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Abstract

We consider circular crossover designs for models with partial in-

teractions: we assume that the carryover effect of a treatment on itself

is different from the carryover effect on other treatments. We gener-

alize Kushner (1997) and Kunert and Martin (2000) methods to find

optimal designs when the parameters of interest are total effects, which

corresponds to the use of a single treatment, once selected. We give a

lower bound of Φp criteria and propose efficient designs of small sizes.
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1 Introduction

In traditionnal crossover designs, the statistical model consider that each

treatment has a carryover effect, which, for parsimony, is assumed not in-

teracting with direct treatment effects. To enrich this model, Hedayat and

Afsarinejad (2002) propose a model with partial interactions: the carry-

over effect of a treatment is different if the treatment is preceded by itself.

For such model, Kunert and Stufken (2002) find that universally optimal

designs for direct treatment effects have no consecutive pairs of identical

treatments. This feature is mainly due to the fact that partial interactions

between carryover and direct treatment effects are considered as nuisance

parameter. However, the aim of an experiment is to select a single treat-

ment which will be used alone and then will be preceded by itself. In that

case, the parameter of interest, called total effects, is the sum of direct treat-

ments and self carryover effects. Bailey and Druilhet (2004) give a review

of situations where total effects are considered in the literature. They show

that neighbour balanced designs having no treatment preceded by itself are

efficient when the number of periods is small. However, for models with

partial interactions, such designs are inefficient because total effects are not

estimable.

In this paper, we propose a general method to construct optimal circular
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crossover designs for total effects under models with partial interactions.

Upper bounds of the information matrix are obtained by a new method that

generalizes the approaches of Kushner (1997), Kunert and Martin (2000)

and Druilhet and Bailey (2004). Then we show that, in most cases, optimal

designs are generated by one sequence or a mixture of two sequences that

belongs to a set of k−1 possible sequences, where k is the number of periods.

Finally, we give some examples of optimal designs for several values of k. We

also propose efficient designs generated by only one sequence of treatments.

To simplify our presentation, we first construct optimal design for a model

without period effects. Then we obtain optimal designs for a model with

period effects by generalizing Kunert (1983) results on orthogonal effects.

2 The designs and the models

Let d(i, j) ∈ {1, ..., t} be the treatment assigned to subject i in period j,

1 ≤ i ≤ b, 1 ≤ j ≤ k. We assume that the response yij follows the model:

yij = βi + τd(i,j) + λd(i,j−1) + χd(i,j−1)d(i,j) + εij (1)

where βi is the effect of subject i, τi is the effect of treatment i, λi is the

general carryover effect of treatment i and χij is the additional specific

carryover effect when treatment i is followed by itself (χij = 0 if i 6= j). The
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errors εij are assumed i.i.d. with expectation 0 and variance σ2. The model

with period effects is considered in Section 5. In vector notation, we have:

Y = B β + Td τ + Ld λ + Sd χ + ε (2)

where B, Td, Ld and Sd are incidence matrices of subjects, direct treatments,

carryover and specific self-carryover effects. Note that the parametrization,

although equivalent, is slightly different from that of Hedayat and Afsarine-

jad (2002) or Kunert and Stufken (2002): in our model, the self carryover

effect is equal to ρd(i,j−1) + χd(i,j−1)d(i,j). We define the vector φ of total

effects by φ = τ + λ + χ. It corresponds to the effect of a treatment when it

is preceded by itself. Note that if θ′ = (τ ′, λ′, χ′) and K ′ = (It|It|It), then

φ = K ′θ.

Because the effect of having no treatment differs from the carryover effect

of any treatment, we consider only designs with pre-periods, i.e. designs with

one period, called pre-period, added at the beginning. On this preperiod,

each subject receive a treatment but the response is not used in the analysis.

We assume that the designs are circular, i.e. the treatment assigned to a

subject in the pre-period is the same as the treatment assigned in the last

period. The circularity condition may be written d(i, 0) = d(i, k). We denote
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by Ωt,b,k the set of all circular designs with t treatments, b subjects and k

periods.

3 Some technical tools

In this section, we present a general method to derive optimal crossover de-

signs. We generalize and unify the techniques developed by Kushner (1997),

Kunert and Martin (2000) and Bailey and Druilhet (2004).

Let denote by 1lk, Ik and Jk respectively the vector of ones of length

k, the (k, k) identity matrix and the (k, k) matrix of ones. For any matrix

A, denote by A+ the Moore-Penrose inverse of A. The projection matrix

onto the column span of matrix A is denoted by pr(A) = A(A′A)+A′. We

denote pr⊥(A) = I −pr(A) and Qk = pr⊥(1lk) = Ik −k−1Jk. For a square matrix

A, we denote by tr(A) the trace of A. For two symmetric matrices M and

N , M ≤ N means that N − M is a nonnegative definite matrix (Loewner

ordering). A matrix M is completely symmetric if M = aI + bJ for some

scalars a and b.

