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On the skeleton method and an application to a quantum
scissor

H.D. Cornean, P. Duclos, and B. Ricaud

ABSTRACT. In the spectral analysis of few one dimensional quantum parti-
cles interacting through delta potentials it is well known that one can recast
the problem into the spectral analysis of an integral operator (the skeleton)
living on the submanifold which supports the delta interactions. We shall
present several tools which allow direct insight into the spectral structure of
this skeleton. We shall illustrate the method on a model of a two dimensional
quantum particle interacting with two infinitely long straight wires which cross
one another at angle 6: the quantum scissor.

1. Introduction

Let us consider the following one dimensional model of N quantum particles
interacting through delta potentials. In suitable units, the corresponding Hamil-
tonian reads as

N

A;

(1.1) — Z 5 + Z Z;Zi6(x; — xj), acting in LQ(IRN)7
o1 4 cigi<wN

where m; and Z; denote respectively the mass and the charge of the i’th particle.
When the particles are identical (i.e. all the m;’s and Z;’s are equal), it is a well
known fact that this model is indeed exactly solvable [@, McG]; for a quick
and fairly complete review, see [fD); see also the introduction of [AIGH-KH-H|.
However, it is not known whether the model is exactly solvable if the particles are
distinct, and we strongly suspect that it is not. We have shown in that
one can nevertheless expect partial exact results, at least. To explore this eventual
solvability we have developed a mathematical tool, that we call the skeleton method,
which requires to work with a system of integral operators.

The main issue of this article is to give a thorough exposition of this skeleton
method, see sections E and . Finally we shall demonstrate the power of this tool
by the spectral analysis of bound states in a model of leaky wires that we call a

quantum scissor, see [ for this terminology.
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FIGURE 1. The three supports of the § leaky wires.

1.1. Leaky wires. We shall consider the problem (EI) only in the case N = 3,
and

(12) my=mo >0, Z1=75<0 and Z3>0

with the center of mass removed. Then the Hamiltonian expressed in the relative
Jacobi coordinates acts in L?(IR?). After rescaling ( see for more details)
we have

(13)  He= 30— S8, — 5(Af - (2,9) — 6(45 - (,9)) + M(AF - (2,9))
where A;, i = 1,2,3 are three normalized vectors as shown in Figure 1 where the
angles 6; ;’s and A > 0 depend on the original parameters m;’s and Z;’s. Here
Ait denotes A; rotated clockwise by 7/2 and the dot in A} - (x,y) stands for the
scalar product in R%. Thus H in (E) may be interpreted as the Hamiltonian of a
quantum particle confined to a two dimensional plane, which interacts with three
straight and infinitely long leaky wires directed by the vectors A;. The ”leaky wire”
expression appears probably for the first time in [E] . Another suitable expression
for such a quantum model is ”leaky graph” which appears in

1.2. Physical applications. Hamiltonians of the type ([L.1]) are not only con-
venient mathematical models, but they do also describe physical systems when some
physical parameters are pushed to a limit. It has been recognized long time ago,
see e.g. [@], that atoms in a strong homogenous magnetic field can be modelled

by ([L1), see [BaSoY], for a recent mathematical treatment of this problem.

Quasiparticles on carbon nanotubes like excitons can be modelled by a system of
charged quantum particles living at the surface of an infinitely long cylinder, see [[Pf.
When the radius of the cylinder tends to zero, it has been shown in [CDP}, CDR2]
that a model of the type (E) is a good effective Hamiltonian for these quasiparti-
cles. Not only does the quantum world provide us with such models. For example,
in classical optics, photonic crystals with a high contrast in the dielectric constant
between the (thin) crystal and air, can also be modelled by such a Hamiltonian,
see [KK], §2] for more details.
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2. The skeleton

Most of the content of this section could be obtained as a by-product of
1B [. However we think it is worth to make public this more ” operator theoreti-
cal” version. For any normalized vector A in R? we introduce 74 : H}(R?) — L?(R)
as the continuous restriction map

(2.1) HY(R?) 3 ) = 14t € LA(R), 7Tath(s) := ¢(sA).

Let g be a diagonal 3 x 3 matrix with the diagonal entries {g;}?_; := (=1, =1, \).
The Hamiltonian H in (E) is properly defined as the unique self-adjoint operator
associated to the closed and bounded from below quadratic form:

3
1
(2.2) HUR?) 3w — S |[Vul® + ) gillra,ul® € R,
2 i=1
Let us set 7; := 74, and 7 := (11,72, 73) : H'(R?) — @®?_,L?*(R). Then H may be
rewritten as

1
(2.3) H=Ho+7'gr, Hy:=—ZA, domH = H*(R?).

