
HAL Id: hal-00211776
https://hal.science/hal-00211776

Submitted on 21 Jan 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Removal and contraction operations to define
combinatorial pyramids: application to the design of a

spatial modeler
Guillaume Damiand, Martine Dexet, Pascal Lienhardt, Eric Andres

To cite this version:
Guillaume Damiand, Martine Dexet, Pascal Lienhardt, Eric Andres. Removal and contraction oper-
ations to define combinatorial pyramids: application to the design of a spatial modeler. Image and
Vision Computing, 2005, 23 (2), pp.259-269. �10.1016/j.imavis.2004.06.016�. �hal-00211776�

https://hal.science/hal-00211776
https://hal.archives-ouvertes.fr
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Abstract

Removal and contraction are basic operations for several methods conceived in
order to handle irregular image pyramids, for multi-level image analysis for instance.
We give the definitions of removal and contraction operations in the generalized
maps framework. We propose a first experimentation of irregular pyramid as a basis
for a discrete geometrical modeler that can handle both discrete and continuous
representations of geometrical objects. This modeler is based on a pyramidal kernel
with four coexisting levels between the discrete and the Euclidean representations.
We describe how this pyramid can be constructed and updated.

Key words: removal, contraction, irregular pyramids, n-G-map, modeler, discrete
reconstruction

1 Introduction

Hierarchical representations are the bases of several applications in the field
of discrete imagery. Our first goal is the study of basic problems related to the
definition of hierarchical structures. We study the definition of removal and
contraction operations, from which hierarchical structures can be derived (cf.
[35]).
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Then we study a first experimentation of these notions. A four level hierarchi-
cal structure is proposed in order to handle coherent discrete and continuous
representations of geometrical objects. The other levels of the structure corre-
spond to other representations which make a link between the previous ones,
mainly a discrete analytical representation.

Many works deal with regular (cf. e.g. [20]) or irregular (cf. e.g. [38,39,30]) im-
age pyramids for multi-level image analysis and processing (cf. also [35]). For
irregular pyramids, it is necessary to handle a (topological) representation and
basic operations, for instance dual graphs and removal and contraction opera-
tions for 2D images [33,34]. Similar problems about multi-level representations
arise also in geometric modeling (e.g. for CAD applications, architectural or
geological modeling,. . . [10,24,5]).

Our goal is to build a theoretical framework for the definition and handling of
n-dimensional irregular pyramids, in order to get coherent definitions of data
structures and operations for any dimension. So we study the definition of re-
moval and contraction of i -dimensional cells within n-dimensional objects (see
also [23]), in order to rigorously define the relations between two consecutive
levels of a pyramid.

We choose to study the definitions of removal and contraction operations for
n-dimensional generalized maps, since this notion enables us to unambiguously
represent the topology of quasi-manifolds, which is a well-defined class of sub-
divisions [37]. Note that several models based on combinatorial maps [26,29,21]
have been proposed for handling 2-dimensional [15,28] and 3-dimensional seg-
mented or multi-level images [12,7,8,11,22]. For instance, Brun and Kropatsch
revisit works about graphs [16–19] in order to define 2-dimensional combina-
torial map pyramids.

We prefer to use generalized maps instead of combinatorial maps, since their
algebraic definition is homogeneous and so we can provide simpler definitions
of data structures and operations with generalized maps, and so more effi-
ciency for the conception of softwares (Note that several kernels of geometric
modeling softwares are based upon data structures derived from this notion).
Last, we know how to deduce combinatorial maps from generalized maps, so
the results presented in this paper can be extended for combinatorial maps.
Precise relations between generalized and combinatorial maps, and other clas-
sical data structures are presented in [36].

We propose a first experiment of the definition of n-dimensional irregular pyra-
mids to define a four level hierarchical structure. This pyramid is the kernel
of a discrete geometrical modeler. The goal of this modeler is to handle both
discrete and continuous representations of geometrical objects. Operations in
the discrete or in the continuous world are quite different. Many of these oper-
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ations are best performed in one or the other world (morphological operations,
intersections, transformations, . . . ). Our goal is to perform an operation is the
world where it is best defined. There are applications where both worlds can
be needed. One that comes to mind is medical imaging where acquired data
is discrete. However, the popularity of techniques such as the Marching cubes
show that there many applications in medical imaging where a continuous
representation of discrete data is useful.