3.1 Information matrices and its extremal representation

Consider a generic partitioned linear model:

Y = Aα + Bβ + ε with E(ε) = 0 and Var(ε) = σ2I,
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where α is a vector of length q. It is well known (see e.g. Kunert, 1983)

that the information matrice C[α] of the parameter α is

C[α] = A′pr⊥(B)A. (3)

Consider now a subsystem K ′α where K is a (q, s) matrix. The informa-

tion matrix C[K ′α] of K ′α may be defined by the extremal representation

(Gaffke, 1987 or Pukelsheim, 1993):

C[K ′α] = min
L∈Rq×s:L′K=Is

L′C[α]L. (4)

where the minimum, taken relative to the Loewner ordering, exists and is

unique. If L∗ is a (q, s) matrix that minimizes L′C[α]L under the constraint

L′K = Is, then

C[K ′α] = L∗′C[α]L∗. (5)

Formula (5) will be central in the following mainly because it provides a

linear relationship between C[α] and C[K ′α].

The main issue to construct optimal designs will be to find L∗ for de-

signs candidate to optimality. Because a global minimum in (4) exists, L∗

minimizes L′C[α]L iff L∗ minimizes tr(L′C[α]L). So, we have
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tr(C[K ′α]) = tr(L∗′C[α]L∗) = min
L∈Rq×s:L′K=Is

tr(L′C[α]L). (6)

In our problem, the matrix C[α] will have a natural block structure with

completely symmetric blocks. In that case, the following results show that

the matrice L∗ have also completely symmetric blocks.

Proposition 1 Let C[α] = ((Cij))i,j=1,...,q be a block matrix, where the

blocks Cij are (t, t) completely symmetric matrices for i = 1, ..., q and j =

1, ..., q. Let K ′ = (K ′
1, ..., K

′
q) where for all i, Ki are (t, t) completely

symmetric matrices. Then C[K ′α] is completely symmetric. Moreover, if

L∗′ = (L∗
1
′, ..., L∗

q
′) satisfies both Eq. (5) and the constraint L∗′K = It, then

L∗
i , i = 1, ..., q, can be chosen completely symmetric.

Proof : The proof is given in Appendix A. ✷

The interest of this result is that L∗
i = a∗i It + b∗i Jt can be found out

by minimizing q(a∗1, b
∗
1, ..., a

∗
q , b

∗
q) = tr(L∗′C[α]L∗) which is a polynomial of

second degree in a∗1, b
∗
1, ..., a

∗
q , b

∗
q .

Corollary 2 Under the notations and assumptions of Proposition 1, if more-

over Cij1lt = 0 for i = 1, ..., q and j = 1, ..., q, then L∗
i can be chosen equal

to a∗i It for some scalar a∗i .
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Proof : By Proposition 1, L∗
i can be chosen equal to a∗i It + b∗i Jt. Since,

CijJt = JtCij = 0, L′
iCijLj = a∗i a

∗
jCij does not depends on b∗i and b∗j and the

result follows. ✷

The following lemma, although straightforward, is useful to calculate

explicitly L∗.

Lemma 3 Let C be a nonnegative (u, u) matrix, γ be a k-vector, and γ 7→

Lγ be a linear mapping with Lγ a (u, v) matrix. Then, q(γ) = tr
(
L′

γCLγ

)

is a multivariate convex quadratic polynomial in γ1, ..., γk. Moreover, q(γ∗)

is a minimum of q(γ) if and only if ∂q
∂γ

(γ∗) = 0.

3.2 Some examples

Under the notations and assumptions of Proposition 1 and Corollary 2, i.e.

assuming that Cij are completely symmetric and that Cij1lt = 0, we show in

some cases how the matrices L∗ can be obtained. The three first examples

give new presentations of known results. The last one will be used in this

paper. We denote cij = tr(Cij).

Example 1 : let q = 2 and K ′ = (It|0). By Corollary 2 and because

L∗′K = It, L∗′ can be chosen to be equal to (It|x
∗ It) for some x∗ ∈ R. By
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Eq. (6), x∗ can be found out by minimizing

q(x) = tr(L′C[α]L) = c11 + 2x c12 + x2c22.

This quadratic function was used by Kushner (1997, Eq. 4.1). The minimum

is obtained for x∗ = c12
c22

and we found C[K ′α] = C11 − C12C
+
22C21, the Schur-

complement of C22.

Example 2 : let q = 3 and K ′ = (It|0|0) . As in example 1, L∗′ can be chosen

equal to (It|x
∗It|y

∗It), where x∗ and y∗ minimize the quadratic function

q(x, y) = tr(L′C[α]L) = c11 + x2c22 + y2c33 + 2xc12 + 2yc13 + 2xyc23.

This quadratic function was used by Kunert and Martin (2000, Proposition

3).

Example 3 : let q = 2 and K ′ = (It|It). We have L∗′ = (x∗ It|(1 − x∗) It),

where x∗ minimizes

q(x) = x2c11 + (1 − x)2c22 + 2x(1 − x)c12.

If C11 = C22, then x∗ = 1
2 and L∗ = 1

2K. Therefore, C[K ′α] = 1
4K ′C[α]K.