Notice that the above sum defining H must be understood in the sense of quadratic
forms, and as a matter of fact dom H # dom Hy. Thanks to the particular values
of the coupling constant g;’s and by an application of the HVZ theorem one gets

1

LEMMA 2.1. For all X > —1, the essential spectrum of H is [—3,

We want to show that the eigenvalue problem HV = EV for F < f%, ie.
below the essential spectrum can be reduced to a one-dimensional eigenvalue prob-
lem involving integral operators. Using Krein’s formula with R(z) := (H — z)~ !,

Ro(z) := (Ho — z)~! we get at once:
(2.4)  R(2) = Ro(2) — Ro(2)7* (97" + TRo(2)7*) '7Ro(2), 2z € p(Ho) N p(H).
By classical Sobolev trace theorems the following operators are continuous:
3 3 3
TRo(2) : L*(R?) — P H*(R), Ro(2) : PH R) —» PHH(R)

i=1 i=1 i=1
for all z ¢ spect Hy and all s € R. This allows to consider g~ + 7Ro(2)7* as a
bounded operator on S := @3_; L*(R) when z ¢ R,

DEFINITION 2.2. We shall call S(k) := g~ + 7Ro(—k?)7* the skeleton of H at
energy —k2.

THEOREM 2.3. E < —1 is an eigenvalue of H iff ker(g~" + 7Ro(E)7*) # {0}.
If P is the orthogonal projector on this kernel, then the multiplicity of E is equal
to the dimension of P. In addition, the operator PTR3(E)T*P is invertible on the
range of P, and the eigenprojector of H associated to E is given by

Ro(E)r* (PrRA(E)r*P) " rRy(E).

PROOF. 1. We start by showing that VE := k2 < —% the essential spectrum
of S(k) obeys: for all A >0

1
0 ¢ spect .S (k) = spect . .S(k) = [-1, =1 + —]U A1, A1

V2k )

1
+_
V2k
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Indeed if one sets

Ty, ; = TiRo(2)7]
then
—1+1Ty 0 0 0 T91,2 T92,3
(2.5) S(k) = 0 —1+1Ty 0 + T91,2 0 T92,3
0 0 AL+ To T92,3 T9273 0

Since the diagonal of the first matrix consists of multiplication operators (in the
Fourier representation see (@)) and the entries of the second matrix are all trace
class operators (see Theorem B.3), we are done. That 0 ¢ spect ..S(k) is now
obvious.

2. Assume that F < f% is an eigenvalue of H, but 0 is not an eigenvalue of
S(k). Then S(k) has a bounded inverse (after an easy application of the Fredholm
alternative). Since Ry(F) and 7Ry(FE) are bounded operators, it means that R(z)
is also bounded at z = E. This contradicts the fact that E is an eigenvalue of
H. We conclude that S(k) cannot be invertible (injective) if —k? coincides with an
eigenvalue of H.

3. Now let us prove that all singularities of S(k)~! correspond to eigenvalues of H.
One has the identity

(2.6) (97" +7Ro(2)7") ' =g —gTR(z)T"g

valid for z where at least one and therefore two members of this identity exists. Now
assume that for some E < —1/2, the operator g~ +7Ro(E)7* is not invertible (i.e.
not injective in our case). Assume also that E is not in the (discrete) spectrum of H.
Then (.6) implies that in a small disc around E we have that (¢=* +7Ro(2)7*)~?
is uniformly bounded, which means that g~ + 7Ro(E)7* is invertible by Neumann
series, contradiction.

4. Now let us investigate the dimension of the spectral subspace associated to an
eigenvalue. Assume that 0 is an eigenvalue of g~!+7Ro(E)7* and let P be the finite
dimensional associated eigenprojector. We have shown that F is also an eigenvalue
of H, and denote by P(E) its finite dimensional projection. We want to prove here
that dim(P) = dim(P(E)).

Since (¢! + 7Ro(E)7*)P = 0 and using the resolvent identity:

(2.7) (g7t + TRo(2)7")P = (2 — E)TRo(2)Ro(E)T* P.
Using (R.§), and knowing that near E we have

(25) (2 = B)R(z) = —P(E) + O((= — F)),

it follows that

(2.9) P=(2—E)(g '+ TRo(2)7*) 7 Ro(2) Ro(E)T* P

= gTP(E)T*gTRo(2)Ro(E)T*P + O((2 — E)).
Taking the limit z — F we obtain
(2.10) P = g7P(E)m*gTRo(E)**P.
If Ran(P(F)) is spanned by the eigenvectors {1, }?;?(P(E)), then (R.1() says that
Ran(P) is spanned by {gij}?E(P(E))

dim(P) < dim(P(FE)).