The particularity of our modeler is that for each object a discrete and a Eu-
clidean representation coexist in the modeler. These representations must be
consistent: the discretization 1 of the Euclidean representation must be equal
to the discrete object. Thus, we also want to be able to update all represen-
tations in case of modification in order to ensure the coherence. For instance,
each operation applied on the discrete representation (such as Boolean or
morphological operations) must automatically update the Euclidean repre-
sentation and vice versa.

We add some intermediate levels between the discrete and the Euclidean rep-
resentations in order to divide the updating operation into several basic steps.
So, we define a pyramid in order to represent all different representations in
a same data structure. This is a four level pyramid: level 0 is the discrete
representation (pixels); level 1 is the representation of the borders of regions;
level 2 is the discrete analytical representation and level 3 is the Euclidean
representation.

We recall in Sec. 2 the notion of generalized maps. Then we define removal
of one i -dimensional cell in Sec. 3, and contraction by duality (in Sec. 4).
In Sec. 5, we show that it is possible to simultaneously remove and contract
several cells of any dimensions, if and only if cells are disjoined. We present
in Sec. 6 the four levels pyramid, basis of the discrete geometrical modeler.
Then, we present all conversion operations between consecutive levels of the
pyramid in Sec. 7. Last we conclude and give some perspectives in Sec. 8.

2 Generalized Maps Recall

An n-dimensional generalized map is a set of abstract elements, called darts,
and applications defined on these darts:

Definition 1 (Generalized map) Let n ≥ 0. A n-dimensional generalized
map (or n-G-map) is G = (B, α0, . . . , αn) where:

1 The discretization model chosen here is the discrete analytical model called Stan-

dard Model.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

α0 2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21

α1 5 3 2 8 1 7 6 4 18 13 15 19 10 17 11 22 14 9 12 21 20 16

α2 1 2 20 19 5 6 7 8 9 10 17 18 13 14 15 16 11 12 4 3 21 22

Fig. 1. (a) A 2D subdivision. (b) The corresponding 2-G-map (involutions are given
explicitly in the array). Darts are represented by numbered black segments. Two
darts in relation by α0 share a little vertical segment (ex. darts 1 and 2). Two darts in
relation by α1 share a same point (ex. darts 2 and 3). Two distinct darts in relation
by α2 are parallel and close to each other (ex. darts 3 and 20); otherwise, the dart
is its own image by α2 (ex. dart 2). Dart 1 corresponds to (s1, a1, f1), dart 2 = 1α0

corresponds to (s2, a1, f1), 3 = 2α1 corresponds to (s2, a2, f1), and 20 = 3α2 corre-
sponds to (s2, a2, f2). The vertex incident to dart 2 is < α1, α2 > (2) = {2, 3, 20, 21},
the edge incident to dart 3 is < α0, α2 > (3) = {3, 4, 19, 20}, and the face incident
to dart 9 is < α0, α1 > (9) = {9, 10, 13, 14, 17, 18}.

(1) B is a finite set of darts;
(2) ∀i, 0 ≤ i ≤ n, αi is an involution 2 on B;
(3) ∀i, j, 0 ≤ i < i + 2 ≤ j ≤ n, αiαj is an involution.

Let G be an n-G-map, and S be the corresponding subdivision. Intuitively, a
dart of G corresponds to an (n + 1)-tuple of cells (c0, . . . , cn), where ci is an
i -dimensional cell that belongs to the boundary of ci+1 (cf. [14] and Fig. 1). αi

associates darts corresponding with (c0, . . . , cn) and (c′0, . . . , c
′
n), where cj = c′j

for j 6= i, and ci 6= c′i (αi swaps the two i -cells that are incident to the same
(i − 1) and (i + 1)-cells). When two darts b1 and b2 are such that b1αi = b2

(0 ≤ i ≤ n), b1 is said i-sewn with b2.

G-maps represent cells in an implicit way:

Definition 2 (i-cell) Let G be an n-G-map, b a dart and i ∈ N = {0, . . . , n}.
The i-cell incident to b is the orbit 3

2 An involution f on S is a one to one mapping from S onto S such that f = f−1.
3 Let {Π0, . . . ,Πn} be a set of permutations on B. The orbit of an element b

relatively to this set of permutations is < Π0, . . . ,Πn > (b) = {Φ(b),Φ ∈<

Π0, . . . ,Πn >}, where < Π0, . . . ,Πn > denotes the group of permutations gener-
ated by Π0, . . . ,Πn.
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Fig. 2. 0-removal in 1D. (a) Initial 1-G-map. (b) Result. C =< α1 > (2) = {2, 3}
(darts marked with empty squares), Cα0 = {1, 4} = BS (darts marked with
crosses). 0-removal consists in setting 1α′

0 = 1(α0α1)α0 = 4 ∈ BS and
4α′

0 = 4(α0α1)α0 = 1 ∈ BS .

