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Abstract

This paper is devoted to small size experimental designs for response
surfaces. Our purpose is to investigate the class of augmented pair designs
obtained from an initial saturated simplex design with only two or three
levels. Then we are looking in this new class for D-optimal properties and
blocking structures.

Keywords: simplex designs, augmented pair designs, saturated designs,
moment matriz, efficiency.

1 Introduction

Experimental designs for fitting response surfaces with quantitative factors are
well known, many books and articles treat this question (see, for example, Box
and Draper [3] or Khuri and Cornell [7]). A problem of prime importance in
response surface methodology is to obtain small size designs, that is designs
with a number of experiments close to the number of unknown parameters in the
model. Apart from its theoretical interest this problem is of crucial importance in
every situation in which experiments are expensive, difficult or time-consuming.

Our purpose in this paper is to investigate a general iterative method for
constructing saturated second order designs in the class of augmented pair
designs introduced by Morris [9]. These saturated designs can be later augmented
by adding center replications in order to make an analysis of variance or used,
because of the small number of runs, as blocks. The construction of an augmented
pair design begins, in a first step, by the choice of an initial design. In this paper
the initial design is always a first order saturated design. Then we have to add
one new design run, called z (v, s,t), for each pair of runs (z4, z;), s < t, of the
initial design by setting :

z(a,s,t) =a(xs + ).



In other words we consider the sum of all the pairs of runs with a multiplicative
coefficient . This method including only the pair of runs is a particular case
of the general method proposed first by Box and Behnken [2] for simplex-sum
designs. Our problem with such a construction is to choose an "optimal" value
for the coefficient «. The idea of Spendley et al. [12] is to add to the initial
simplex all the midpoints of its edges (so « = 1/2). More recently, Morris [9]
or Fang and Mukerjee [5] have proved that taking a = —1/2 lead us to more
efficient designs. Our objective in this paper is on one hand to provide a general
understanding of this class when the initial design is a simplex and, on the other
hand, to find some new interesting values for this multiplicative coefficient.

Our paper is organized as follow. The beginning is devoted to recalls, notations
and general results about simplex designs and ASD. Section 3 deals with general
properties of small size simplex-sum designs. The problem of optimality for such
designs is studied in section 4. Blocking structures for ASD are introduced in
section 5 and we conclude with the presentation of an example in section 6.

2 Augmented pair designs

2.1 Initial simplex design

An augmented pair design is derived from an initial design which is often a first-
order classical design. In this paper we always consider that our initial design
is a saturated first-order design (i.e. constituted by n = m + 1 experimental
units when m quantitative factors are used). Such designs have received much
attention in the past principally concerning the class of simplex designs which is
very useful for fitting first order models when the factors are continuous and the
region of interest is spherical (see Box [1]). Note that a design is classically called
simplex design if, denoting X the model matrix:

n=m+ 1 and \/m—li—i—lX is an orthogonal matrix. (1)
In order to have a maximum of three different levels (a, b and ¢) for each factor we
consider in this paper the class of saturated designs such that their matrix have
the following form introduced by Mee [8] (with J,, = I,,,"I,,, the m X m matrix of
ones) :

a'l,,

(b—c)Im+ctn
Such a design can be used to fit a first order model and the model matrix is then
X = [L, | D1]. The purpose of Mee [8] was to use these configurations as simplex
designs. We easily verifies that D; is the matrix of a simplex design if and only if

D1 = D1 (CL,b, C) =

a = £1 and the two possible choices for a = —1 are given by:
a=—1 a=—1
b=(1—(m—-1)vVm+1)/m or{ b=(1+(m—-1)vVm+1)/m .
c=(14+vm+1)/m c=(1-vVm+1)/m



The two other choices for a = 1 are obtained by reversing all the signs in the
previous relations.

We are not interested in this paper by the classical method for constructing
simplex designs (see, for example, Khuri and Cornell [7]) because it follow from
the choice of an upper triangular matrix in place of the block (b — ¢) I,,, + ¢J,,, of
D, and generally needs a great number of different levels (for example 6 levels are
needed for m = 4). In the same way, cyclic simplex designs introduced by Crosier
[4] are not considered in this paper because they need in general more than 3
levels for each factor (for example 5 levels are needed for m = 4). Note that the
particular cases of cyclic simplex designs for 3, 7 or 11 factors can nevertheless be
used because we find then Plackett and Burman designs [10] (i.e. simplex designs
with only two levels for each factor). Note also that it is classical and easier to
consider for the initial design, like Fang and Mukerjee [5] do, a regular fraction of
the vertices of [—1,1]™. But with this choice the initial design cannot be a first
order saturated design (except when m = 3 [4] but we have then another time a
Plackett and Burman design [10]).

