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The stationary three-dimensional Navier-Stokes Equationswith a non-zero onstant veloity at in�nityChérif AMROUCHE⋆ and Huy Hoang NGUYEN†Laboratoire de Mathématiques AppliquéesCNRS UMR 5142Université de Pau et des Pays de l'AdourIPRA - Avenue de l'Université 64013 Pau, Frane
⋆herif.amrouhe�univ-pau.fr

†huy-hoang.nguyen�etud.univ-pau.frAbstrat - This paper is devoted to some mathematial questions relatedto the 3-dimensional stationary Navier-Stokes. Our approah is based on a om-bination of properties of Oseen problems in R
3.Keywords : Navier-Stokes equations; Oseen equations; weighted Sobolev spaes;�uid mehanis.AMS lass: 35Q30, 76D03, 76D05, 76D071 IntrodutionLet Ω′ be a bounded open region of R

3, not neessarily onneted, with aLipshitz-ontinuous boundary and let Ω be the omplement of Ω′. We sup-pose that Ω′ has a �nite number of onneted omponents and eah onnetedomponent has a onneted boundary, so that Ω is onneted. The problem on-sists then in �nding a veloity �eld u = (u1, u2, u3) and the pressure π satisfythe Navier-Stokes system:
(NS)





−ν∆u+ u.∇u+ ∇π = f in Ω,

div u = 0 in Ω,u = 0 on ∂Ω,u → u∞ at infinity,where ν > 0, f and u∞ ∈ R
3 are respetively the visosity of the �uid, theexternal fore �eld ating on the �uid and a given onstant vetor. The thirdequation of the system states that the �uid adheres at the surfae of the body,whih is the ommon no-slip ondition. For the last equation, we have twodi�erent ases onerning the behavior of u at in�nity. If u∞ = 0, the �ow is atrest at in�nity and in the remaining ase, if u∞ 6= 0, the �ow is past at in�nity.In this paper, we are interested in onsidering the ase Ω = R

3 and u∞ 6= 0.Our purpose is to study some regularity properties of the weak solutions to theproblem (NS). 1



This paper is organised as follows: In this setion, we reall well-know resultsabout weak solutions, weighted Sobolev spaes and some results of Oseen systemin weghted Sobolev spaes. In Setion 2, a result about existene of weaksolutions for the problem (NS) will be presented. In next setions, we shallobtain some regularity properties of the weak solution u and the assoiatedpressure π. We shall also onsider the identity energy in the last setion. Inthis paper, we use bold type haraters to denote vetor distributions or spaesof vetor distributions with 3 omponents and C > 0 usually denotes a generionstant the value of whih may hange from line to line.Now we reall the main notations and results , onerning the weighted Sobolevspaes, whih we shall use later on.We de�ne D(Ω) to be the linear spae of in�nite di�erentiable funtions withompat support on Ω. Now, let D′(Ω) denote the dual spae of D(Ω), oftenalled the spae of distributions on Ω. We denote by 〈., .〉 the duality pairingbetween D(Ω)′ and D(Ω). Remark that when f is a loally integrable funtion,then f an be identi�ed with a distribution by
〈f,ϕ〉 =

∫

Ω

f (x) .ϕ(x) dx.Given a Banah spae B, with dual spae B′ and a losed subspae X of B,we denote by B′ ⊥ X (or more simply X⊥, if there is no ambiguity as to theduality produt) the subspae of B′ orthogonal to X , i.e.
B′ ⊥ X = X⊥ = {f ∈ B′|∀ v ∈ X,< f, v >= 0} = (B/X)′.The spae X⊥ is also alled the polar spae of X in B′. In 1933, Jean Leray[13℄ who introdued the onept of the weak solution:De�nition 1.1. A weak solution to the problem (NS) is a �eld u ∈ H

1
loc(Ω)vanishing on ∂Ω, with ∇u ∈ L

2(Ω), div u = 0 in Ω and lim
|x|→∞

∫

S

|u(x−u∞)| =

|u(x) − u∞| = 0 where S is the unit sphere of R
3 suh that for all ϕ ∈ V(Ω) =

{v ∈ D(Ω), div v = 0}:
ν

∫

Ω

∇u.∇ϕ dx+

∫

Ω

u.∇u.ϕ dx = 〈f,ϕ〉 .A typial point in R
3 is denoted by x = (x1, x2, x3) and its norm is given by

|x| = (x2
1 + x2

2 + x2
3)

1
2 . We de�ne the weight funtion ρ(x) = (1+ | x |2)