<>N−{i} (b) =< α0, . . . , αi−1, αi+1, . . . , αn > (b)

Intuitively, an i -cell is the set of all darts which can be reached starting from
b, by using any combination of all involutions except αi. The set of i -cells is
a partition of the darts of the G-map, for each i between 0 and n. Two cells
are disjoined if their intersection is empty, i.e. when no dart is shared by the
cells. More precisions about G-maps are provided in [37].

3 Removal

Intuitively and in a general way for an n-dimensional space, the removal of an
i -cell consists in removing this cell and in merging its two incidents (i+1)-cells:
so removal can be defined for 0 . . . (n − 1)-cells.

3.1 Dimension 1: 0-Removal

For dimension 1, only the 0-removal exists, which consists in removing a vertex
and in merging its two incident edges. Let C =< α1 > (b) be a vertex, let
Cα0 be the “neighbor” darts of C for α0, i.e. Cα0 = {b′′ | ∃b′ ∈ C such that
b′α0 = b′′}, and let BS = Cα0 − C be the “neighbor” darts of C for α0 that
do not belong to C (see Fig. 2). The G-map resulting from the 0-removal of
C is obtained by redefining α0 for the darts of BS as follows: ∀b′ ∈ BS, b′α′

0 =
b′(α0α1)

kα0, where k is the smallest integer such that b′(α0α1)
kα0 ∈ BS. Note

that α1 is not modified by 0-removal.

3.2 Dimension 2

There are two different removal operations (0 and 1-removal) for dimension 2.

5
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Fig. 3. 0-removal in 2D. (a) Initial 2-G-map. (b) Result. C =< α1, α2 > (2) (darts
marked with empty squares), Cα0 = BS (darts marked with crosses). For instance,
1α′

0 = 1(α0α1)α0 = 4 ∈ BS

3.2.1 0-Removal

It consists in removing a 0-cell C =< α1, α2 > (b). Let BS = Cα0 − C (Cα0

is defined as above). This operation can be applied only if the following pre-
condition is satisfied: ∀b′ ∈ C, b′α1α2 = b′α2α1. This constraint corresponds,
in the general case, to the fact that the degree of the vertex is equal to 2 (2
edges are incident to the vertex). If this constraint is not satisfied, we do not
know how to join the cells incident to C, and it is then impossible to define
the removal in a simple way. [27] proposes a generalization of this operation,
but it is complex and cannot be used for an automatic process, in particular
in automatic image processing.

The G-map resulting from 0-removal is obtained by redefining α0 for the darts
of BS as follows: ∀b′ ∈ BS, b′α′

0 = b′(α0α1)
kα0 where k is the smallest integer

such that b′(α0α1)
kα0 ∈ BS. Note that this redefinition of α0 is the same as

for dimension 1 but concerns different darts, since it is a 0-cell within a 2D
object: cf. Fig. 3 (intuitively, in the general case, this operation consists in
applying twice the 0-removal defined for dimension 1).

3.2.2 1-Removal

It consists in removing a 1-cell C =< α0, α2 > (b). This can be achieved
without any precondition. Let BS = Cα1−C. The resulting G-map is obtained
by redefining α1 for the darts of BS as follows: ∀b′ ∈ BS, b′α′

1 = b′(α1α2)
kα1,

where k is the smallest integer such that b′(α1α2)
kα1 ∈ BS. Examples of 1-

removal are presented in Fig. 4, and 5. For this last example, k = 2 since the
removed edge is incident twice to the same vertex.

3.3 Dimension n

The general definition of i -cell removal for an n-dimensional G-map is an
obvious extension of the previous cases. Let C be an i -cell to remove; when
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Fig. 4. 1-removal in 2D
in the general case. Darts
of the edge to remove are
marked with circles. (a) Ini-
tial 2-G-map. (b) Result.
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Fig. 5. 1-removal in 2D of a loop. (a) Ini-
tial 2-G-map. (b) Result. For instance,
1α′

1 = 1(α1α2)(α1α2)α1 = 4 ∈ BS (since
1(α1α2)α1 6∈ BS , this dart belongs either
to C and to Cα1).

i < n − 1 the operation can be applied only when, informally 4 the degree of
C is equal to 2 (a vertex incident to exactly two edges or an edge incident to
two faces or a face incident to two volumes. . . ). The i -removal consists then
in redefining αi for the darts of BS = Cαi − C in the following way: b′α′

i =
b′(αiαi+1)

kαi, where k is the smallest integer such that b′(αiαi+1)
kαi ∈ BS.