2.2 Augmented design

Now we consider the following second-order model denoting Y, . the observed
value of the response when the treatment = * (xq,...,r,,) of the experimental
domain & CIR™ is applied to the experimental unit u :

Yie =By + i Bix; + f: 6213712 + Z Zﬁijxixj + Cua-
i=1 i=1

i<j
Such a model has then p = (m+ 1) (m + 2) /2 unknown parameters. In order
to fit this model we consider the augmented matrix Dy whose rows consist of

all possible sums of the pair of rows of D;. Then we call augmented simplex
design (ASD) every design constituted by the design matrix such that :

tD = [altDl | OéQtDQ] .

Note that D; has n; = (m + 1) rows and D has ny = (m;ﬂ) rows. So, the total
of experimental units for such an ASD is n = n; + ns = p, it is then a saturated
second order design. More generally we call ASD in the following every design
of this form with the addition of nyg € N central replications. We suppose now
that a; = 1 and we denote by « (in place of as > 0) the radius multiplier. This
hypothesis is not restrictive because we are only interested in the following by
the ratio between «; and as. The value of a; is just a scale parameter and it is
classical to give it the value 1 in order to put the design points of the simplex
on the sphere of radius \/m (see section 3.1). We also denote by x, and z; the
coordinates of two different points of the initial simplex design (i.e. two different
rows of D). The augmented part of the design (i.e. the rows of Ds) is then
constituted by the following points x4 such that :

YV xs,xy with xg # x4, Tg = x5 + 34
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In addition of the simplicity of this relation we can remark the sequential property
of such a design. The experiments can be run in a first time with the initial simplex
design and continued only if the fist order model does not fit well.

3 Some properties of ASD

3.1 (Geometric properties

The general definition (1) of simplex designs implies that :

1

So every simplex design satisfies :
DltDl = (m + 1) Im+1 - Jm+1-

In other words, if z; and x; are the coordinates of two different points of the
simplex design we have then:

lzoll* = llze]* = m and (2, | 2,) = —1. (2)
For the augmented part, relation (2) implies that:
lzatll® = llzs + el = [lzs]® + laell® + 2 (25 | @) =2 (m = 1). (3)
So the non-central design points of a simplex-sum design lie on the surface of two
different centered spheres. More precisely, denoting S (z) = {v € IR™ / tvv = 2},
every ASD associated to the matrix *D = [*D; | o’ Ds] is constituted by:

{ an initial part on the sphere S(v/m), n

an augmented part on the sphere S(|a|+/2(m — 1)).

This last result implies in the following that & € [Luin, Lmax] With Liax = —Lin =
m/2(m — 1) in order to consider the classical spherical domain of radius /m.

3.2 Radius multiplier properties

We have seen in previous sections that construction and geometrical interpretation
of ASD are easy. The main problem is now the choice of the value for the radius
multiplier a. The usual choices are given below:

1) The most usual value used in practice for the radius multiplier is o = 1/2
(see Spendley et al. [12]). This method of construction of the augmented part is
called in the following the classical method. The principal advantage of this
method is due to the simplicity of a and to a simple geometric interpretation (the
augmented points are then at the midpoints of the edges of the initial simplex).
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2) Morris [9] has proposed a method for constructing augmented pair designs. His
idea is to take an initial design of small size (not only a simplex design like here)
and to add an augmented part such that “for each factor, the value selected in
the new run is the negative of the average of the two values from the s-th and t-th
run”. In other words, the method of Morris implies the choice « = —1/2. The
principal advantages of this method is on one hand to give more efficient designs
than for the classical method and, on the other hand, to obtain a three-level
augmented design if the initial design has only two levels for each factor.

3) Another goal can be the structure of equiradial design. In that case it is clear
from (4) that the radius multiplier must verify:

la|/2(m—1)=+vm so a==+ ﬁ

This choice may be interesting in order to achieve some properties like D-optimality
(see section 4.2) because all the experimental units are then at the boundary of
the experimental domain (but such a design can be singular if, for example, there
is no central point).

3.3 Moments properties

Box and Behnken [2] have defined the more general class of simplex-sum design
(SSD) such that every SSD is associated to the following matrix:

tD = [altDl | OéQt_DQ | | ak;tDk}

where £ < m and D, (1 < s < k) is a matrix whose rows consist of all possible
sums of the rows of Dy taken s at a time. They have proved that when k = m
the set of runs must be scaled to specific radius multipliers in order to obtain
a rotatable design (see table 2 of their paper for the corresponding values of
aq, ..., ) i.e. a design such that all the odd moments up to order 4 are zero and
the even moments satisfy:

Vi, j=1,..mwithi#j, [*] =X, [i**] =\ and [i'] = 3\s.