This equation was obtained in a different way by Bailey and Druilhet (2004)

in order to construct optimal designs for total effects under models without

interaction.
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Example 4: let q = 3 and K ′ = (It|It|It). We assume that C11 = C22 and

that C13 = C23. We no longer assume that C331lt = 0. We have L∗′ =

(x∗
1 It|x

∗
2It|(1 − x∗

1 − x∗
2)It + y∗Jt), where x∗

1, x∗
2 and y∗ minimize

q(x1, x2, y) = (x2
1 + x2

2)c11 + 2(x1 + x2)c11 − (x1 + x2)
2(2c13 + c33)

+2(x1 + x2)(c13 − c33 − c̃33)

+2yc̃33 + ty2c̃33 + c33 (7)

with c̃33 = tr(JtC33) = t−1tr(JtC33Jt). Note that L∗ does not satisfy L∗′K =

It. This is in fact a simplified form of

L̃∗ ′ = (x∗
1 It + u∗Jt|x

∗
2It − (u∗ + v∗)Jt|(1 − x∗

1 − x∗
2)It + y∗Jt) ,

noting that the terms u∗Jt and (u∗ + v∗)Jt vanish in the expression of

L̃∗ ′C[α]L̃∗. By lemma 3 and by symmetry of q(x1, x2, y) in x1, x2, it is

easy to see that x∗
1 and x∗

2 can be chosen equal. Denote x∗ = x∗
1 = x∗

2. From

Eq. (7), x∗ and y∗ can be found out by minimizing

q (x, y) = c33 + 4 (c13 − c33)x + 2c̃33y + 2 (c11 + c12 − 4c13 + 2c33)x2

+ tc̃33y
2 − 4c̃33xy,

(8)

and the minimum q(x∗, y∗) is equal to tr(C[K ′α]).
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4 Optimal circular crossover designs for total ef-

fects

From Kiefer (1975), a design d∗ for which the information matrix Cd∗ [φ] is

completely symmetric and that maximizes the trace of Cd[φ] over all the

designs d in Ωt,b,k is universally optimal. In this section, we propose a

method to construct universal optimal design for total effects.

4.1 Upper bound of tr Cd[φ]

For a design d, the information matrix for the whole parameter θ′ = (τ ′, λ′, χ′)

in Model (1) is:

Cd[θ] =




T ′
d pr⊥(B) Td T ′

d pr⊥(B) Ld T ′
d pr⊥(B) Sd

L′
d pr⊥(B) Td L′

d pr⊥(B) Ld L′
d pr⊥(B) Sd

S′
d pr⊥(B) Td S′

d pr⊥(B) Ld S′
d pr⊥(B) Sd




=




Cd11 Cd12 Cd13

C′
d12 Cd22 Cd23

C′
d13 C′

d23 Cd33




.

By circularity of the designs, B′Td = B′Ld , T ′
dTd = L′

dLd and T ′
dSd =

L′
dSd = S′

dSd = S′
dLd = S′

dTd and therefore Cd22 = Cd11 and Cd23 = Cd13. As

in Section 3.2, we define cdij = tr(Cdij) and c̃dij = tr(JCdij).

A design is said to be symmetric if all the blocks Cdij are completely

symmetric, or equivalently, if Cd[θ] is invariant by any permutations of the

treatment labels.
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Proposition 4 For any design d, the information matrix for total effects φ

satisfies:

trCd[φ] ≤ min
x,y

qd(x, y)

where qd(x, y) is defined by (8). Equality holds if Cdij [θ] are completely

symmetric for 1 ≤ i ≤ 3 and 1 ≤ j ≤ 3.

Proof : For a design d, we denote Cd[θ] = 1
t!

∑
σ∈St

(I3 ⊗ Pσ)Cd[θ] (I3 ⊗ P ′
σ)

the symmetrized information matrix for θ. By conctruction, Cdij are com-

pletely symmetric for all i and j. Moreover, cdij = tr(Cdij) = tr(Cdij) and

c̃dij = tr(Jt Cd33) = tr(Jt Cd33). Denote by Cd[φ] the information matrix of

φ associated to Cd[θ]. By concavity of Cd[φ] w.r.t. Cd[θ], (see Pukelsheim,

1993 p. 77), Cd[φ] ≤ Cd[φ] and trCd[φ] ≤ minx,y qd(x, y). ✷

A design is called degenerate if c̃d33 = tr(Jt Cd33[θ]) = 0 or equivalently if

each block either contains only one treatment or has no treatment preceded

by itself. Note that the information matrix of a degenerate design is null

and therefore such a design is not considered. The following lemma shows

that the minimization of qd(x, y) may be reduce to the minimization of a

one variable quadratic function.

Lemma 5 Let d be a non-degenerate design. The values x∗ and y∗ that
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minimize qd(x, y) satisfy 2x∗ − ty∗ − 1 = 0. Moreover, x∗ minimizes qd(x),

where

qd(x) = cd33−
1

t
c̃d33+4(cd13−cd33+

1

t
c̃d33)x+2(cd11+cd12−4cd13+2cd33−

2

t
c̃d33)x

2,

(9)

and qd(x
∗, y∗) = qd(x

∗).