We obtain so the general definition of the i -removal operation:

Definition 3 (i-cell removal) Let G = (B, α0, . . . , αn) be an n-G-map, i ∈
{0, . . . , n−1} and C =<>N−{i} (b) be an i-cell, such that: ∀b′ ∈ C, b′αi+1αi+2 =
b′αi+2 αi+1. Let BS = Cαi − C, the set of darts i-sewn to C that do not be-
long to C. The n-G-map resulting from the removal of this i-cell is G′ =
(B′, α′

0, . . . , α
′
n) defined by:

• B′ = B − C;
• ∀j ∈ {0, . . . , n} − {i}, α′

j = αj|B′; 5

• ∀b′ ∈ B′ − BS, b′α′
i = b′αi;

• ∀b′ ∈ BS, b′α′
i = b′(αiαi+1)

kαi,
where k is the smallest integer such that b′(αiαi+1)

kαi ∈ BS.

Note that G′ can contain only one n-cell, and may even be empty if G contains
only one i-cell.

4 Contraction

Informally, i -contraction consists in contracting an i -cell into an (i − 1)-cell.
Contraction is the dual of the removal operation. Informally, the dual of a
subdivision is a subdivision of the same space, in which an (n − i)-cell is
associated with each initial i -cell, and incidence relations are kept. A nice

4 The formal precondition is: ∀b′ ∈ C, b′αi+1αi+2 = b′αi+2αi+1. Note that if i = n−1
this condition doesn’t apply and we can always remove any (n−1)-dimensional cell.
5 α′

j is equal to αj restricted to B′, i.e. ∀b ∈ B′, bα′
i = bαi
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Fig. 6. 1-contraction in 1D.
Darts of the edge to contract
are marked with black disks.
(a) Initial 2-G-map. (b) Result.

1
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Fig. 7. 1-contraction in 2D. (a) Initial
2-G-map. (b) Result.

property of G-maps is the fact that the dual G-map of G = (B, α0, . . . , αn) is
G′ = (B, αn, . . . , α0): we just need to reverse the involution order.

We can thus easily deduce the definition of i -contraction from the general def-
inition of i -removal. We just have to replace ’+’ by ’-’ for indices of involutions
for preconditions and operations, i.e. αi+1αi+2→αi−1αi−2 and αiαi+1→αiαi−1.
(see two examples of contraction in Fig. 6 and 7).

Definition 4 (i-cell contraction) Let G = (B, α0, . . . , αn) be an n-G-map,
i ∈ {1, . . . , n} and C =<>N−{i} (b) be an i-cell, such that 6 : ∀b′ ∈ C, b′αi−1αi−2 =
b′αi−2αi−1. Let BS = Cαi − C , the set of darts i-sewn to C that do not
belong to C. The n-G-map resulting from the contraction of this i-cell is
G′ = (B′, α′

0, . . . , α
′
n) defined by:

• B′ = B − C;
• ∀j ∈ {0, . . . , n} − {i}, α′

j = αj|B′;
• ∀b′ ∈ B′ − BS, b′α′

i = b′αi;
• ∀b′ ∈ BS, b′α′

i = b′(αiαi−1)
kαi,

where k is the smallest integer such that b′(αiαi−1)
kαi ∈ BS.

5 Generalisations

Previous definitions enable us to remove or to contract a single cell. For some
applications, it could be more efficient to simultaneously apply several oper-
ations. Concretely, let G be an n-G-map. Assume that each dart belonging
to a removed or contracted cell is marked with the dimension and type of
the corresponding operation. Operations can be simultaneously applied if and
only if:

• the cells are disjoined (involving that a dart has at most a unique mark and

6 Note that this condition doesn’t apply for i = 1, so we can always contract any
edge.
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thus that there is no ambiguity when redefining αi for each i, 0 ≤ i ≤ n);
• the preconditions of the corresponding operations are satisfied.

Indeed, when a precondition is satisfied before a set of operations, this precon-
dition is still satisfied after each step of the operation (the converse is obviously
false), because cells are disjoined. This allows us to apply simultaneously or
successively a set of operations and to obtain the same result.

We now present this generalization in several steps. First, we show that it
is possible to simultaneously perform removals (resp. contractions) of several
i -cells for a given i (0 ≤ i ≤ n).