1
2 . Foreah p ∈ R and 1 < p < ∞, the onjugate exponent p′ is given by the relation

1

p
+

1

p′
= 1. With α ∈ R and m ∈ N , we set

k = k(m, p, α) =





−1, if
3

p
+ α 6∈ {1, ...,m},

m−
3

p
− α, if

3

p
+ α ∈ {1, ...,m},and we introdue the de�nition of the weighted Sobolev spaes.De�nition 1.2. Let Ω be either an exterior domain or Ω = R

3. Then,
Wm,p

α (Ω) = {u ∈ D′(Ω); ∀λ ∈ N
3,

0 ≤ |λ| ≤ k, ρα−m+|λ|(ln(1 + ρ))−1∂λu ∈ Lp(Ω),

k + 1 ≤ |λ| ≤ m, ρα−m+|λ|∂λu ∈ Lp(Ω)}.2



This spae is a re�exive Banah spae when endowed with the norm:
‖ u ‖W m,p

α (Ω)= (
∑

0≤|λ|≤k

||ρα−m+|λ|(ln(1 + ρ))−1∂λu||pLp(Ω) +

+
∑

k+1≤|λ|≤m

||ρα−m+|λ|∂λu||pLp(Ω))
1/p.We also de�ne the semi-norm:

|u|W m,p
α

(Ω) =


 ∑

|λ|=m

||ρα∂λu||pLp(Ω)




1/p

.We note that the logarithmi weight only appears for the ase 3/p + α ∈
{1, ...,m} and all the loal properties ofWm,p

α (Ω) oinide with those of the las-sial Sobolev spae Wm,p(Ω). We set ◦

W m, p
α (Ω) = D(Ω)

W m, p
α (Ω) and we denotethe dual spae of ◦

W m, p
α (Ω) by W−m,p′

−α (Ω), whih is the spae of distributions.When Ω = R
3, we have Wm,p

α (R3) =
◦

W m, p
α (R3). If 3/p + α 6∈ {1, ...,m}, wehave the algebrai and topologial imbeddings

Wm,p
α (Ω) →֒Wm−1,p

α−1 (Ω) →֒ ... →֒W 0,p
α−m(Ω).For all λ ∈ N

n with |λ| ≥ 0, the mapping
u ∈ Wm,p

α,β (Ω) → ∂λu ∈W
m−|λ|,p
α,β (Ω)is ontinuous. Moreover, if 3

p
+ α 6∈ {1, ...,m}, then for any γ in R suh that

3

p
+ α − γ 6∈ {1, ...,m} the mapping u → ργu is an isomorphism of Wm,p

α (Ω)onto Wm,p
α−γ(Ω). Note that if we only suppose 3

p
+ α 6∈ {1, ...,m}, the mappingis ontinuous.We denote by [q] the integer part of q. For any k ∈ N, Pk (respetively,

P∆
k ) stands for the spae of polynomials (respetively, harmoni polynomials)of degree ≤ k. If k is stritly negative integer, we set by onvention Pk = {0}.Let k be an integer, then Pk is inluded in Wm,p

α (Ω) with
k =





[
m−

3

p
+ α

]
, if

3

p
+ α 6∈ Z

−,

m−
3

p
− α− 1, otherwise.We introdue the spae

W̃ 1,p
0 (Ω) =

{
u ∈W 1,p

0 (Ω),
∂u

∂x1
∈ W−1,p

0 (Ω)

}whih is a Banah spae equipped with the following norm
||u||fW 1,p

0 (Ω)
= ||u||W 0,p

−1 (Ω) +
3∑

i=1

||
∂u

∂xi
||Lp(Ω) + ||

∂u

∂x1
||W−1,p

0 (Ω), if p 6= 3,3



||u||fW 1,3
0 (Ω)

= ||(ln(1 + ρ))−1u||W 0,3
−1 (Ω) +

3∑

i=1

||
∂u

∂xi
||L3(Ω) + ||

∂u

∂x1
||W−1,3

0 (Ω),and W̃−1,p′

0 (R3) is its dual spae. The previous norm is equivalent to the naturalone and it allows to prove the density of D(Ω) in W̃ 1,p
0 (Ω). This result isannouned in [7℄. We introdue also the spaeV(Ω) =