, therefore
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We now want to prove the reverse inequality. Denote by @ :=id — P, so that
in matrix notation (use (£.7) and its adjoint)

g T Ry(2)7* = (+—E) ( PTRy(2)Ry(E)T* P PTRy(2)Ro(E)T*Q ) _

QTRo(2)Ro(E)T*P (2 — E)7'Q(97' + TRo(2)m)Q

To invert this matrix we use the Feshbach method. One has (i) the operator Q(g~!+
TRo(E)™)Q has a bounded inverse on the range of Q, thus (z — E)"'Q(g~! +
TRy (2)7)Q is bounded invertible for z in a neighbourhood of E, except eventually
at E, and (ii) the following operator is bounded invertible at least in a neighbour-
hood of £

A(z) := PTRo(2)Ro(E)T*P — PTRo(2)Ro(E)T*Q(z — E)

(Q(g™ "+ TRo(2)7)Q) "' QT Ro(2) Ro(E)T* P.

Notice that this operator is nothing but a finite dimensional matrix, acting in
Ran(P). The Feshbach formula says that the above operator A(z) is invertible if
and only if (71 +7Rg(2)7*)/(z—E) is invertible. Moreover, for z in a neighborhood
of E this formula gives:

(z—=E)P(g7 ' + 7Ro(2)7*)'P = A(2)™', 2#E.
Using again (2.6) and (£.§), we obtain
A(z)™' = PgrP(E)\T*gP + O(2 — E), z#E.

This inverse is bounded near F, and A(z) is continuous at z = E, hence A(E) is
invertible and

(2.11) A(E)™" = {PrRy(E)*r*P} "' = PgrP(E)r*gP.
Summarizing, via the Feshbach formula, we obtain that
(2.12) (z—E)g ' +7TRo(2)7) P = A(2) "' + O((z — E)).

Multiply (R-6) with (2 — E), use (£.§), (-13), and take the limit = — E. This gives:

(2.13) P(E) = Ro(E)T*A(E) " '7Ro(E) = Ro(E)T* PgrP(E)T*gPTR(E).

Now assume that {¢; }?E(P) are eigenvectors spanning the range of P. Then ()

says that the range of P(E) is spanned by {Ro(E)T*¢; }?;ﬂi(m, which implies
dim(P(FE)) < dim(P)

and we are done. O

3. The Ty operators

In this section we shall establish various properties of the Ty, ; operators.
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3.1. Generalities. Let A and B be two normalized vectors of R2. We shall
consider 74 Ro(—k?)7} where 74, 75 are defined by () We can obtain explicit
formulas for their integral kernels using the Fourier transform that we denote by a
hat. We summarize the results in the following technical lemma:

LEMMA 3.1. The operator TaRo(—k*)7% depends only on the angle 0 between
the vectors A and B. When det(A, B) # 0, the Fourier transform of TaRo(—k?)1%
s an integral operator with kernel

~ ! : —+
(3.1) Tolt: s k) = o 7z |
5 —2cos(0)ts+s?
27| sin(0)] “zare) A

When A = B, the Fourier transform of TaRo(—k?)7% is the multiplication operator
given by the function

1
V2 + 2k2°

The proof of this lemma is elementary and left to the reader.

(3.2) To(s; k) ==

REMARK 3.2. (a) One has:
L
V2k

This is clear for the case 6 = 0 since then Tj (k) is an explicit multiplication operator.
For 6 # 0 we use

Vo € (—m,m), [ To(k)| <

1 1
ITaRo5|” < lTaRG |12 R3 75 11* = | TaRoTAllllTe Ro7 || = || Tol|.
One can also compute explicitly the Hilbert-Schmidt norm of Tjp:

1

2
HTG(k)HHS - 27rsin(9)k2’

0 # 0 mod .

(b) If we perform the scaling s — ks then clearly Ty (k) becomes k~'Ty(1). Since
in the sequel we shall use this property and work only with Ty(1), we denote

Ty :=Ty(1).

(c) Let IT : L?(R) — L%(R) denote the parity operator Ilp(s) = ¢(—s). Then
[IT,Tp] = 0 so that one can decompose

1411 .
To.