Generalisation 1 We can easily prove that the previous definition of removal
(resp. contraction) stands for the removal (resp. contraction) of a set of cells
of same dimension i. The (possible) precondition of the initial operation has
to be satisfied for each cell (cf. Fig. 8(a)).

Moreover, removing (resp. contracting) simultaneously several i -cells or ap-
plying successively, in any order, the initial operation for any removed cell,
produce the same result. The main idea of the proof is: each αi redefinition con-
sists in: ∀b ∈ BSi, bα′

i = b(αiαi+1)
kαi. The darts of this path can be partitioned

depending on the removed cells they belong to, i.e. bα′
i = b(αiαi+1)

k1(αiαi+1)
k2

. . . (αiαi+1)
kpαi. Each subpath corresponds to a single removal and so order is

not important, and each removal does not depend on other operations.

We retrieve here the notion of connecting walk of Brun and Kropatsch [17].
Darts of BSi are surviving darts and α′

i put in relation two darts of BSi by
passing through some non-surviving darts (darts crossed by (αiαi+1)

k).

Generalisation 2 The previous generalization can be directly extended for
simultaneously removing and contracting cells of same dimension i. A cell is
either removed or contracted, but not both at the same time. The (possible)
precondition of the corresponding initial operation has to be satisfied for each
cell (cf. Fig. 8(b)).

More precisely, let CSi (resp. CCi) be a set of i -cells to remove (resp. contract),
such that CSi∩CCi = ∅ and such that the (possible) precondition of i -removal
(resp. i -contraction) operation is satisfied for each cell of CSi (resp. CCi). Let
BSi = (CCi∪CSi)αi− (CCi∪CSi). As before, αi is redefined for these darts:
∀b ∈ BSi, bα′

i = b′ = b(αiαk1
) . . . (αiαkp

)αi where p is the smallest integer such
that b′ ∈ BSi and ∀j, 1 ≤ j < p, if bc = b(αiαk1

) . . . (αiαkj−1
)αi ∈ CSi then

kj = i + 1 else (bc ∈ CCi) kj = i − 1.

Generalisation 3 The previous generalization can be directly extended for
the removal and/or contraction of a set of disjoined cells of any dimension.
The (possible) precondition of the corresponding initial operation has to be

9
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Fig. 8. (a) Simultaneous 1-removals in 2D. (b) Simultaneous 1-removals (dart
marked with circles) and 1-contractions (dart marked with black disks) in 2D. For
instance, 1α′

1 = 1(α1α0)(α1α2)α1 = 2 since the edge incident to 1α1 is contracted
and the edge incident to 1(α1α0)α1 is removed.

satisfied for each cell.

This last generalization is possible because the set of cells are disjoined. If we
consider two disjoined cells, there are two possibilities: the two cells have the
same dimension and they can be adjacent or not; the two cells have different
dimensions and they can not be incident. The first case is covered by the
previous generalizations. The second one is easy to consider since the cells are
not incident: so some surviving darts exist between the two cells, and αi is
redefined only for these darts. The other cells are not modified and so other
preconditions are still valid when applying any subset of these operations.

6 A pyramidal data structure for a spatial modeler

6.1 Introduction

For a few years we are interested in the design of a discrete modeling soft-
ware [4]. With this modeler, our goal is to create, import and handle different
representations of a same geometrical object (mainly discrete and continuous
representations). Modeling softwares exist that can handle discrete represen-
tations or Euclidean representations but rarely both. There are however sit-
uations where both representations could be useful.Let us give two examples
to illustrate the long term goals of such a modeling system: Let us consider
the general problem of computer vision as a first example. It is clear now
that computer vision (for surveillance and security system applications for in-
stance) requires low-end image processing techniques but also the construction
of a high-level semantic model of the image content. There lies an important
bottleneck in defining and constructing such a virtual high-level model. It
would seem natural that a high-level model shouldn’t be unrelated to virtual
reality models as proposed in “continuous modeling”. Being able to have both

10



a continuous “high” level representation and a discrete “low” level one could
be an asset.

As a second example, let us consider the problem of augmented reality with
an image containing real world objects (acquired by photography for instance)
and virtual, synthetic, ones. Having both coexist in a single image means mix-
ing geometrically the objects, mixing artificial and natural light and shadow
effects, etc. Augmented reality has many applications in movie and advertising,
virtual surgery, architecture, etc. One bottleneck lies in the virtual models that
haven’t been conceived to handle low-end pixel or voxel information. Again,
a close collaboration between both worlds should bring new insight in such
problems.