Our goal in this section is to look for rotatable ASD (i.e. rotatable SSD in the
particular case k = 2). We prove in a first time (see appendix A) that for every
ASD the following properties are satisfied:

all the moments of order 1 are zero,
all the odd moments of order 2 are zero and [i*] = \s.

In order to extend these properties to high-order moments we also prove in ap-
pendix A that all the moments of order 3 of an ASD are zero if and only if (for

m # 3):
-1

m—3
Unfortunately this value of o does not imply that all the odd moments of order 4
are zero. So we can conclude that ASD cannot be rotatable designs.

Oé:3
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4 Optimality of ASD

4.1 Maximin criterion

An easy way to evaluate the efficiency of ASD is to use the maximin criterion
introduced by Johnson et al. [6]. This criterion (independent of the chosen model)
leads us to select designs that maximize the smallest interpair distance of the
design’s points. Then if (a:u)uzln are the experimental units of a given design
D we have to maximize the following quantity for a chosen norm:

Mm (D) = min ||z, — z,|| for all x,,x, € D with x,, # x,,.

From the geometric properties given in section 3.1 it is then possible to find
explicitly the value of Mm («) for every saturated ASD of radius multiplier a. In
fact, relations (2) and (3) imply the existence of the following different interpair
distances for the usual Euclidian norm (with s, ¢, u, v four different integers):

di = ||z — xel|* = ||zl + llael|* = 2 (25 | 21) = 2(m +1).

B = ||avy — v, = |Jazs + az, — 2,))* = 202 (m — 1) + 4o +m,

A2 = |lazy — z,|° = |Jaxs + az, — z,|° = 202 (m — 1) 4+ 20 (1 — m) + m.

B = ||oxy — x|’ = o ||z — 24]|* = 202 (M + 1),

A2 = ||azy — ay|]® = 02 |25 + 2 — 2y — x||> = 402 (M + 1)

The distance d; is between two points of S(y/m), ds and d3 are distances between

a point of S(y/m) and a point of the sphere S(|a|+/2 (m — 1)) and d4 and ds are
distances between two points of S(|a| 4/2 (m — 1)) (note that distance d5 does not
exist when m < 3). So the maximin criterion can be derived (when m > 3) from
the following function :

Mm (a) = min (d1, dg, dg, d4, d5) .

But it is clear that dy < d5, dy < dy (because —1 < a < 1), d3 < dyif a > 0
and dy < d3 if o < 0. These results imply that we have the very simple following
expression for Mm (and for every number of factors m) :

Mm (a) = min (ds,ds) if &« >0 and Mm (o) = min (d2,ds) if « <0. (5)

If we add now a central point to the ASD we have to consider the two following
other distances :

@2 = ||z,|” = m and d& = |laxy|]* = 202 (m — 1).

It is clear in this case that d? < d3 and also d2 < d3 (because |a| < \/m/2(m — 1))
so if a central point is added the function Mm is now defined by:

Mm (a) = min (ds, d7) if &« > 0 and Mm (o) = min (dg,d7) if « <0. (6)

The figure 1 gives some graphical representations of the function Mm for a €
[Linin, Lmax]- Results (5) and (6) lead us easily to the following theorem:
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Theorem 1. Consider an ASD for m factors and ng € N central
points. The most efficient designs for the maximin criterion are given
by radius multipliers such that:

1) qopt = Limax  if m =2, 2) Qopt = £Lmax  if m =3,

3) Qopt = Linin  if m > 3.

Note that these results are true with or without central points added to the initial
simplex design (that is with ng > 0 or ng = 0).

157 15
1.25 125
Mm Mm

17 1
0.75 0.75
057 0.5
0.25 0.25

0 t f t t 0 t ¥ t f

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Alpha Alpha
2 FACTORS (NO CENTRAL POINT) 2 FACTORS (CENTRAL POINTS)

+ + + t + + + t t t + + +
-0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

Alpha Alpha

3 FACTORS (NO CENTRAL POINT) 3 FACTORS (CENTRAL POINTS)

Alpha Alpha

4 FACTORS (NO CENTRAL POINT) 8 FACTORS (CENTRAL POINTS)

FIGURE 1
Maximin criterion Mm for 2, 3,4 and 8 factors.

