

(log M)/n and A > 2
√

2. Let Assumptions 1-3 be
satis�ed. We assume furthermore that c1 > 2c2, where c2 is de�ned in Theorem
1. Then

P
(

~sign(θ̃) = ~sign(θ∗), ∀θ̃ ∈ Θ̃
)

> 1−M1−A2/8.

Theorem 2 guarantees that every vector θ̃ ∈ Θ̃ and θ∗ share the same signs
with high probability. Letting n and M tend to∞ we can deduce from Theorem
2 an asymptotic result under the following additional assumption.

Assumption 4. We have M →∞ and limn→∞
log M

n = 0, as n →∞.

Then the following asymptotic result called sign consistency follows imme-
diately from Theorem 2.

Corollary 1. Let the assumptions of Theorem 2 hold for any n large enough.
Let Assumption 4 be satis�ed. Then

P
(

~sign(θ̃) = ~sign(θ∗), ∀θ̃ ∈ Θ̃
)
→ 1,

as n →∞.

The sign consistency of Lasso was proved in [12, 21] with the Strong Irrep-
resentable Condition on the matrix Ψ which is somewhat di�erent from ours.
Papers [12, 21] assume a lower bound on ρ of the order n−δ/2 with 0 < δ < 1,
whereas our Assumption 3 is less restrictive. Note also that these papers assume
θ̂L to be unique. Wainwright [19] does not assume θ̂L to be unique and discusses
sign consistency of Lasso under a mutual coherence assumption on the matrix Ψ
and the following condition on the lower bound:

√
(log M)/n = o(ρ) as n →∞,

which is more restrictive than our Assumption 3. In particular Proposition 1 in
[19] states that as n →∞, if the sequence of θ∗ satis�es the above condition for
all n large enough, then

P
(
∃θ̂L ∈ Θ̂L s.t. ~sign(θ̂L) = ~sign(θ∗)

)
→ 1.
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This result does not guarantee sign consistency for all the estimators θ̂L ∈ Θ̂L

but only for some unspeci�ed subsequence that is not necessarily the one chosen
in practice. On the contrary, Corollary 1 guarantees that all the thresholded
Lasso and Dantzig estimators and θ∗ share the same sign vector asymptotically.
It follows from this result that any solution selected by the minimization algo-
rithm is covered and that the case M > n, where the set Θ̂ is not necessarily
reduced to an unique estimator, can still be treated. We note also that the
papers mentioned above treat the sign consistency for the Lasso only, whereas
we prove it simultaneously for Lasso and Dantzig estimators. An improvement
in the conditions that we get is probably due to the fact that we consider
thresholded Lasso and Dantzig estimators. In addition note that not only the
consistency results, but also the exact non-asymptotic bounds are provided by
Theorems 1 and 2.

3 Convergence rate and sign consistency under a

general noise

In the literature on Lasso and Dantzig estimators, the noise is usually assumed
to be Gaussian [1, 6, 12, 19, 20] or admitting a �nite exponential moment [2, 13].
The exception is the paper by Zhao and Yu [21] who proved the sign consistency
of the Lasso when the noise admits a �nite moment of order 2k where k > 1 is
an integer. An interesting question is to determine whether the results of the
previous section remain valid under less restrictive assumption on the noise. In
this section, we only assume that the random variables Wi, i = 1, . . . , n, are
independent with zero mean and �nite variance E[W 2

i ] 6 σ2. We show that the
results remain similar. We need the following assumption

Assumption 5. The matrix X is such that

1
n

n∑
i=1

max
16j6M

|Xi,j |2 6 c′,

for a constant c′ > 0.

For example, if all Xi,j are bounded in absolute value by a constant uniformly
in i, j, then Assumption 4 is satis�ed. The next theorem gives the l∞ rate of
convergence of Lasso and Dantzig estimators under a mild noise assumption.

Theorem 3. Assume that Wi are independent random variables with E[Wi] = 0,

E[W 2
i ] 6 σ2, i = 1, . . . , n. Take r = σ

√
(log M)1+δ

n , with δ > 0. Let Assumptions

2,5 be satis�ed. Then

P

(
sup
θ̂∈Θ̂

∣∣∣θ̂ − θ∗
∣∣∣
∞

6 c2r

)
> 1− c

(log M)δ
,

where c2 is de�ned in Theorem 1, and c > 0 is a constant depending only on c′.
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Therefore the l∞ convergence rate under the bounded second moment noise
assumption is only slightly slower than the one obtained under the Gaussian
noise assumption and the concentration phenomenon is less pronounced. If
we assume that limn→∞(log M)1+δ/n = 0 and that Assumptions 2,3 and 5
hold true for any n with r = σ