In a first release of our modeler, the discrete and Euclidean forms of an object
were coexisting, but were not directly linked. Then, in case of modification,
each representation had to be entirely recomputed in order to keep coherent,
the different representations. However, most operations are local ones; the
effect of a local modification of a representation will be a local modification of
the other representation. This requires the existence of connections between
the different representations of an object.

In order to solve these problems, we propose the use of a pyramidal structure.
Each level corresponds to a particular representation of the object: Euclidean,
discrete analytical, borders of regions and pixel representations. Each level is
linked with the level above and below it. This ensures the coherence between
all the representations.

We present here our structure and some basic operations. For the moment,
we deal only with 2D objects, because the discrete analytical reconstruction
of a Euclidean object from a discrete object is still under investigation in 3D,
while the 2D case has been fully solved [13]. Note that we can extend the
pyramidal structure and the discretization process of a Euclidean object in
any dimension.

6.2 Our structure: a pyramid of G-maps

Our pyramidal structure consists of four inter-dependent levels (see Fig. 9):

– Level 0: the discrete level
This level corresponds to the discrete matrix representation which is com-
posed of pixels. A label, such as grey scale or color, is associated with each
pixel.

– Level 1: the discrete border level

11
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Fig. 9. The pyramidal structure.

The discrete border level corresponds to the contours obtained for each
uniform labelled 4-connected region. These contours are the interpixel ones
[32,31] (note that these contours are a Cellular Complex as defined by [1]).
We can see on Fig. 9 that these contours are made up of 0-cell and 1-cell
series.

– Level 2: the discrete analytical level
This level corresponds to the discrete analytical description of the region’s
contours. More precisely, each contour is described as a discrete analytical
polygon.

– Level 3: the Euclidean level
In this level, each region is described as a Euclidean polygon.

For each level, there are structure and shape information. More precisely, each
level is composed of a generalized map which represents the topological infor-
mation. Specific geometrical information (called embeddings) are associated
with specific orbits of each level in order to define the shape of the object.

New levels could be added without major upheaval in the structure. Note that
the levels of the pyramid are chosen in order to obtain progressive evolution
between the generalized maps of the first and the last levels: each intermediary
map can be obtained from the previous one by minor modifications.
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6.2.1 Links between levels

Since our goal is to quickly reflect a modification of a level of the pyramid
on the other levels, we set up bidirectional connections between the different
levels of the pyramid, and more precisely between darts of the levels (surviving
darts). Figure 10 shows some connections between darts of the pyramid (this
is only a partial representation). The advantage of these connections is that all
pyramid’s embeddings become accessible for all levels. The information redun-
dancy inside the pyramid is thus limited. For example, color embeddings are
only associated with level 0 map, and each level can access these information
through existing connections.

Fig. 10. Some connections between levels.

6.2.2 Level 0: the discrete level

The G-map of this level corresponds to a space subdivision into pixels (see
Fig. 11(a)). Each pixel is represented by a square topological face associated
with a label embedding. Moreover, integer coordinates are attached to each
topological vertex.

6.2.3 Level 1: the discrete border level

The G-map of this level corresponds to a space subdivision into regions (see
Fig. 11(b)), in which each topological edge corresponds to a 1-cell. This map
is obtained by merging pixels of level 0 having the same label, by applying
1-removals (see Sec. 7). There are no embeddings at this level since level 0
embeddings (integer coordinates of 0-cells) can be accessed by using the links
between levels of the pyramid.

6.2.4 Level 2: the discrete analytical level

The G-map of this level corresponds to a space subdivision into regions (see
Fig. 11(c)), in which each topological edge corresponds to a discrete analytical
segment. The discretization model used here is the discrete analytical model
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Fig. 11. The four levels of the pyramid.

called Standard Model [2,3]. We use this model because this is the only one
that allows the analytical discretization of 4-connected polygons (segments
and points). Moreover, this model is defined for any dimension.

(b) 3x − 7y = 0

(a) 3x − 7y <= −5

(c) 3x − 7y < 5

Fig. 12. Example of standard line and its analytical description. Pixels in gray
correspond to the standard discretization of (b), i.e. they are pixels crossed by the
line. (a) and (c) give the two opposite inequations of the analytical description. Note
that the inequation (c) is a strict one. These inequations are satisfied by the pixel
centers.

We can see in Fig. 12 an example of a standard line and its analytical descrip-
tion. A discrete standard line of parameters a, b, c is the set of integer points
(x, y) verifying −ω ≤ ax + by + c < ω with ω = |a|+|b|

2
and a ≥ 0 or a = 0 and

b ≥ 0.