7



Note also that this criterion is unable to make a choice between the classical
radius multiplier & = 1/2 and the radius multiplier of Morris o = —1/2 because
we always have Mm (—1/2) = Mm (1/2).

4.2 D-efficiency criterion

In order to evaluate an efficiency adapted to the chosen polynomial model of
order two our purpose is now to consider the classical criterion of D-efficiency (see
for example the book of Pukelsheim [11]). For an ASD obtained with an initial
simplex design of matrix D; and a radius multiplier equal to « this criterion is
given by (denoting X the model matrix of the ASD and |.| the determinant):

do = do (D) = |M|? with M = (1/n)" XX.

The goal is to maximize this criterion in order to obtain efficient designs. If we are
interested by the efficiency of an ASD with respect to another ASD obtained with
the same initial simplex design and a particular value o* of the radius multiplier
we have then to compute the ratio d,/d,+. The following theorem concerns the
choice of +a for the radius multiplier (see the proof in appendix B):

Theorem 2. Consider the two ASD for m factors obtained with
the same initial simplex design and the choice o or —a for the radius
multiplier. We have then the following results for every positive radius
multiplier a:

1)if m=2 thend, >d_,, 2)if m=3 thend, =d_,,
3) if m >3 thend, <d_,.

In other words the choice of a positive radius multiplier « would be better
when two factors are analyzed. In all the other cases the choice of the negative
radius multiplier —« is more judicious than the choice of . This result is then a
generalization of Morris one’s only established for the value 1/2.

Now we are interested by the determination of optimal values for the radius
multiplier a. The problem of the maximization of d, is very complex in our case
due to the nontrivial form of the matrix XX (see appendix B). So numerical
computations have been made and some graphical representations are given below.
Note that in this section tables and figures always compute D-efficiencies with
respect to the classical value o = 1/2 for the radius multiplier (i.e. d,/dp5). The
numerical results lead to the two following different situations.

1) When no central experiment is used (see the three examples in figure 2)
the optimal choice for the radius multiplier is not L, or Ly.x. This is because
when o = £4/m/2 (m — 1) all the experimental units of the ASD lie on the sphere
S(y/m) so the matrix X is not of full rank for a polynomial model of order two
and then the efficiency is zero.



D-EFF EFF

1.5 | i
! K / | | \
- | | /—\ e //\\ 3 3 //‘\\
X : : ML Nl L |
N oo N l
0 e RS S A s’ St
. | /o | o A /|
0r | / ! ) | \ /o
' / 0.7 \ /
! / ! 0.6 | AN /
; / | \ 0.5 | N /
3 / 3 - ‘ ! \\ //
! / | \ ) ! N\ /
0.3 i N / i 0.3 | \\ //
o 3 N/ 3 o ‘ \//
: N/ ! . I
o / : \v/ : 00 i T : T
o ' o ! . -1.0 -0.5 0.0 0.5 1.0
ALPHA
ALPHA
2 FACTORS (NO CENTRAL POINT) 3 FACTORS (NO CENTRAL POINT)
EFF
2.4
2.2 aN
2.0 / \
\
1.8 N
1.6 ‘ \\ ! //“\
1.4 N /
5 /
12 t\\ //
10y ————— -~ [ s A
0.8 | \\\ //
0.8 N //
0.4 ' \\ S
0.2 | \_/
0.0 i

-1.0 -0.5 0.0 0.5 1.0
ALPHA

4 FACTORS (NO CENTRAL POINT)

FIGURE 2
D-efficiency for some saturated ASD.

We summarize in table 1 the optimal values of the radius multiplier and the corre-
sponding efficiencies. We note that the proposed values lead us to most efficiency
designs than the classical choice o = 0.5 (or also a = —0.5) especially for a great
number of factors.

m | a opt. | D-efficiency || m | a opt. | D-efficiency
2| +0.768 1.215 6 | —0.754 3.122
3 | £0.764 1.453 7|1 —0.749 3.388
4 | —0.766 2.214 8 | —0.745 3.580
5| —0.760 2.747
TABLE 1

Optimal radius multiplier o and D-efficiencies for saturated ASD.

2) When at last one central experiment is used (see the three examples in
figure 3) then the model matrix X is always of full rank and we find that optimal
configurations are obtained (like for the maximin criterion) when :

Qopt = Limax if M =2, opt = £ Lmax if m =3 and aopr = Linin if m > 3.
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D-efficiency for some unsaturated ASD.

