Polygones de Hodge, de Newton et de l'inertie modérée des représentations semi-stables

Abstract : Let k be a perfect field, and K be a totally ramified extension of K_0 = Frac W(k) of degree e. To a semi-stable p-adic representation of G_K (the absolute Galois group of K), one can classicaly associate two polygons : the Hodge polygon et the Newton polygon. It is well known that the former lies below the latter, and that they have same endpoints. In this note, we introduce a third polygon gotten from the semi-simplification of the representation mod p, and, under some conditions on Hodge-Tate weights, we prove that it lies above the Hodge polygon again with same endpoint. We finally examine one exemple associated to a crystalline representation.
Document type :
Journal articles
Liste complète des métadonnées

Cited literature [13 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00211173
Contributor : Xavier Caruso <>
Submitted on : Friday, June 13, 2008 - 2:08:01 PM
Last modification on : Thursday, November 15, 2018 - 11:56:33 AM
Document(s) archivé(s) le : Tuesday, September 21, 2010 - 4:54:06 PM

Files

polygones.pdf
Files produced by the author(s)

Identifiers

Citation

Xavier Caruso, David Savitt. Polygones de Hodge, de Newton et de l'inertie modérée des représentations semi-stables. Mathematische Annalen, Springer Verlag, 2009, 343 (4), pp.773-789. ⟨10.1007/s00208-008-0289-1⟩. ⟨hal-00211173v2⟩

Share

Metrics

Record views

387

Files downloads

125