Level 2 map is obtained from level 1 map by applying 0-removals (see Sec. 7).
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The embeddings of this level consist in a set of inequations. Each discrete
segment is described by two opposite inequations associated with a topological
edge, and each discrete vertex is described by four inequations associated with
a topological vertex. To ensure the coherence between this level and the two
previous ones, analytical inequations of level 2 must be satisfied by all 0-cells
of level 1 (pixel centers of level 0).

6.2.5 Level 3: the Euclidean level

There are many different works [6,9,25,40] about modeling of Euclidean objects
with maps. The G-map of this level corresponds to a generalized map with
vertex embeddings that are 2D Euclidean coordinates (see Fig. 11(d)). The
standard discretization of this level must correspond to the level 1.

Note that this level is not unique. Indeed, a discrete object can be seen as an
equivalence class of Euclidean objects which have the same discretization. In
our software we consider only one member of this class. It is thus not possible
to ensure that, if we discretize a Euclidean object and then reconstruct it, we
recover the same Euclidean object. On the other hand, a discrete object that
is reconstructed, then discretized will remain unchanged. This supposes that
the reconstruction process is deterministic. Since it depends on the starting
point, a starting point choice convention is set up. Basically, the discrete point
that has the smallest x value and among those the one with the smallest y
value is the starting point.

7 Construction steps between consecutive levels

In this section, we present all algorithms we use to build a level from a neighbor
level. Indeed, depending on the application, we want to build a level i given a
level i+1 (discretization) or in the other way build a level i+1 given a level i
(continuation).

7.1 Conversions between level 0 and level 1

• Level 1 is obtained by merging all incident faces of level 0 having same
label. This corresponds to the use of 1-removal operations (see Sec. 3). The
algorithm is the following: first, all edges between two pixels having the same
label are marked. Then, these edges are removed during a single scan by
applying simultaneous 1-removals (see Sec. 5).
We can see on Fig. 13 an example of discrete border level, as well as some
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connections between the two levels. Note that each border dart of level 0
(i.e. without adjacent dart) is connected with one dart of level 1. Integer
coordinates embeddings of level 0 can thus be accessed by level 1 through
these connections.

(b)(a)

Fig. 13. Example of discrete (level 0) and border discrete (level 1) levels. (a) Level 0
map with marked darts (marks are represented by black circles). (b) Level 1 map
obtained after several 1-removals. Arrows show some connections between darts,
and all black darts are connected ones.

• To build level 0 from level 1, we need to reconstruct the pixels, for example
by using a flood-fill algorithm on a matrix of 1-cells corresponding to level 1.
We can see in Fig. 14(b) the level 0 obtained from Fig. 14(a). Note that the
discrete space represented in Fig. 14(a) and Fig. 14(b) are not the same, but
are duals.

(a) (b)

Fig. 14. (a) A discrete border level (level 1) and (b) its associated discrete view
(level 0).

7.2 Conversions between level 1 and level 2

• To obtain level 2 from level 1, we use an operation called analytical recogni-
tion [13]. During the analytical recognition step, all vertices that belong to the
same discrete segment are removed (by using 0-removal operation) in order to
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keep only the two edge extremities. We can see in Fig. 15 the simplification
made after a discrete segment recognition.

2

1

1

2

(a) (b) (c)

Fig. 15. Building level 2 from level 1. (a) Black darts belong to the recognized
discrete segment. (b) Marked darts are removed using 0-removals. (c) Result.

At the end of the process, we have recognized all edges of the initial object. We
can see in Fig. 16 the final result obtained for level 2. The generalized map has
been simplified and each topological edge corresponds to a recognized discrete
segment. Analytical inequations computed during the analytical recognition
are linked with each edge and with each vertex of the map.

(a) (b)

Fig. 16. Example of discrete border (level 1) and discrete analytical (level 2) levels.
(a) Level 1 with marked darts. (b) Level 2 obtained after several 0-removals. Upper
arrows show some connections between darts of level 1 and level 2.

• To build level 1 starting from level 2, we need to discretize the contours of
level 2 (the discretization model used is the standard model, see Sec. 6). For
each edge of level 2, if the standard discretization of the two edge end points
differ from each other (see Fig. 17), the edge is incrementally discretized from
one end point to the other, and a new vertex is inserted into the edge while the
other end point is not reached. If the standard discretization of the two edge
end points are equal (see Fig. 18), all darts of the edge are marked. Then, all
marked edges are contracted using simultaneous 1-contractions (see Sec. 5).