5 Blocking structures for ASD

5.1 Fixed block effects model

Let us suppose now that we have b blocks of sizes ki, ..., k; associated to the block
effects v, ...,7,. Then we consider the following linear model denoting Y,,;, the
observed value of the response when the treatment z = * (21, ..., x,,) associated
to the I-block (1 <1 <b) is applied to the experimental unit u :

Yuiz=7+ Z Biwi + Z Buwi + Z Zﬁiﬂ?z’l‘j + Eu -
i—1 i—1

i<j

Note that in order to avoid the classical singularity of block models we have
excluded the general mean effect 3,. Such a model has then p* = m (m + 3) /2+b
unknown parameters. When we take only one block we find again the classical
second-order model. In the following we denote by X* the matrix of this model
so X* = [B | W] with B the matrix of the characteristic functions of the blocs
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and W the matrix of the linear, quadratic and interaction effects. Recall that a
blocked design is said to be orthogonally blocked if and only if :

1
W (In - —Jn) B =0. (7)
n
We are then looking for orthogonally blocked configurations of ASD.

5.2 Blocked ASD

Two different methods are investigated in this section in order to obtain to types
of ASD orthogonally blocked in two blocks.

1) First method. A very simple and classical choice consists in the duplication
of an ASD. The two blocks are then obtained by the repetition of the same ex-
periments. We recommend in this case to use a saturated ASD for the blocks in
order to minimize the total number of experiments. More precisely the number of
experiments n and the number of unknown parameters p* in the model are then
given by:
m(m+3)+4

5 :
We easily verifies that such a configuration is always orthogonally blocked. More-
over if the user does not want to duplicate the experiments we have the same
result with any ASD with radius multiplier « for the first block and any other
ASD with radius multiplier +« for the second block.

n=m+1)(m+2) and p* =

2) Second method. The drawback of the first method is the number of experi-
ments which cannot be less than (m + 1) (m + 2) . This is maybe too large when
experiments are expensive. In this case another logical way in order to obtain two
blocks for the ASD is given below :

Block 1 : initial part of the ASD and ng; central points,
Block 2 : augmented part of the ASD and ngs central points.

Note that the two block’s sizes are respectively k1 = m + 1 4+ ng; and ke =
m (m + 1) /2 + ngs. Such a design is then saturated for the block effects model if
and only if ng; +nge = 1. We always assume in the following that ng; +ngz > 1. In
order to obtain an orthogonally blocked configuration we have then the following
result (see appendix C' for the proof) :

Theorem 3. Consider a blocked ASD in two blocks given by the initial
part of the design (with ng; central points) and the augmented part
of the design (with ngy central points). An orthogonally blocked
configuration for a radius multiplier « is obtained if and only if:

m(m 4 1)+ 2ngy = 2 (m + 14 nep) (m — 1) .

11



5.3 Optimality

The main interest of orthogonal blocked configurations is due to similar properties
concerning the D-efficiency criterion than non-blocked designs. Indeed denoting
X = [L, | W] and using Schur complements we have:

1
([n — —Jn) W’ .
n

If we consider a blocked design the model matrix is now X* = [B | W] so

oL, 5 )|+

‘WL, '"Ww

‘BB 'BW

tyv* *
XX _{tWB TWWw

] with ‘BB = diag (ki, ..., k) .

Then using another time Schur complements we obtain:

b
XX =]k

i=1

"WW —‘'WB (‘BB)”"'BW|.
From the assumption of orthogonal blocking we have ‘W (I,, — 1/n.J,,) B = 0 so:
- 1 -
'WB('BB)™ 'BW = —'WL, ("L,B (‘BB)” 'BL,) "LW.
But ‘I,B (*BB)"''BI, = 5."_, k; = n and then:
Hk tW(I ——J)W’
i=1
In conclusion when an orthogonally blocked design is used we have:
n|'X*X*| = (Hk) 'XX|.

Numerical values of these two determinants are then proportional so:

|tX*X*

Proposition 4. Consider a blocked ASD orthogonally blocked for
each value of the radius multiplier. Note o, a radius multiplier such
that the non-blocked design is D-optimal. Then a D-optimal config-
uration is obtained for the blocked design using the same value gy
for the radius multiplier.