Proof : by lemma 3, ∂qd

∂y
(x∗, y∗) = 0 at the minimum. For a non-degenerate

design, this is equivalent to 2x∗ − ty∗ − 1 = 0. Replacing y by 2(x − 1)/t,

we found qd(x, y) = qd(x). Therefore, x∗ necessarily minimizes qd(x). ✷

4.2 Decomposition over the blocks

It is well known that Cd[θ] is the sum of the information matrices Cdu

corresponding to Block u. Denote by Tdu, Ldu and Sdu the incidence ma-

trices for Block u. Thus, T ′
d = (T ′

d1 | ... | T ′
db) , L′

d = (L′
d1 | ... | L′

db), S′
d =

(S′
d1 | ... | S′

db) and:

Cd[θ] =
b∑

u=1

Cdu[θ] =
b∑

u=1




T ′
duQkTdu T ′

duQkLdu T ′
duQkSdu

L′
duQkTdu L′

duQkLdu L′
duQkSdu

S′
duQkTdu S′

duQkLdu S′
duQkSdu
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We decompose in the same way tr (Cdij) and tr (CdijJt):

cdij = tr (Cdij) =
b∑

u=1

c
(u)
dij and c̃dij = tr (CdijJt) =

b∑

u=1

c̃
(u)
dij

denoting by c
(u)
dij and by c̃

(u)
dij the contributions of Block u. For example, for

i = j = 1 we have:

cd11 = tr (Cd11) = tr

(
b∑

u=1

T ′
duQkTdu

)
=

b∑

u=1

c
(u)
d11 with c

(u)
d11 = tr(T ′

duQkTdu).

Simplifications of these forms give:

c
(u)
d11 = k −

ns
u

k
, c

(u)
d12 = mu −

ns
u

k
, c

(u)
d13 = mu −

lu
k

, c
(u)
d33 = mu −

ms
u

k
, c̃

(u)
d33 = mu −

m2
u

k
,

with ns
u =

∑t
i=1 n2

ui, mu =
∑t

i=1 mui, ms
u =

∑t
i=1 m2

ui, lu =
∑t

i=1 nuimui,

denoting by nui the number of plots in Block u which receive Treatment i

and by mui the number of times Treatment i is preceded by itself in the

Block u. It follows that:

qd (x) =
b∑

u=1

h
(u)
d (x)

where

h
(u)
d (x) = c

(u)
d33−

1

t
c̃
(u)
d33+4(c

(u)
d13−c

(u)
d33+

1

t
c̃
(u)
d33)x+2(c

(u)
d11+c

(u)
d12−4c

(u)
d13+2c

(u)
d33−

2

t
c̃
(u)
d33)x

2.

Two sequences of treatments in two blocks u1 and u2 are said to be equiv-

alent if
(
ns

u1
,mu1

,ms
u1

, lu1

)
=

(
ns

u2
,mu2

,ms
u2

, lu2

)
, which is the case if one
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sequence is obtained from the other one by relabelling the treatments. So,

for given k and t, we can divide the set of all possible treatment sequences

into K equivalence classes of treatments. Since ns
u, mu, ms

u, lu and c
(u)
dij are

the same for all u from one equivalent class ℓ, we change the notation and

write ns
ℓ , mℓ, ms

ℓ , lℓ and cdij(ℓ) instead. We define:

hℓ (x) =

(
mℓ −

ms
ℓ

k
−

δℓ

t

)
+

4

k

(
ms

ℓ − lℓ +
kδℓ

t

)
x

+2

[
(k − mℓ) +

2

k
(2lℓ − ns

ℓ − ms
ℓ) −

2δℓ

t

]
x2

where δℓ = mℓ (1 − mℓ/k) . For a design d, we denote by πdℓ the proportion

of blocks assigned to the class ℓ (1 ≤ ℓ ≤ K). So, we have:

qd(x) = b
K∑

ℓ=1

πdℓ hℓ (x) . (10)

4.3 Optimality conditions

Our goal, in order to find an optimal configuration d∗, is to obtain a value

x∗ and proportions π′
d∗ = (πd∗1, ..., πd∗K) such that:

qd∗ (x∗) = max
πd

q∗d with q∗d = min
x

qd(x).

The following propositions characterizes universally optimal designs.

Proposition 6 (Kunert and Martin, 2000) Consider a symmetric de-

sign d∗ ∈ Ωt,b,k and a point x∗ such that the first derivative of qd∗ is zero.
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If we have also:

∀ ℓ = 1, ..., K , bhℓ (x∗) ≤ q∗d∗ ,

then d∗ is universally optimal over Ωt,b,k.

The following proposition reduce to k−1 the number of equivalent classes

that possibly appear in an optimal design. We denote by ⌊x⌋ the integer

part of x.

Proposition 7 If a symmetric design d∗ ∈ Ωt,b,k is universally optimal,

then the treatment sequences present in the design necessarily satisfies:

1. all the periods receiving the same treatment are side by side in the

sequence.

2. each treatment present in the sequence occurs ⌊k/v⌋ or ⌊k/v⌋+1 times,

where v is the number of different treatments present in the sequence.

The number of treatments that occur ⌊k/v⌋+1 times is k−v⌊k/v⌋ and

the number of treatments that occurs ⌊k/v⌋ times is v(⌊k/v⌋+ 1)− k.