√
(log M)1+δ/n, then the sign consistency of

thresholded Lasso and Dantzig estimators follows from our Theorem 3 similarly
as we have proved Theorem 2 and Corollary 1. Zhao and Yu [21] stated in their
Theorem 3 a result on the sign consistency of Lasso under the �nite variance
assumption on the noise. They assumed θ̂L to be unique and the matrix X to
satisfy the condition max16i6n(

∑M
j=1 X2

i,j)/n → 0, as n →∞. This condition is
rather strong. It does not hold if M > n and all the Xi,j are bounded in absolute
value by a constant. In addition, [21] assumes that the dimension M = O(nδ)
with 0 < δ < 1, whereas we only need that M = o(exp(n1/(1+δ))) with δ > 0.
Note also that [21] proves the sign consistency for the Lasso only, whereas we
prove it for thresholded Lasso and Dantzig estimators.

4 Proofs

We begin by stating and proving two preliminary lemmas. The �rst lemma
originates from Lemma 1 of [3] and Lemma 2 of [1].

Lemma 1. Let Assumption 1 and (5) of Assumption 2 be satis�ed. Take r =
Aσ
√

(log M)/n. Here Θ̂ denotes either Θ̂L or Θ̂D. Then we have, on an event

of probability at least 1−M−A2/8, that

sup
θ̂∈Θ̂

∣∣∣Ψ(θ∗ − θ̂)
∣∣∣
∞

6
3r

2
, (8)

and for all θ̂ ∈ Θ̂,
|∆J(θ∗)c |1 6 c0|∆J(θ∗)|1, (9)

where ∆ = θ̂ − θ∗, c0 = 1 for the Dantzig estimator and c0 = 3 for the Lasso.

Proof. De�ne the random variables Zj = n−1
∑n

i=1 Xi,jWi, 1 6 j 6 M . Using
(5) we get that Zj ∼ N (0, σ2/n), 1 6 j 6 M . De�ne the event

A =
M⋂

j=1

{|Zj | 6 r/2}.

Standard inequalities on the tail of Gaussian variables yield

P (Ac) 6 MP (|Z1| > r/2),

6 M exp
(
− n

2σ2

(r

2

)2
)

6 M1−A2
8 .
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On the event A, we have ∣∣∣∣ 1nXT W

∣∣∣∣
∞

6
r

2
. (10)

Any vector θ̂ in Θ̂L or Θ̂D satis�es the Dantzig constraint (4). Thus we have
on A that

sup
θ̂∈Θ̂

∣∣∣Ψ(θ∗ − θ̂)
∣∣∣
∞

6
3r

2
.

Now we prove the second inequality. For any θ̂D ∈ Θ̂D, we have by de�nition
that |θ̂D|1 6 |θ∗|1, thus

|∆J(θ∗)c |1 =
∑

j∈J(θ∗)c

|θ̂D
j | 6

∑
j∈J(θ∗)

|θ∗j | − |θ̂D
j | 6 |∆J(θ∗)|1.

Consider now the Lasso estimators. By de�nition, we have for any θ̂L ∈ Θ̂L

1
n
|Y −Xθ̂L|22 + 2r|θ̂L|1 6

1
n
|W |22 + 2r|θ∗|1.

Developing the left hand side on the above inequality, we get

2r|θ̂L|1 6 2r|θ∗|1 +
2
n

(θ̂L − θ∗)T XT W.

On the event A, we have for any θ̂L ∈ Θ̂L

2|θ̂L|1 6 2|θ∗|1 + |θ̂L − θ∗|1,

Adding |θ̂L − θ∗|1 on both side, we get

|θ̂L − θ∗|1 + 2|θ̂L|1 6 2|θ∗|1 + 2|θ̂L − θ∗|1
|θ̂L − θ∗|1 6 2(|θ̂L − θ∗|1 + |θ∗|1 − |θ̂L|1),

Now we remark that if j ∈ J(θ∗)c, then we have |θ̂L
j −θ∗j |+ |θ∗j |−|θ̂L

j | = 0. Thus
we have on the event A that

|∆J(θ∗)c |1 − |∆J(θ∗)|1 6 |∆|1 6 2|∆J(θ∗)|1
|∆J(θ∗)c |1 6 3|∆J(θ∗)|1,

for any θ̂L ∈ Θ̂L.

Lemma 2. Let Assumption 2 be satis�ed. Then

κ(s, c0)
4
= min

J⊂{1,··· ,M},|J|6s
min

λ6=0:|λJc |16c0|λJ |1

|Xλ|2√
n|λJ |2

>

√
1− 1

α
> 0.