This result can be directly applied for blocked ASD obtained by the first method
of section 5.2. Such designs are orthogonally blocked for every value of the radius
multiplier so optimal values for the radius multiplier are given when no central
experiment is made by Table 1 (see section 4.2) and in the other cases by:

Qopt = Limax if M =2, aop = £ Lmayx if m =3 and ogp = Liin if m > 3.
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The situation is more complex for the second method of construction because
in that case we can construct an ASD orthogonally blocked for only one partic-
ular value of the radius multiplier (see theorem 3). However if an ASD is not
orthogonally blocked then:

n|'X*X*

b
< (H k) ‘X X|.
1=1

This result can be proved in the following way. First, when two blocks are used
we can verify after some algebra that:

B(*BB)™''B—1/nJ, = B*B"
with B* = ([, — 1/nJ,) B the centered form of B and § = n/ (2k; (n — k1)) > 0.
Then, denoting = the Loewner ordering:
W (B('BB)" B =1/nJ )W =6 (WB) (B'W) = 0.
So, in conclusion:

Al (In — B('BB)”! tB) W < W (I, — 1/ny) W

b
= n|'X*X*| < (H k‘i> X X]|.
i=1
This result allow us to consider another time the non-blocked case and to state
the following proposition:

Proposition 5. Consider a blocked ASD in two blocks that can be or-
thogonally blocked for only one value a of the radius multiplier. Note
aop @ Tadius multiplier such that the non-blocked design is D-optimal.
Then a D-optimal configuration is obtained for the blocked design
if we put o and the radius multiplier a such that:

at = Qopt and ¢ = Qopy.

This result can then be directly applied for blocked ASD obtained by the second
method of section 5.2. Such designs are always regular (because we assume that
no1 + nog > 1) so an optimal blocked configuration must be orthogonally blocked
for the value 4L, of the radius multiplier. From theorem 3 applied with o« =
+ Linax (so0 a* =m/2 (m — 1)) we obtain the following lemma:

Lemma 6. Consider a blocked ASD in two blocks given by the initial
part of the design (with ng; central points) and the augmented part
of the design (with ngy central points). A D-optimal configuration
is obtained taking mng; = 2ng, and a radius multiplier such that:

Oopt = Limax if M = 2, qopt = £ Lnax if m =3, aopr = Linin if m > 3.
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Small size regular blocked ASD are then listed in Table 2. The values of ng;, ns
and a,,; verifying lemma 6 are computed and the total number of experiments n
is given concurrently to the number of unknown parameters p*.

*

o1 | No2 Qopt n|p

+1.000 8| 7
+0.866 | 15 | 11
—0.816 | 18 | 16
—0.791 | 28 | 22
—0.775 1 32 | 29
—0.764 | 45 | 36
—0.756 | 50 | 46

OO\]GDU‘»-PCO[\DS
el L I Y B
= 3| W[ o Do W] —

TABLE 2
Some D-optimal orthogonally blocked ASD.

From this table it is clear that this method of construction allow us to use eco-
nomical optimal blocked designs.

6 Example of application

Consider a random phenomenon associated to 4 quantitative factors in a context
of expensive trials. From the results of this paper we can propose to use one ASD.
With the initial simplex design in three levels of section 2.1 such configuration
has then the matrix design D given below for the value of the radius multiplier

0 = Ly = —\/2/3 ~ —0.816.

[ —1.000 —1.000 —1.000 —1.000 ]
1.927 -0.309 -0.309 —0.309

—0.309 1.927 —-0.309 —0.309

—-0.309 —0.309 1.927 —-0.309

-0.309 —-0.309 —0.309 1.927

—0.757 1.069 1.069 1.069

} 1.069 —0.757 1.069 1.069

1.069 1.069 —0.757 1.069
1.069 1.069 1.069 —0.757
—-1.321 —-1.321 0.505 0.505
—1.321 0.505 —1.321 0.505
—1.321 0.505 0.505 —1.321
0.505 -1.321 -1.321 0.505
0.505 —1.321 0.505 —1.321
0.505 0.505 —-1.321 —-1.321

We also consider in the following the addition of ng = 3 central experiments (so
the total of trials is now n = 18). Table 3 computes then all the dispersions of the
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estimators (with best results bolfaced) and the (relative) D-efficiencies for such
designs with respect to the classical value o = 1/2 (i.e. the ratios d,/dys5). We
find another time that the choice « = —0.5 is globally better than o = 40.5 but
the best choice in terms of D-efficiency is given by o = L, = —0.816 (i.e. by
the design of matrix D).

Value of « | Var 3, | Var 3, | Var 3, | Var BM D-eff.
+0.500 0.165 | 0.392 | 0.206 | 0.596 | 1.000
—0.500 0.165 | 0.200 | 0.134 | 0.545 || 1.197
+0.816 0.333 | 0.217 | 0.153 | 0.156 | 1.971
—0.816 0.333 | 0.071 | 0.070 | 0.098 | 2.636

TABLE 3
Dispersion of the parameters (02 = 1) and D-efficiency of the ASD.