However, some problems can arise such as degenerated faces (see Fig. 19).
These faces disappear in the discrete level due to the loss of information in-
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(a) (b)

Fig. 17. First case. (a) The black edge
is the processed one. Each filled pixel
is crossed by the corresponding Eu-
clidean segment. (b) Incremental dis-
cretization of the edge.

(b)(a) (c)

Fig. 18. Second case. (a) The back edge is
the processed one. The filled pixel is the
unique pixel crossed by the corresponding
Euclidean segment. (b) The darts marked
with black disks are contracted using 1-con-
traction. (c) Result.

herent to the discretization process. Thus, we chose to delete these faces mainly
using 2-contractions (see Sec. 4).

(a) (b) (c) (d)

Fig. 19. Example of degenerated faces. (a) Euclidean object. (b) Map corresponding
to the object in (a). (c) Standard discretization of the two black edges in (a). Black
darts are contracted using two 2-contractions. (d) Standard discretization of the
gray filled face in (a). Black darts are contracted using one 2-contraction.

7.3 Conversions between level 2 and level 3

Level 2 is topologically quite similar to level 3, but the main difference be-
tween these two levels consists in embeddings. Indeed, level 2 has analytical
inequation embeddings whereas level 3 has Euclidean coordinate embeddings.

• To build level 3 from level 2, we make a copy of level 2, and compute the Eu-
clidean coordinate embeddings during the analytical reconstruction step (see
[13] for more details on particular cases that can occur during the analytical
reconstruction).

• When we build level 2 starting from level 3, we also start with a copy of
level 3, but we can eventually make some simplifications. For example, the
gray square in Fig. 20(a) shows a set of vertices having the same standard dis-
cretization. All these vertices, except the two extremities, can thus be removed
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using 0-removals. We keep the two extremities in order to keep the inequations
of the other edges, that are computed from the Euclidean coordinates.

(a) (b) (c)

Fig. 20. Simplification of the discrete analytical level. (a) Euclidean object. (b) The
darts marked with black squares are removed by 0-removals. (c) Discrete analytical
level. Note that all black darts are connected ones.

8 Conclusion

In this paper, we have defined removal and contraction operations, that can
be applied to any cells of any G-maps, whatever their respective dimensions.
Moreover, we have studied how to simultaneously perform different operations.
These definitions are homogeneous for any dimension. Since combinatorial
maps [12,16] can be easily deduced from orientable generalized maps [37],
these operations can also be defined on combinatorial maps.

We intend to revisit the works of Brun and Kropatsch for handling irreg-
ular pyramids of n-dimensional generalized maps. Properties of removal and
contraction operations would enable us to establish relations between two con-
tiguous levels within a pyramid, and thus between any levels. Efficient data
structures could be deduced, taking these relations into account.

We have shown in a first experiment that we can easily define a combinatorial
pyramid, thanks to the basic operations. This is a 2D pyramid, but it can be
extended for higher dimensions, due to the general definition of removal and
contraction operations for any dimension.

Moreover, this experiment shows a new way for using combinatorial pyra-
mids. Indeed, a pyramid is generally used in order to represent an object at
different levels of details. Here, we handle different representations of a same
object, from continuous to discrete representation.This allows us to work with
the best representation for a given operation. Moreover, we can progressively
modify our structure, through the different intermediate levels. This simplifies
the algorithms and the operations which maintain the coherence between the
different levels of the pyramid.
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Now we are studying the definition of several operations, such as modification
or consultation algorithms. Classical Euclidean operations can be translated
into discrete operations, by discretizing level 3. We are now considering typical
discrete operations that will be translated into Euclidean operations by ana-
lytical reconstruction and analytical recognition. The main goal of our work is
now to study the way of updating a pyramid after a given operation, in order
to maintain the coherence between the different levels.
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topological structuring for aggregates of 3d discrete objects. In Workshop on

Graph based representations, pages 193–202, Austria, may 1999. IAPR-TC15.

[13] R. Breton, I. Sivignon, F. Dupont, and E. Andres. Towards an invertible
euclidean reconstruction of a discrete object. In Discrete Geometry for

Computer Imagery, number 2886 in LNCS, pages 246–256, Naples, Italy,
november 2003.

[14] E. Brisson. Representing geometric structures in d dimensions: topology and
order. Discrete and Computational Geometry, 9(1):387–426, 1993.

[15] L. Brun. Segmentation d’images couleur à base topologique. PhD thesis,
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