9



Proof. For any subset J of {1, . . . ,M} such that |J | 6 s and λ ∈ RM such that
|λJc |1 6 c0|λJ |1, we have

|XλJ |22
n|λJ |22

= 1 +
λT

J (Ψ− IM )λJ

|λJ |22

> 1− 1
α(1 + 2c0)s

M∑
i,j=1

|λ(i)
J ||λ(j)

J |
|λJ |22

> 1− 1
α(1 + 2c0)s

|λJ |21
|λJ |22

, (11)

where we have used Assumption 2 in the second line, IM denotes the M ×M

identity matrix and λJ = (λ(1)
J , . . . , λ

(M)
J ) denotes the components of the vector

λJ . This yields

|Xλ|22
n|λJ |22

>
|XλJ |22
n|λJ |22

+ 2
λT

J XT XλJc

n|λJ |22

> 1− 1
αs(1 + 2c0)

|λJ |21
|λJ |22

− 2
αs(1 + 2c0)

|λJ |1|λJc |1
|λJ |22

> 1− 1
αs

|λJ |21
|λJ |22

> 1− 1
α

> 0.

We have used Assumption 2 in the second line, the inequality |λJc |1 6 c0|λJ |1
in the third line and the fact that |λJ |1 6

√
|J ||λJ |2 6

√
s|λJ |2 in the last

line.

Proof of Theorem 1. For all 1 6 j 6 M , θ̂ ∈ Θ̂ we have

(Ψ(θ∗ − θ̂))j = (θ∗j − θ̂j) +
M∑

i=1,i 6=j

Ψi,j(θ∗i − θ̂i).

Assumption 2 yields

|(Ψ(θ∗ − θ̂))j − (θ∗j − θ̂j)| 6
1

α(1 + 2c0)s

M∑
i=1,i 6=j

|θ∗i − θ̂i|, ∀j.

Thus we have

|θ∗ − θ̂|∞ 6
∣∣∣Ψ(θ∗ − θ̂)

∣∣∣
∞

+
1

α(1 + 2c0)s
|θ∗ − θ̂|1. (12)

Set ∆ = θ̂ − θ∗. Lemma 1 yields that on an event A of probability at least
1−M1−A2/8 we have for any θ̂ ∈ Θ̂

|Ψ∆|∞ 6
3r

2
, (13)
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and

|∆|1 = |∆J(θ∗)c |1 + |∆J(θ∗)|1 6 (1 + c0)|∆J(θ∗)|1 6 (1 + c0)
√

s|∆J(θ∗)|2.

Thus we have, on the same event A,

1
n
|X∆|22 = ∆T Ψ∆

6 |Ψ∆|∞|∆|1

6
3r

2
(1 + c0)

√
s|∆J(θ∗)|2, (14)

for any θ̂ ∈ Θ̂. Lemma 2 yields

1
n
|X∆|22 >

(
1− 1

α

)
|∆J(θ∗)|22, (15)

for any θ̂ ∈ Θ̂. Combining (14) and (15), we obtain that

|∆|1 6
3
2
r(1 + c0)2

α

α− 1
s, (16)

for any θ̂ ∈ Θ̂. Combining (12), (13) and (16) we obtain that

sup
θ̂∈Θ̂

|θ̂ − θ∗|∞ 6
3
2

(
1 +

(1 + c0)2

(1 + 2c0)(α− 1)

)
r. �

Proof of Theorem 2. Theorem 1 yields supθ̂∈Θ̂ |θ̂ − θ∗|∞ 6 c2r on an event
A of probability at least 1 − M1−A2/8. Take θ̂ ∈ Θ̂. For j ∈ J(θ∗)c, we
have θ∗j = 0, and |θ̂j | 6 c2r on A. For j ∈ J(θ∗), we have by Assumption 3
that |θ∗j | > c1r and |θ∗j | − |θ̂j | 6 |θ∗j − θ̂j | 6 c2r on A. Since we assume that
c1 > 2c2, we have on A that |θ̂j | > (c1 − c2)r > c2r. Thus on the event A
we have: j ∈ J(θ∗) ⇔ |θ̂j | > c2r. This yields sign(θ̃j) = sign(θ̂j) = sign(θ∗j ) if
j ∈ J(θ∗) on the event A. If j 6∈ J(θ∗), sign(θ∗j ) = 0 and θ̃j = 0 on A, so that
sign(θ̃j) = 0. The same reasoning holds true simultaneously for all θ̂ ∈ Θ̂ on
the event A. Thus we get the result. �

Proof of Theorem 3. The proof of Theorem 3 is similar to the one of Theorem
1 up to a modi�cation of the bound on P (Ac) in Lemma 1. Recall that Zj =
n−1

∑n
i=1 Xi,jWi, 1 6 j 6 M and the event A is de�ned by

A =
M⋂

j=1

{|Zj | 6 r/2} = { max
16j6M

|Zj | 6 r/2}.