Ty =T e fr, with T
(d) By a simple inspection of (B.I]) we have the reflection properties:
v € (0,7), TE,==+Tf

3.2. Rank one operator decomposition of Ty. Let us first consider Tg;
we have the formula

2 1 1 1 > 2 2
33 Tz - —— = — —2s ,—sp” ,—sq d
(3.3) = (p.q) e B W/O e BT e s
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which shows that 7'z is a "sum” of positive rank one operators so that Tg > 0.
Since (p,q) — T’z (p, q) is continuous and

1

/Tg(p,p)dp =5 <00
R

this shows in view of [E, th2.12], that T’z is trace class and that its trace and
therefore its trace norm are 1/2. We are indebted to R. Brummelhuis who showed
us the trick (E) The above derivation can be generalized to any angle 0 < 0 < 7
as follows.

THEOREM 3.3. For all 0 € (0,7) one has in the trace norm (|| - ||1) topology

. _1sin(6) D(n+ %) /°° 1 oan?
3.4)T, = 273 (0 dss ze 25O p
@4, 5 Tt o) [ ,
. o] 1 o]

ab —% S 9) F(Qn + 5) 2n —% —25in2(9)s

T, = 2 - 7;0 Tent 1) cos“"(0) ; dss ze Py, s

- _1sin(0) o~ T(2n+ %) 241 R R sin2(6)s

T, = 27¢ - Z T@nT2) cos (9)/0 dss”2e” =% Popi1s

where P, s denotes the rank one orthogonal projector on the vector g, s defined by

(28)"*

3.5 ns(p) 1= | e pnePS,

(3.5) gn.s(P) ROk

Accordingly one has

3.6 ¥oe(0,2], TE>0 and Vo€ [Z,m), +TF>0.
2 o 2 o

It follows that Ty and Te:IE are trace class and

(¢S] (g) + sin (g)

s 2v/2sin(0)

T = COS (g) — sin (g) HT_Hl _ ‘COS (g) — sin (g)’
9 2/2sin0) 2v25in(0)

Ty = = ), - e (a) sin(5))

2/2sin ()’ V2sin(0)

PRrROOF. To find the rank one operator decomposition of Ty we simply expand
its kernel as follows. Let A := p? 4 ¢? +2sin?# and B := 2pq cos(#), one can easily
check that A > 0 and |B/A| < 1 for all 0 < § < 7. Thus one has

1 1 sing 1 sin(f) = <B)"
- = = AL =
27 sin(6) W +1 ™ A-B T T;O A

—sA

sin(f) < < s"e
= B" d
m nZO /0 S

in(f) " (0) [ .2 2, 2
_ SII;-( ) 7;0271 Cosn!( ) /0 ds e—28sin (G)Snefs(p +q )(pq)n
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To arrive at (B.4) one needs to normalize in L?(R) the vector p — p"e=*" which
gives the vector g, , in (B.H). Since || P, s|| = || Pn.s||1 the convergence in the trace
norm topology of the r.h.s. of (B.4) is true since the terms in the following sum are
all positive and one has explicitly:

27% SlIl( ) Z (TL + 2) | COSn(9)|/ ds 87%672511'1 (0)s —
& neN F( ) 0

n+1 2y/1 — [cos(0)]

This shows that Tj is trace class and that (@) is valid in the trace norm topology.
Since g, s has the parity of n, one gets Tei by selecting the even and odd values of
n in ) resp.. The rest is now obvious up to some tedious explicit computations
of sums. (]

We shall draw some other useful properties from the above theorem.

COROLLARY 3.4. (i) 8 — Ty is a selfadjoint analytic family as a map from
D = {0 € C, |cos(0)| < 1} with values in the ideal of trace class operators.
(i) If one labels the eigenvalues of T, by descending order: Ei (0) > Ey (0) > ... >
E}(0) > ... then each function (0,7) 2 0 — E;}(0) is continuous and decreasing
on (0, %] and increasing on [5, ).
If one labels the eigenvalues of T, by descending order on (0, 5 ) and ascending order
on (5,m), then each function (0,7) 3 6 — E; () is continuous and decreasing on

(0, 7).

PROOF. (i) is a direct consequence of the convergence of the r.h.s. of (B.4) on
D. To prove (ii) we shall consider another s.a. family of operators which is the
image of {Ty}p under the scaling p — sin(f)p, 0 < 0 < 7:
1 1
3.7 T == :
(3.7) 0(p, q) e R B 7

Then proceeding as in the previous theorem we get

1
tiT;r = —2(2(;089)2"32"
TrnGN
- 1
T, = —2(20059)2"+1Bgn+1
™
neN

where B,, denotes the positive operator with kernel

(pg)™ s, 2 o
Bn , — — 2 s n sp sq”
(p q) (p2 + q2 + 2)n+1 0 nl e (pq) € e

If we label the eigenvalues of T(;r , i.e. the eigenvalues of ﬁT; in descending order

they are all continuous in # and in view of the elementary dependence of nT; on 0,
they are decreasing on (0,7/2] and increasing on [7/2, 7). We skip the analogous
reasoning for 7}, . O

3.3. TejE are ergodic. The reader can find the definition of an ergodic operator
in [[RS4], §XII1.12].

PROPOSITION 3.5. (i) For all 6 € (0,7), T9+ is ergodic and sup T9+ s a simple
eigenvalue of T(;r.
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(it) For all 0 € (0,7/2) U (7/2, ), sign(n/2 — 0)T, is ergodic and sup sign(m/2 —
0)T, is a simple eigenvalue of T, .