Proof : The proof is given in Appendix B. ✷

It is worth noting that for each value of v, there is only one equivalent class

of treatment sequences that may appear in the optimal design.
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4.4 Construction of optimal designs

Consider a sequence ℓ present in an optimal design. From Proposition 7, a

treatment i in ℓ satisfies mℓi = nℓi − 1. Moreover we have vℓ = k − mℓ. So

ns
ℓ = ms

ℓ + mℓ + k, lℓ = ms
ℓ + mℓ and then:

hℓ (x) =

(
mℓ −

ms
ℓ

k
−

δℓ

t

)
+

4

k

(
kδℓ

t
− mℓ

)
x+2

[
(k − mℓ)

(
k − 2

k

)
−

2δℓ

t

]
x2,

with δℓ = mℓ (1 − mℓ/k) .

Therefore an optimal design for this one-dimensional problem is obtained

using one class or a mixture of two different classes (see Kushner (1997)).

The following method (for given k and t) can be used in order to prove that

a design d∗ is optimal.

• If the optimal design d∗ is constituted by one sequence of treatment

ℓ1 (i.e. qd∗ (x) = bhℓ1 (x)):

- find x∗ that minimize hℓ1 and then the minimum q∗d∗ of qd∗ ,

- check that: ∀ ℓ = 1, ..., K , bhℓ (x∗) ≤ q∗d∗ (cf. Prop. 6).

• If the design d∗ is constituted by two different classes of treatments ℓ1

and ℓ2 (i.e. qd∗ (x) = b (πd∗ℓ1hℓ1 (x) + πd∗ℓ2hℓ2 (x))):

- find an admissible intersection point x∗ according to the definition

of Kushner (1997), i.e. hℓ1 (x∗) = hℓ2 (x∗) and
∂hℓ1

∂x
(x∗)

∂hℓ2

∂x
(x∗) ≤ 0,
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- find the proportions π∗
d∗ℓ1

and π∗
d∗ℓ2

in order to obtain: ∂qd∗

∂x
(x∗) = 0,

- use these proportions for finding the minimum q∗d∗ = qd∗(x
∗) of qd∗ ,

- check that: ∀ ℓ = 1, ..., K , bhℓ (x∗) ≤ q∗d∗ (cf. Prop. 6).

Note that the optimal proportions can be found by the following method.

∂qd∗

∂x
(x∗) = 0 ⇐⇒ b

(
πd∗ℓ1

∂hℓ1

∂x
(x∗) + πd∗ℓ2

∂hℓ2

∂x
(x∗)

)
= 0.

Denote ai = (∂hℓi
/∂x) (x∗), i = 1, 2. The optimal proportions are then:

π∗
d∗ℓ1

=
a2

a2 − a1
and π∗

d∗ℓ2
=

a1

a1 − a2
.

Now, we give optimal designs for several values of k. For k = 3, 4 we

give explicit formulae. For k = 5, ..., 10, we present numerical results.

1) The case k = 3. From proposition 7, an optimal design is constituted by

one or two blocks in the following set of sequences:

Sequence ns
ℓ mℓ ms

ℓ lℓ

[ 1 2 3 ] 3 0 0 0

[ 1 1 2 ] 5 1 1 2

So the functions hℓ are given by (we identify each class with its value of mℓ):

h0 (x) = 2x2 and h1 (x) =
2

3

(
1 −

1

t

)
−

4

3

(
1 −

2

t

)
x +

4

3

(
1 −

2

t

)
x2.
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It is impossible in that case to satisfy Proposition 6 using only one of these

two sequences. So, we must find an admissible intersection point x∗. Some

algebra shows that:

x∗ =

√
(t − 2)2 + (t − 1) (t + 4) − (t − 2)

t + 4
.

The proportions in the optimal design d∗ are then:

π∗
d∗0 = 1 − π∗

d∗1 and π∗
d∗1 =

3t

t + 4

(
1 −

(t − 2)√
t (2t − 1)

)
.

The following table gives the optimal proportions for several values of t.

t 3 4 5 10 20 ∞

Prop. [ 1 2 3 ] 0.046 0.067 0.079 0.100 0.111 0.121

Prop. [ 1 1 2 ] 0.954 0.933 0.921 0.899 0.889 0.879

The sequence [ 1 1 2 ] is predominating in this mixture. So it can be interest-

ing in practice to use designs generated by only this sequence. The quality

of such designs can be quantified by the classical Φp criteria. We know (see

e.g. Druilhet, 2004) that when the information matrix is completely sym-

metric Φp does not depend on p. Thus we can derive the efficiency factor of

a design d ∈ Ωt,b,3 generated by one sequence ℓ:

Eff (d) =
b h∗

ℓ

qd∗ (x∗)
with h∗

ℓ = min
x

hℓ (x) .
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Numerical applications are given in the following table:

t 3 4 5 10 20 ∞

Eff. [ 1 1 2 ] 0.989 0.985 0.982 0.976 0.974 0.971

2) The case k = 4. An optimal configuration is constituted by one or two

blocks belonging to the following set of sequences:

Sequence ns
ℓ mℓ ms

ℓ lℓ

[ 1 2 3 4 ] 4 0 0 0

[ 1 1 2 3 ] 6 1 1 2

[ 1 1 2 2 ] 8 2 2 4

The functions hℓ are then given by:

h0 (x) = 4x2, h1 (x) =
3

4

(
1 −

1

t

)
−

(
1 −

3

t

)
x + 3

(
1 −

1

t

)
x2,

h2 (x) =

(
3

2
−

1

t

)
− 2

(
1 −

2

t

)
x + 2

(
1 −

2

t

)
x2.