The Markov inequality yields that

P (Ac) 6
4E[max16j6M Z2

j ]
r2

.
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Then we use Lemma 3 given below with p = ∞ and the random vectors Yi =
(Xi,1Wi/n, . . . ,Xi,MWi/n) ∈ RM , i = 1, . . . , n. We get that

P (Ac) 6 c̃
log M

r2
σ2

n∑
i=1

max
16j6M

X2
i,j

n2
,

where c̃ > 0 is an absolute constant. Taking r = σ
√

(log M)1+δ/n and using
Assumption 5 yields that

P (Ac) 6
c

(log M)δ
,

where c > 0 is an absolute constant. �

The following result is Lemma 5.2.2, page 188 of [14].

Lemma 3. Let Y1, . . . , Yn ∈ RM be independent random vectors with zero means
and �nite variance, and let M > 3. Then for every p ∈ [2,∞], we have

E

[
|

n∑
i=1

Yi|2p

]
6 c̃min[p, log M ]

n∑
i=1

E
[
|Yi|2p

]
,

where c̃ > 0 is an absolute constant.

Acknowledgments. I wish to thank my advisor, Alexandre Tsybakov, for
insightful comments and the time he kindly devoted to me.

References

[1] P.J. Bickel, Y.Ritov and A.B. Tsybakov (2007). Simultaneous analysis
of Lasso and Dantzig selector. Submitted to Ann. Statist. Available at
http://www.proba.jussieu.fr/pageperso/tsybakov/.

[2] F. Bunea (2007). Consistent selection via the Lasso for high dimensional
approximating regression models. IMS Lecture Notes-Monograph Series, to
appear.

[3] F. Bunea, A.B. Tsybakov and M.H. Wegkamp (2007). Sparsity oracle in-
equalities for the Lasso. Electronic Journal of Statistics 1, 169-194.

[4] F. Bunea, A.B. Tsybakov and M.H. Wegkamp (2007). Aggregation for
Gaussian regression. Ann. Statist. 35 4, 1674-1697.

[5] S.S. Chen, D.L. Donoho and M.A. Saunders (1999). Atomic Decomposition
by Basis Pursuit. SIAM Journal on Scienti�c Computing 20, 33-61

[6] E. Candes and T. Tao (2007). The Dantzig selector: statistical estimation
when p is much larger than n. Ann. Statist., to appear.

12



[7] D.L. Donoho, M. Elad and V. Temlyakov (2006). Stable recovery of Sparse
Overcomplete representations in the Presence of Noise. IEEE Trans. on
Information Theory 52, 6-18.

[8] B. Efron, T. Hastie, I. Johnstone and R. Tibshirani (2004). Least angle
regression. Ann. Statist. 32, 402-451.

[9] K. Knight and W. J. Fu (2000). Asymptotics for lasso-type estimators.
Ann. Statist. 28, 1356-1378.

[10] V. Koltchinskii (2006). Sparsity in penalized empirical risk minimization.
Manuscript.

[11] V. Koltchinskii (2007). Dantzig selector and sparsity oracle inequalities.
Manuscript.

[12] N. Meinshausen and P. Bühlmann (2006). High dimensional graphs and
variable selection with the Lasso. Ann. Statist. 34, 1436-1462.

[13] N. Meinshausen and B. Yu (2006). Lasso-type recovery of sparse represen-
tations for high-dimensional data. Ann. Statist., to appear.

[14] A. Nemirovski (2000). Topics in nonparametric statistics. In Lectures on
probability theory and statistics (Saint Flour, 1998), Lecture Notes in
Math., vol. 1738. Springer, Berlin, 85 - 277.

[15] M.R. Osborne, B. Presnell and B.A. Turlach (2000a). On the Lasso and its
dual. Journal of Computational and Graphical Statistics 9 319-337.

[16] R. Tibshirani (1996). Regression shrinkage and selection via the Lasso.
Journal of the Royal Statistical Society, Series B 58, 267-288.

[17] S.A. Van der Geer (2007). High dimensional generalized linear models and
the Lasso. Ann. Statist., to appear.

[18] S.A. Van der Geer (2007). The Deterministic Lasso. Tech Report n◦140,
Seminar für Statistik ETH, Zürich.

[19] M.J. Wainwright (2006). Sharp thresholds for noisy and high-dimensional
recovery of sparsity using l1-constrained quadratic programming. Technical
report 709, Department of Statistics, UC Berkeley.

[20] C.H. Zhang and J. Huang (2007). The sparsity and biais of the Lasso se-
lection in high-dimensional linear regression. Ann. Statist., to appear.

[21] P. Zhao and B. Yu (2007). On model selection consistency of Lasso. Journal
of Machine Learning Research 7, 2541-2567.

[22] H. Zou (2006). The adaptive Lasso and its oracle properties. Journal of the
American Statistical Association 101 n◦476, 1418-1429.

13