PRroOOF. We have previously seen that TQJr > 0. Also T(;r is self adjoint and
compact, thus || T;7|| = supT,’ is an eigenvalue of T},". Clearly since T} (p,q) > 0
for all p and g, one has (T, f,g) > 0 whenever f and g are positive. Thus T, is
ergodic. By applying [, Th. XIII.43] we get that sup T9+ is a simple eigenvalue
of T6+ . The proof for T, is analogous. (]

3.4. Ty is injective. This question was brought to us by T. Dorlas.
LEMMA 3.6. For all 0 < 6 < m, one has ker Ty = {0}.

ProOF. We find it more convenient to work with Ty, see @), which is uni-
tarily equivalent to Ty. We recall that II denotes the parity operator, see Re-
mark B.d(c). Using the formula derived in the proof of Corollary B4, we get with

¢ € RanII*, that T} = 0 implies

0 0 2n oS}
(ﬁ’I‘;_QD7 (P) =0 = % Z %/0 S2n _25(0271 5P, (p)d =0
n=0 ’

where C), s with kernel C), 5(p, q) := (pq)"e‘sPZe_sq2 is a positive rank one operator.
If 0 # Z it follows that: Vn € N, Vs > 0, (Capn,sp,¢) = 0 since (2cos(#))*" and

s2"e™* are strictly positive. But

(Con,sp, ) =0 <= / P> e o(p)|2dp = 0
R

2
which shows that ¢ L p?e~'z for all n € N by choosing s = 1/2. Clearly

{pQ”efé,n € N} is total in RanII™ since they generate the even Hermite func-

tions. Thus ¢ = 0. A similar argument shows that if ¢ € RanIl~ and T ¢ = 0

then ¢ = 0; notice that it is understood here that 6 # 7 since otherwise T, =0.
Finally we consider the case §# = /2 and ¢ € RanIIT. Here we get as above

Vs > 0, ((p,e_sz’Q) =0

and by differentiating indefinitely this identity with respect to s in s = % we find
%) J_pQ"efé, Vn e N,

which implies as above that ¢ = 0. 0

3.5. Some properties of (272 — Ty)~'/2T,; (272 — Ty)~'/2. From the rank
one operator decomposition of 7};", see Theorem E, one gets

T, = (2—%—T)—l/QT—(T%—TO)—W
18 2n—|— n o —1 _9gin? sy
(3.8) = > T 2n+2 cos? +1(9)/0 dss~ze 25 (O)spy )
where

~ _ _ . _ 1 N
P2n+1,s = (';g2n+1,s)92n+1,s with 9on+1,s ‘= ( 2 — T ) /292n+1,s-
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It turns out that go, 11 belongs to L*(R) and the r.h.s. (B.§) is convergent in the
trace norm. More precisely

Bnsrolls = ansrolf? = Y280 T AVET (75, 72n,de) +1)
s s in+1
_ 8ny/5T(2n) + (4n + 165 + )T (2n+ 1)
- V2T (2n+ 2)
where U denotes the confluent hypergeometric function, see [@, 13.1.3]. The last
estimate is obtained by integration of the r.h.s. of the bound

3

~ (25)2n+5

2n+1,s R ki

19( )P)|” < Dn+ )

which is more convenient in view of the summations over s and n. Then the
integration over s gives

6—2351112(9) F(2TL + 3 )
sin(6 o2n+1,s)|]%ds <
0 [ e Al 1,9

VAl (2n+3)  2ny/al (2n+3) 270 (2n+ 3) V2I(2n +1)
2T'(2n + 2) I'(2n +2) sin?(A)T(2n +2)  sin(f)I'(2n + 2)
=: a1+ az+ a3+ as.

pime ™" (Vap? + 20p| + 4V/2).