For any t, the minimum of h2 is obtained for x∗ = 0.5 and satisfies the con-

ditions of proposition 6. So the optimal design is generated by the sequence

[ 1 1 2 2 ]. As an example we can consider, for t = 4, the optimal design

such that:

D =




1 2 1 3 1 4 2 3 2 4 3 4

1 2 1 3 1 4 2 3 2 4 3 4

2 1 3 1 4 1 3 2 4 2 4 3

2 1 3 1 4 1 3 2 4 2 4 3




∈ Ω4,12,4.
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Note that, by circularity, the design obtained by taking away one out of

every two columns is universally optimal over all the designs in Ω4,6,4.

3) The case k = 5. The optimal design is generated by the following mix-

tures:

t 3 4 5 10 20 ∞

Prop. [ 1 1 2 2 3 ] 0.167 0.250 0.300 0.400 0.450 0.500

Prop. [ 1 1 1 2 2 ] 0.833 0.750 0.700 0.600 0.550 0.500

The efficiencies of designs generated by only one sequence are:

t 3 4 5 10 20 ∞

Eff. [ 1 1 2 2 3 ] 0.844 0.895 0.918 0.949 0.961 0.970

Eff. [ 1 1 1 2 2 ] 0.984 0.977 0.972 0.963 0.959 0.955

It can be observed that the design generated by [ 1 1 1 2 2 ] is more efficient

than the one generated by [ 1 1 1 2 2 ] for t > 18.

4) The case k = 6. The optimal design is generated by the following mix-

tures:

t 3 4 5 6 7 ≥ 8

Prop. [ 1 1 2 2 3 3 ] 0.400 0.628 0.775 0.878 0.954 1.000

Prop. [ 1 1 1 2 2 2 ] 0.600 0.372 0.225 0.122 0.046



Optimal cross-over designs 22

The efficiencies of designs generated by only one sequence are:

t 3 4 5 6 7 ≥ 8

Eff. [ 1 1 2 2 3 3 ] 0.962 0.989 0.997 0.999 0.999 1.000

Eff. [ 1 1 1 2 2 2 ] 0.962 0.942 0.930 0.922 0.917

We note that the sequence [ 1 1 2 2 3 3 ] is always more efficient than the

sequence [ 1 1 1 2 2 2 ]. It also generates an optimal design when t ≥ 8.

5) The case k = 7. The optimal design is generated by the following mix-

tures:

t 3 ≥ 4

Prop. [ 1 1 1 2 2 3 3 ] 0.682 1.000

Prop. [ 1 1 1 1 2 2 2 ] 0.318

The efficiencies of designs generated by only one sequence are:

t 3 ≥ 4

Eff. [ 1 1 1 2 2 3 3 ] 0.994 1.000

Eff. [ 1 1 1 2 2 3 3 ] 0.938

We note that he sequence [ 1 1 1 2 2 3 3 ] is always better than the sequence

[ 1 1 1 1 2 2 2 ] and generates the optimal design when t ≥ 4.

6) The case k = 8, 9, 10. We find that the optimal design is generated, for



Optimal cross-over designs 23

every t, by only one sequence. These optimal sequences are given by:

t 8 9 10

Sequence [ 1 1 1 2 2 2 3 3 ] [ 1 1 1 2 2 2 3 3 3 ] [ 1 1 1 1 2 2 2 3 3 3 ]

5 Models with period effects

We consider the model:

yij = αj + βi + τd(i,j) + λd(i,j−1) + χd(i,j−1)d(i,j) + εij , (11)

where αj is the effects of the period j. We denote by A the corresponding

incidence matrix. A balanced design is a design such that all the sequences

belonging to the same equivalent class appear equally often. This notion

is slightly more restrictive than the notion of symmetric design defined in

Section 4.1 but correspond to the design generated by one sequence or a

mixture of sequences, considering all the treatment permutations.

Proposition 8 A balanced design which is universally optimal for total ef-

fects under Model (1) is also universally optimal under Model (11).

Proof : The proof is a direct consequence of the following lemma. ✷

Lemma 9 For a balanced design, the information matrix for the total effects

is the same under model (1) and (11)



Optimal cross-over designs 24

Proof : Let d be a balanced design. The difficulty is that interaction and

period effects are not orthogonal. Write θ̃′ = (τ |λ|χ|α) and C̃d[θ̃] the cor-

responding information matrix. We want to prove that C̃d[K̃
′θ̃] = Cd[K

′θ]

where K̃ ′ = (It|It|It|0). We write:

C̃d[θ̃] =




Cd[θ] Cd12

Cd21 Cd22




where C ′
d12 = (0|0|D′

d) with Dd = (pd11lt|pd21lt|...|pdb1lt). The real pdj de-

pends only on the number of times a treatment is preceded by itself on

period j. Note that the usual orthogonality condition (see Kunert, 1983)

between interaction and period effects is Dd = 0 which is not the case here.