We can make now a comparison between this ASD and a Fang and Mukerjee
[5] design (FMD), that is an augmented pair designs obtained from a regular
fraction. More precisely we consider the FMD associated with the 24! regular
fraction generated by the relations I = 124 (example denoted by the matrix X,
in their paper). Such a design has then n; = 8 trials in the initial part and then
ng = (S) = 28 trials for the augmented part. In order to compare this FMD
with another design of same size we can then use the n = 36 trials obtained
by a duplication of our ASD. Dispersion and efficiency results are then given in
table 4 (with all the relative D-efficiencies computed with respect to the FMD
with & = —0.5). Note that for the FMD there are several different values of the
dispersion for the linear effects and the interaction effects so the values given in
table 4 are then the average dispersion. At last, the value « = +0.577 for the
FMD is the maximal value of the radius multitplier in order to stay in the classical
experimental spherical domain of radius /m (it is derived from augmented points
on the form (a, a, @, 0)).

Value of « | Var Bo Var BZ Var Bu‘ Var BM D-eff.
FMD —0.500 0.119 | 0.053 | 0.113 | 0.086 || 1.000
—0.577 0.163 | 0.042 | 0.073 | 0.066 || 1.305
ASD —0.500 0.083 | 0.100 | 0.067 | 0.273 || 0.728
—0.816 0.167 | 0.035 | 0.035 | 0.049 || 1.925

TABLE 4
Comparison between ASD and Fang and Mukerjee design.

Then we can make the following conclusions concerning first the advantages of
the FMD:

1) If we use a radius multiplier such that a € [—0.5,0.5] then the FMD with
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a = —0.5 is the best choice (like Fang and Mukerjee [5] have proved) and it is
also better than the ASD with the same value of «.

2) For the radius multiplier & = —0.5 the FMD has only three levels for each
factors (instead of 7 for the ASD).

Now the main advantages of the ASD are given below:

1) If we use the radius multiplier & = —0.816 then we obtain a more D-efficient
design than every FMD.

2) The ASD is constituted by only n = 15 trials (if no central point is added) and
not n = 36 trials like for the FMD.

3) If we use n = 36 trials then the ASD can be easily orthogonally blocked and
central replications improve the analysis of variance.

7 Conclusion

We have seen in this paper that augmented simplex designs are very useful designs
in order to obtain saturated or small-size configurations. But the main problem
of such designs is the choice of the radius multiplier, especially when there is
no central replications. One important conclusion for a practical use is that the
classical value 1/2 for the radius multiplier is not a good choice because nega-
tive well-chosen values are better (for 3 factors or more. The other important
conclusion concerns blocking structure for such design. We have proved that the
hypothesis of orthogonally blocking is not difficult to obtain and the efficiency of
these designs is then similar to the efficiency of the non-blocked case.
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Appendix A

We want to evaluate all the moments up to order 2 for an ASD. According to
the notations of Box and Behnken [2], we have:

[1772% K = [102% K]+ af 1020 k]
with [1512‘52 . l{:‘sm} the global moment of order 6 = d;+...44,, and [1512‘52 . kém}s
the moment of design Dy (s = 1,2) multiplied by ns/n with ng the size of D;.
For the moments of order 1 we have then (Vi =1,...,m) [i] = [i]; + «[i], with
[i}; = 0 because columns of D; are orthogonal to I,,. This result also implies
that [i], = 0 (see the paper of Box and Behnken [2] for the relation between [i],
and [i];). So all the moments of order 1 are zero for every ASD. With the same
argument it is possible to show that all the odd moments of order 2 are zero. In
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fact, we have [ij], = 0 (for every i # j) because columns or D; are orthogonal to
each other and this result implies that [ij], = 0 (see Box and Behnken [2]). Now
the even moments of order 2 are given by (Vi = 1,...,m) [i*] = [¢*], +o? [¢*], with
], = (m + 1) /n from relation (1). For the augmented part, Box and Behnken
[2] have proved that:

2 _
Vielom, [, = T so (7] = de = T (14 (m - 1)e?)

For the moments of order 3 we consider in a first time (without loss of generality)
the pure moments [*]. We have then (Vi =1,...,m) , [*] = [¢*], + o’ [¢*],. But
Box and Behnken [2] have proved that:

Vizlom, [i1,= 22 (") [, = (n - 3) [,

So the moments [i®] of an ASD are given by:

Vi=1,..m, [’] = (1+a’(m—-3))[],.
Then:

a:—(m—3)71/3:>Vz':1,...,m, [23] =0.