In the summation over n of these four terms, only the second one causes problems
to arrive at a convenient final formula: ( the sums are computed with 0 < 6 < 7/2)

St on(2) o (2)

i azcos?t1(0)  cos®(0)2F1 (2, %; 2; cos?(0))
n=0 2 B 4\/_

S a0 (e (2) - (2))
— 27 ~ sin?(6) 2 2
i agcos?™1(0)  tanh™'(cos(f))

= o2 B 7(sin(6)

One replaces a2 by the the following bound valid for all n € N:
2nl' (2n + 1) - L2nt3)
r'2n+2) ~— T(2n+1) 2

Y =it (=(3) = ().

Summing up gives

which gives

LEMMA 3.7. For all 0 € (0,7), T, is trace class and for all 0 < 6 < 7/2 one
has:

(4sin(0) tanh ™" (cos(#)) + 7 (9 cos (§) — cos (22) — 9sin (§) +sin (32))) .

7| <
Tyl = 47 sin(6)
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In particular:

(3.9) IIT;Tﬂlll = |T5lh < —z+—%+ ~ 1.75532

REMARK 3.8. (a) If we do not replace ay by af), we get a better bound:
| Ts [l < 1.38929.
3

Moreover a direct numerical evaluation on the Hilbert Schmidt norm gives
|75 |lns ~ 1.01327.
3

(b) We shall see below that —1 is an eigenvalue of Tsz , see () Since the trace

norm of Tv;r is less than 2, see @), it follows that this eigenvalue is simple and is

3 ~
the lowest eigenvalue of Tng . Thus we may conclude that

(3.10) inf T

= 1.

wly

(c) The statements in Corollary B.4(ii) and Proposition B.j for eigenvalues of T},
works as well for those of T,;". In particular the lowest one is simple and monoton-
ically decreasing and pass by —1 for = 27/3 in view of ()

3.6. Exact eigenvalues and eigenvectors. We collect here some exact re-
sults about these Ty operators. They can be checked by direct inspection.

. . 2 1
3.11 To+Tz)p = ith —, /-
(3.11) (To+Tz)p =g, with ¢(p) \/;p2+1,
~ N \/_ 63/4
3.12 To+ 2T 2 )p = V2 ith = —
and

(3.13) Toip=—p with o) = LU= o = o (6~ Vr).

() and (B.19) are simply obtained by translating known exact eigenfunctions
in the skeleton frame work; the first one comes from the exactly solvable quantum

scissor, see ([L1]), with angle /2. The second one comes from the Mc Guire bound
state eigenfunction of its three particle system, see [McQ, §IV.D]. The last one

seems to be new. Since \/Tp(0) — To(p) ~ 27 %|p| as p — 0, this function has a
cusp at 0.

4. A quantum scissor

We consider the Hamiltonian (R.3) in the particular case A = 0:

A A
(4.1) Hy = -5 5(14{‘-) — (5(A§‘-) =5 TITY — ToTy
which described a two dimensional particle in a scissor-shaped waveguide, a name
borrowed from [BEPS]. We assume without loss of generality that 6 := 6; 5 belongs
to

(4.2) 0 [gm);
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where 6 denotes the angle made by the two vectors A; and A which generate the
supports of the delta interactions, see Figure EI We note that the case § = 7 is
exactly solvable, and that the angles 6 € (0,7/2] are covered by the cases ([.2))
since Hy and H,_y are unitarily equivalent.

Thanks to Lemma .1, the essential spectrum of Hy is [~1/2, 00). The skeleton
associated to Hy in the Fourier representation is

—1+To(k)  T(k) o (—k+T T,
A )~ T L)

where the unitarily equivalent second expression is obtained through the scaling
5 — ks, see Remark B.d(b). Tt acts on S := L?*(R) @ L*(R). Thus, according to
Theorem E, —k? < —1/2 is an eigenvalue of Hy iff k is an eigenvalue of

Ty := 7:”0 1?6 .
Ty To

Notice that in view of Corollary @, {To}oep is bounded selfadjoint family of
analytic operators and since Tp is trace class ( see Theorem ) one has

spect Ty = spect ., Ty = spect Ty = [0, 2*%].

4.1. Reduction by symmetries. We use (z,y) for the coordinates in R? and
we recall that I stands for the parity operator on L?*(R), see Remark @(c) Let
I, :=1I®1, II, := 1 ®II acting in L*(R?) denote respectively the reflection with
respect to the y and x axis. Hy fulfills

[Hy,11,] = [Hyp, 11| = 0.
This allows to reduce Hy as
Hy = @ Hy’, where Hy? :=TSTI0 Hy
a,fe{+1}
and 12 := 1(id + oll,)), Hg := 2(id + BI1,)) denote the eigenprojectors of II, and
II, resp.. We also stress that Hy' B g unitarily equivalent to the operator acting
in L?(Ry x R;) with same symbol as Hy but with additional Dirichlet boundary
conditions on x = 0 if « = =1 or on y = 0 if # = —1 and Neumann boundary

condition in the opposite case, see Table .
Similarly Ty enjoys the following symmetries