The key point of the proof is that

Qt Dd = 0. (12)

Denote by L̃∗
d a matrix such that C̃d[K̃

′θ̃] = L̃∗
d

′C̃d[θ̃]L̃
∗
d and L̃∗

d
′K̃ = It.

We write L̃∗
d
′ = (M∗

d
′|N∗

d
′) where Md is a (3t×t) matrix and N∗

d is a (b×b)

matrix. It is easy to see that Cd[K
′θ]1lt = 0 and, since C̃d[K̃

′θ̃] ≤ Cd[K
′θ],

we have C̃d[K̃
′θ̃]1lt = 0. So, Cd[K̃

′θ̃] = QtC̃d[K̃
′θ̃]Qt. Therefore, L̃∗ can

be chosen equal to (M∗
dQt|N

∗
dQt). For any permutation σ, we have (I3 ⊗

Pσ)Cd12 = Cd12 and therefore, similarly to Proposition 1, it can be shown

that the three (t × t) blocks of M∗
d can be chosen completely symmetric.

So, L̃∗
d

′ can be chosen equal to (x∗
1Qt|x

∗
2Qt|(1 − (x∗

1 + x∗
2))Qt|N

∗). Put
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L̃′ = (M ′|N ′) with M ′ = (x1Qt|x2Qt|(1 − (x1 + x2)Qt). By (12), we have

M ′Cd12 = 0 and then

C̃d[K̃
′θ̃] = min

x1,x1,N
L̃′C̃[θ̃]L̃ = min

x1,x1,N
(M ′Cd[θ]M + N ′Cd12N).

Since x1, x2 and N vary freely, N can be chosen equal to 0 and therefore,

from Example 4 of Section 3.2 and the constraint on y obtained in Lemma

5, M∗ ′C̃[θ̃]M∗ = L∗ ′Cd[θ]L
∗. The result follows. ✷

Appendix A

We give here the proof of Proposition 1.

Step 1: We show that the set E of matrices L that minimize L′C[α]L under

the constraint L′K = It is an affine subspace: consider La and Lb in E with

La 6= Lb. It is sufficient to prove that Lγ = γLa + (1 − γ)Lb belongs to E

for any real γ. We have L′
γK = It and

L′
γC[α]Lγ = γ2L′

aC[α]La+(1−γ)2L′
bC[α]Lb+γ(1−γ)(L′

aC[α]Lb+L′
bC[α]La)

This quadratic function w.r.t. γ admits two minima relative to the Loewner

ordering at γ = 0 and γ = 1 and therefore it is constant. So, Lγ minimizes

L′C[α]L for any γ ∈ R.
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Step 2: Consider a permutation σ on {1, ..., t} and denote by Pσ the cor-

responding permutation matrix. We want to prove that if L∗ ∈ E, so does

L∗
σ = (I3 ⊗ P ′

σ)L∗Pσ. Since Cij and Ki are completely symmetric:

(I3 ⊗ Pσ)C[α](I3 ⊗ P ′
σ) = C[α], (13)

and (I3 ⊗ P ′
σ)K = KPσ. (14)

Moreover,

C[K ′α] = min
L∈R3t×t:L′K=It

L′C[α]L,

= min
L∈R3t×t:L′K=It

L′(It ⊗ Pσ)C[α](It ⊗ P ′
σ)L (by (13)),

= Pσ

(
min

L∈R3t×t:L′K=It

P ′
σL′(It ⊗ Pσ)C[α](It ⊗ P ′

σ)LPσ

)
P ′

σ.

Put Lσ = (I3 ⊗ P ′
σ)LPσ. By (14), L′

σK = It. Since, L ↔ Lσ is a one to one

mapping, we have:

C[K ′α] = Pσ

(
min

Lσ∈R3t×t:L′
σK=It

L′
σC[α]Lσ

)
P ′

σ = PσC[K ′α]P ′
σ. (15)

Since Eq. (15) holds for any permutation σ, C[K ′θ] is completely symmetric.

So,

C[K ′α] = min
Lσ∈R3t×t:L′

σK=It

L′
σC[α]Lσ

and therefore C[K ′α] = L∗
σ
′C[α]L∗

σ.

Step 3: If L∗ ∈ E then, by step 1 and 2, L̄∗ = 1
t!

∑
σ L∗

σ also belongs to E.