Note that this result is only a sufficient condition in order to obtain all the pure
moments of ordre three equal to zero.This result is in fact a necessary and sufficient
condition in the class of ASD because in general the initial simplex design doesn’t
statisfies the alternative propertie: [i*], = 0 for i = 1, ...,m. Box and Behnken 2]
have also proved that [i%j], = (m — 3) [¢?j], and [ijk], = (m — 3) [ijk], so all the
moments of order 3 of the ASD are zero when this value of « is used W

Appendix B

Our first purpose is to find here the general form of the moment matrix of
every ASD. The model matrix of an ASD with ng > 0 central replications is:

I,, D DY D!

X= |1, aD, o?DY a?D!
]I’n,o O 0 0

with D? the matrix associated to the quadratic effects for the initial simplex and
D! for the interaction effects (DY and D! are the same for the augmented part).
Then the moment matrix is such that (with x denoting symmetric blocs):

W, Dy + &'lyDy ', DY + a1,,DS 1, DI + a2, D}

n
% X DDy +o*DyDy DD+ o¥D,DY  'DyD! + o*'DyD}
| x X ‘DPDE + DYDY *DED! + DY D]
X X tDIDI + o*DID!
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This general form can be simplified in a first way because all the moments of the
ASD up to order two are well known (see section 3.3). In a second way, using the
results of Box and Behnken [2], we can express all the moments of the augmented
part using only the moments of the initial part. These two treatments lead us
to the following form only depending on the moments properties of the initial
simplex design and the value of « :

vy o | Ala) Ba) | ..
XX—[tB() C(a)}wﬂzh.
[ n 0 hl (a)tﬂm 0
Ala) = 0 hi(@)In } B(a) = { hs (@)'D;D?  hy (@)D, DI }
) — [ hs () 'D2D + hy (@) (2Ln + Jm) hs (@) ' DE DI
(@)= _ hy (@) ‘DI D? hy (@) DID! + hy () I |’
and,{hl(a>=(m+1)[1+(m—1>a2], 2 (@) = [L+ (m —3)a?],
" ks (@) =1+ (m—T7)a"], hy (o) = (m+1)* .

So, using the Schur complements, we have:
'XX|, =nh{" () |C () = "B (a) A" () B(a)]| .

By definition A, is an even function of o and the matrix C' («) only depends on
a by the even functions hz and hs. We have then to consider only the following
matrix (denoting (*‘BA™'B)_, in place of 'B (o) A™! (a) B ()):

2 2 2
hl (Oé) J + h ( )tDQDltDlDQ 2 (Oé)tD?DltDlD{
(tBA_lB) _ n ) hi () 12(04)
(CY) tDIDltDlDQ 2 (a)tDIDltDlDI
hi () hi ()

We have then:

‘DYD\'D\DY 'DYD'DiD]
'DID\'D:DY 'DID\'D, DI
=A(0)'XX

(*BA™'B),— (‘BA™'B) , =A(w)

denoting X = [ *D;D? ‘D, D! | and:
h3 (o) — h3 (—a) _ 4(m—3) a’
hy () hy ()

So this last result implies the following relations for the Loewner ordering (V o« > 0
and V m > 3):

(‘BA™'B), — (*‘BA'B)_, =0 = (C—*BA'B). < (C—'BA'B)_,
= 'XX|, < ['XX|,

A(a) =

The result is then well proved (the case for m < 3 is similar) B
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Appendix C

In order to obtain orthogonal blocking ASD we have to compute the matrix
YW (I, — 1/nJ,) B. Note that the structure of the two blocks implies that (using
the notations of appendix B) :

I, 0 Wi D, DY DI
B g 1 d = = .
{ 0 ma} and ¥ { W, } { aDy 2D D]

Then :

1 1 1 kolly, —kolly
I,——J,|B=B-=IL,(1,B) = - ! T
( n ) n ( ) n [ —k‘l]le klﬂkQ

We have seen in appendix A that for every ASD the block’s moments verify (with
the notations of Box and Behnken [2]) :

Vi j=1,..,mwithi<j, [i, =[], =0and [ij], = [ij], = 0.

So :
1 0 0
W (5= 10) B= | Gl - ko )T (hali) + b (),
0 0

Then such ASD is orthogonally blocked if and only if :
Vi,j=1,..,m, ko [i*], = kio® [i*],.
From appendix A we have also :

vaj:meu[ﬂlzmzlmm[ﬂQZ

m? —1

n

Then the ASD is orthogonally blocked if and only if :

2 _
]{32 (TTL+1) :/{71052 <TTL 1) @kgzkl(m—l)&g.

n n

But the block’s sizes are well known and then :

ky=k(m—-1Da>emm+1)+2np=2(m+14+nn)(m—-1)a* B
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