[To,TI) = [Ty, &] = [T B IL E] = 0.

where IT :=II @ Il : § — § is the parity operator and £ : § — § is the exchange
of components operator: E(¢1 @ ¢pa) := P2 @ ¢1. Thus we may consider separately

MeEPTy, a=+1, B=+1
where TI® and £° denote the spectral projectors of IT and & resp.:
I~ = %(id +all) &% := %(id + af).
One has the following elementary result the proof of which is left to the reader:
LEMMA 4.1. For all o, 8 in {£1}, TI®EPTy is unitarily equivalent to
TSP .= Ty + BT acting in L2(R).

It is then of practical importance to relate Hy' # and Tg’ﬁ .
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LEMMA 4.2. For all a, 3 in {+1}, —k? < —% is a discrete eigenvalue of Hg"ﬁ

iff k> 272 s a discrete eigenvalue of ngﬁ,ﬁ'

PROOF. Due to the chosen orientation of the two normalized vectors, see Fig-
ure [l, we have the relations between mappings from H*(R?) to L?(R)

I, = &1, 7l =1IET
so that
AT = 7(id + ofl,)(id + BI1,) = (id + oIIE)7(id + BII,)
(id + oIIE)(id + BE)T = (id + afII)(id + BE) = 4TI* &P T,

Let R(2)*P := 2P (Hy — 2)~! and similarly for Ry := (Ho — 2)~' then using
(R4) and Definition B4 we get

R(—k*)*F = Ro(—k*)*P — Ro(—k*)*P7*S (k)" 1 Ro(—k*)*"
= Ro(—k?)™P — Ro(—k?)™r* (S(k)*#5) " 7Ro(—k?)™"
with S(k)*? := TI*€#S(k). The statement of the lemma now follows easily. O

TABLE 1.
T? | subspace in L2(R?) | B.C. on Ry x R, for Hy
To+ T, Ran IT} IL; Nz—o Ny—o
To— T, Ran IT; TT Dy—o Ny=o
To+1T, Ran I 1T Dz—0 Dy=o
To — T, Ran IT} 11 Nz—o Dy—o

4.2. Existence and monotonicity of bound states. First we can quickly
fix two cases.

ProroOSITION 4.3. H," and He_’Jr have no discrete spectrum for all 60 €
[7/2,7).

PrROOF. These two cases correspond to Tg’ﬁ with aff = —1, see Lemma @
In view of (@) one has ST < 0 so that Tg’ﬁ < Ty < 2%, and therefore Tg’ﬁ
cannot have an eigenvalue k > 273, O

PROPOSITION 4.4. (i) Hy"~ has no discrete spectrum for 0 € [Z, 28], (i) It has
at least one isolated eigenvalue for 0 € (%’T,ﬂ). The number of isolated eigenvalues

of HS "~ is bounded above by Hfg”l and therefore by the bound given in Lemma B_].

PROOF. Here we have to consider T, ~. (i) We have using the operator iﬂ
see (B.g), that for all <0<

273 T, =273 T+ T, = (272 —To)s(1+T,)(272 —Tp)2 >0
since fe_ > —1, see Remark B.g(b) and (c). Thus T, < 2~ which implies that
it cannot have an eigenvalue larger than 272, To prove (ii) it is sufficient to show
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that there exists k > 277 so that infspect (k — T, ") < 0 for all § > 27/3. We
first establish that the lowest eigenvalue E; () of T, is strictly smaller than —1
for all 27/3 < @ < 7. Let ¢ denote the normalized eigenvector of T'5, associated to

3

the eigenvalue —1, see (B.13). By the Feynman Hellman theorem one has

d ~ 2w d ~
“Er () = (&7
o (3) <d9 9‘“”)9%
1 1 1
= —— | (8T (p, dpd
%(@—%%>A(99<p””e@zw%2+mq@f+3>pq
™
- ~ —2.81201.
2(6—\/§7r)

This shows that in a right neighbourhood of 27/3 we have that E; (6) < —1.