By construction, L̄∗
i is completely symmetric and the proof is complete.
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Appendix B

We prove here Proposition 7. From Eq. (10), we have hℓ (x) = Aℓ + Bℓ x +

Cℓ x2 where: Aℓ = mℓ −
ms

ℓ

k
−

δℓ

t
, Bℓ =

4

k

(
ms

ℓ − lℓ +
kδℓ

t

)
and Cℓ =

2

[
(k − mℓ) +

2

k
(2lℓ − ns

ℓ − ms
ℓ) −

2δℓ

t

]
. We denote by vℓ the number of

treatments present in the sequence ℓ. For any treatment i in ℓ, we have:

nℓi ≥ mℓi + 1 (16)

with equality if and only if treatment i occurs in consecutive periods. In

general, each treatment appears in the sequence ℓ in several groups of con-

secutive periods. The number of such groups is γi = nℓi − mℓi. From ℓ,

we construct a new sequence ℓ̃ as follows: in each group of consecutive pe-

riods receiving the same treatment, we replace the treatment that occurs

in this group by a new treatment, such that in the new sequence ℓ̃, each

treatment have only one group. For example ℓ = (1, 1, 2, 2, 2, 1, 3, 2, 2) gives

ℓ̃ = (1, 1, 2, 2, 2, 4, 3, 5, 5). We have meℓ
= mℓ and veℓ

= γ = k − mℓ, where

γ =
∑

i γi is the number of different groups in ℓ.

Lemma 10 If d∗ is optimal, then x∗ that minimizes qd∗(x) is positive.

Proof. From Lemma 3 we know that hℓ (x) is convex, then Cℓ ≥ 0. So it

is sufficient to show that Bℓ ≤ 0. If Cℓ = 0 then Bℓ = 0 because we know
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that hℓ (x) admits a minimum. In that case, any x is a minimum and can

be chosen positive. We assume now that Cℓ > 0. By Eq. 16, we have

lℓ =
∑

i mℓinℓi ≥ mℓ + ms
ℓ and then

Bℓ ≤
4

kt
mℓ (k − mℓ − t)

with equality if and only if the occurrences of the treatments present in the

sequence are placed side by side. In that case a sequence ℓ̃ satisfies k−meℓ
=

veℓ
and, since t ≥ veℓ

, Beℓ
≤ 0. Consider now a general sequence ℓ and denote

by ℓ̃ its associated sequence with side-by-side treatments. Since meℓ
= mℓ

we have also δℓ = δeℓ
and then Bℓ ≤ Beℓ

if and only if (lℓ − ms
ℓ) ≥

(
leℓ
− ms

eℓ

)
.

But:

lℓ − ms
ℓ =

vℓ∑

i=1

mℓi (nℓi − mℓi) ≥

vℓ∑

i=1

mℓi = mℓ =

veℓ∑

i=1

meℓi

(
neℓi

− meℓi

)

with equality if and only if ℓ = ℓ̃. So we have for every sequence ℓ: Bℓ ≤

Beℓ
≤ 0 ¤

The proof of the Proposition 7 is given below.

Step 1: Let ℓ be a sequence containing vℓ different treatments numbered

1, ..., vℓ and ℓ̃ the associated sequence defined above. We want to prove that

heℓ
(x) > hℓ(x) for all x ≥ 0 and ℓ 6= ℓ̃. The idea is to show that Aℓ < Aeℓ

,

Bℓ < Beℓ
and Cℓ < Ceℓ

. Note that mℓ = meℓ
so δℓ = δeℓ

. Then:
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• We show that Cℓ < Ceℓ
. It is equivalent to show that (ns

ℓ − 2lℓ + ms
ℓ) >

(
ns

eℓ
− 2leℓ

+ ms
eℓ

)
. Since neℓi

= meℓi
+ 1 we have:

ns
ℓ−2lℓ+ms

ℓ =

vℓ∑

i=1

(nℓi − mℓi)
2 =

vℓ∑

i=1

γ2
i ≥

vℓ∑

i=1

γi = k−mℓ =

veℓ∑

i=1

(
neℓi

− meℓi

)2

with equality if and only if ℓ = ℓ̃. The result follows.

• From Lemma 10, we have Bℓ < Beℓ
.

• We show that Aℓ < Aeℓ
. It is equivalent to show that ms

ℓ > ms
eℓ
. This

follows from the fact that
∑

i mℓi =
∑

i meℓi
and, for all i, mℓi ≥ meℓi

with

equality if and only if ℓ = ℓ̃.

Step 2: Consider the set L of sequences ℓ having the same number vℓ = v of

distinct treatments and such that ℓ = ℓ̃. For a sequence ℓ ∈ L, nℓi = mℓi − 1

and mℓ = k − v. So we have for every ℓ1, ℓ2 ∈ L (see Section 5.2):

hℓ1 (x) − hℓ2 (x) =
1

k

(
ms

ℓ2
− ms

ℓ1

)
.

If there exists a sequence ℓ∗ ∈ L such that hℓ∗ (x) − hℓ (x) > 0 (for every

ℓ 6= ℓ∗) then only this sequence can belong to the optimal design. Such a

sequence minimizes ms
ℓ =

∑vℓ

i=1 m2
ℓi under the constraint

∑vℓ

i=1 mℓi = mℓ.

So, it is well known that the mℓ∗i or equivalently the nℓ∗i (i = 1, ..., vℓ∗)

must be as equal as possible: if k/vℓ∗ is an integer, a treatment present
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in ℓ∗ occurs k/vℓ∗ times; otherwise, a treatment present in ℓ∗ occurs either

⌊k/vℓ∗⌋ or ⌊k/vℓ∗⌋ + 1 times in ℓ∗ ¤
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