Thanks to Remark B.§(c), this remains true for all § > 27/3. Let Ay, := (k — Tp)
then

=

N - A v A
=Ty~ = A+ Ty (k) Ap,  with Ty (k) = —0 =Ty —

[V

Clearly fe_ (k) converges in norm to Te_ as k — 272. Since for all § > 27/3
there exists a > 0 so that inf spect (Te_) < —1 — @, one can find k close enough to
272 so that inf spect (Tve_(k)) < —1—a/2, ie. there exists ¢ € L?(R) such that
(1+T; (k)e, ) < —a/2||p|% Let ¢ := A; Yp; we finally get that

- k—273
(k= Ty vw) < — At < —EZ 2 e

which shows that infspect (k — T, ") < 0. The bound on the number of isolated
eigenvalues is standard, see e.g. the proof of Theorem 3.3 in [B gl O

PROPOSITION 4.5. H;_"" has at least one isolated eigenvalue for all € (0,7)

and this eigenvalue is unique in [m/3,2m/3].

PrROOF. Here we have to consider T;“Jr. Take a smooth even function j €
C§°(R,R%), such that [, j(z)dz = 1. For every € > 0 define ¢ (z) = (1/e)j(z/e)
and

€
Ge 1= iws
11511
We have [|¢:|| = 1, while 9. is an approximation of Dirac’s distribution. An

elementary calculus gives
~ 1 ~ A
(TO"/Jaaws) = 75 + 0(52)’ (T;_’L/Jg, 1/18) = ETOJ’_(Oa 0) + 0(52)

and since T} (0,0) = T5(0,0) = 7|sin(@)|/2 > 0 it follows that ( by taking ¢ > 0
small enough)

1
sup (T;’+1/1,1/1) > — = supspect QSST;’+.
PEL2(Ry) V2

Therefore T;’Jr has at least one eigenvalue larger than % Thanks to the mono-

tonicity of #T, " ( see below) and its symmetry w.r.t 7/2, it sufficient to show the
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uniqueness, that ﬂT;;J/% or equivalently H;T;rg has at most one isolated eigenvalue.
On the other hand Hs, /3 is bounded below by H of (L.3), with A\ = —1, which is
shown to possess a unique bound state by Mc Guire in [McG, §IV. D]. O

To prove the monotonicity, we remark that Ty*® is unitarily equivalent with
B0 = (2 + p2sin?(0)) "% + ot T, see (BA). Since 4T, > 0 for all § € [1/2,7),
and thanks to the explicit and simple dependence on 6 of ﬂT?’a, we infer that both
families, @« = £1, are monotonously increasing as functions of 8, and therefore their
eigenvalues k have the same property. It follows that —k2, the eigenvalues of Hy
are decreasing. Using the bounds ||Ty|| < 277, see Remark B.d(a), it follows that
[T5|| < 2 and consequently Hp > —2. We gather in a final theorem what we
have established so far. Clearly this problem has two mirror symmetries. Following
[BEPS] we shall call axis of the scissor the one which lies in the smaller angle, i.e.
the = axis with our notations and second axis of the scissor the other one. We warn
the reader that our 6 is not the one of [BEPY].

THEOREM 4.6. (i) The Hamiltonian Hy has no isolated bound state which is
odd with respect to the axis of the scissor.

(i) It has no isolated bound state which is odd with respect to the second axis of
the scissor when w/2 < 0 < 27/3. It has at least one isolated bound state which is
odd with respect to this second axis when 2w /3 < 0 < 7. The number of such bound
states is bounded above by ||T9_H1, and therefore by the bound given in Lemma @

(i11) It has at least one bound state for all 0 < 0 < 7 which is even with respect to
both axis of the scissor and unique for 6 in [r/3,2m/3].

(iv) All bound states of Hy are bounded below by —2 and monotonously decreasing
with respect to 0 on [w/2,).

5. Concluding remarks and open problems

We are far from having found the answers to all the questions about the quan-
tum scissor of § E Let us review these questions; most of them are already in
[BEPS, §111):

(1) Every bound state is even w.r.t. the scissor axis: done, see Th [1.4(i).

(2) With respect to the second axis the bound states can have both parities
(done, see Th [j.4(ii) and (iii)) which are alternating if the bound states
are arranged according to their energies: not done.

(3) As the angle 6 gets larger new bound states emerge from the continuum.
Fnd the correponding critical values 6. of 0: very partially done. Thanks

the asymptotic of the number of bound state as § — 7w: not done.

(4) All the bound state energies are monotonically decreasing functions of 6:
done.

(5) Do we have a bound state or a resonance at the threshold, when a bound
state emerges from the continuum? Not done.

(6) The other way around, when 6 decreases, do the bound states become
resonances? Can we follow them? Not done.

(7) Can one expand the new bound state emerging from the continuum as a
function of 8 — 6.7 Not done.

Concerning the integral operator Tp, see § E,
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(1) can we enlarge the list of exact spectral results, see § @?
(2) Are all eigenvalues of Tj;" simple?
(3) Is it true that @ — T;° are monotonous?
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