{v ∈
◦

W
1,2
0 (Ω), div v = 0 in Ω

}
.In order to understand better the the ondition u → u∞ at in�nity of theNavier-Stokes system, we introdue a following lemma (f [8℄ ) :Lemma 1.3. Assume 1 < p < 3 and u ∈ D′(R3) suh that ∇u ∈ L

p(R3). Thenthere exists a unique onstant u∞ ∈ R suh that u− u∞ ∈W 1,p
0 (R3), where u∞is de�ned by

u∞ = lim|x|→∞
1

ω

∫

S

u(σ(|x|)) dσwhere S is the unit sphere of R
3 and ω is the area of S. Moreover, we have

u− u∞ ∈ L
3p

3−p (R3) with the estimate
||u− u∞||

L
3p

3−p (R3)
≤ C||∇u||Lp(R3), (1.1)

lim|x|→∞

∫

S

|u(σ|x|) − u∞|dσ = lim|x|→∞

∫

S

|u(σ|x|) − u∞|pdσ = 0 (1.2)and ∫

S

|u(rσ) − u∞|pdσ ≤ Crp−3

∫

{x∈R3,|x|>r}

|∇u|pdx. (1.3)Reall also the following Sobolev embeddings
W 1,p

0 (R3) →֒ Lp∗(R3) where p∗ =
3p

3 − p
and 1 < p < 3,

W 1,3
0 (R3) →֒ VMO(R3) where VMO(R3) = D(R3)

||.||BMO
.Here, BMO is the spae of loally integrable funtions in R

3 and suh that, onall ubes Q,
|| f ||BMO = sup

Q

1

|Q|

∫

Q

|f(x) − f(Q)|dx <∞.Note also that if ∇u ∈ L
p with p > 3 and u ∈ Lr(R3) for some r ≥ 1, then wehave u ∈ L∞(R3).If Ω is an exterior domain, we have a orollary as follows:Corollary 1.4. Let Ω ⊂ R

3 be an exterior domain. Assume 1 < p < 3 and
u ∈ D′(Ω) suh that ∇u ∈ L

p(Ω). Then there exists a unique onstant u∞ ∈ Rsuh that u− u∞ ∈ W 1,p
0 (Ω) and we have the properties (1.1)-(1.3).Proof. Let u ∈ D′(Ω) suh that ∇u ∈ L

p(Ω). Then, the restrition of u to ΩRwith a su�iently large R satisfy u ∈ D′(ΩR) and ∇u ∈ L
p(ΩR). Therefore,we have u ∈ W 1,p(ΩR) and u|∂BR ∈ W 1−1/p,p(∂ΩR) (see Proposition 2.10 [4℄).4



Then there exists u0 ∈ W 1,p(ΩR) suh that u0 = u on Γ and u0 = 0 on ∂BR.Weextend u0 by zero outside BR and denote ∼
u0 the extended funtion that belongsto the lassial Sobolev spae W 1,p(Ω) and has ompat support in ΩR. Notethat v = u−

∼
u0, then ∇v ∈ L

p(Ω) and v = 0 on Γ. We set that ∼
v= v in Ω and

∼
v= 0 outside Ω. Then we an dedue that ∇ ∼

v∈ L
p(R3). Therefore there existsa unique onstant u∞ suh that ∼

v −v∞ ∈W 1,p
0 (R3), or u− ∼

u0 −v∞ ∈W 1,p
0 (R3).Then u− v∞ ∈ W 1,p

0 (Ω).Now we shall introdue the following lemma by ombining a result of Babenko(1973, Proposition 3) with Theorem II.5.1 [11℄. The proof of this lemma an befound in [11℄.Lemma 1.5. Let Ω ⊂ R
3 be a Lipshitz exterior domain or Ω = R

3. Assumethat
u ∈W 1,2

0 (Ω) and
∂u

∂x1
∈ Lq(Ω) where 1 < q < 2.Then u ∈ L3q(Ω) and the following inequality holds:

||u||L3q(Ω) ≤ C(||
∂u

∂x1
||Lq(Ω) + ||∇u||L2(Ω)).The next lemma gives an another version of this result.Lemma 1.6. Let 1 < p < 3. Assume that u ∈ W̃ 1,p

0 (R3). Then u ∈ L
4p

4−p (R3)∩

L
3p

3−p (R3) and following inequality holds:
||u||

L
4p

4−p (R3)
+ ||u||

L
3p

3−p (R3)
≤ C||u||fW 1,p

0 (R3). (1.4)Proof. We already showed that if u ∈ W 1,p
0 (R3) with 1 < p < 3, then u ∈

L
3p

3−p (R3) satisfying
||u||

L
3p

3−p (R3)
≤ C||∇u||Lp(R3).We know thatD(R3) is dense inW 1,p

0 (R3), then there exists a sequene (ϕk)k∈N ∈

D(R3) whih onverges towards 1 in W 1,p′

0 (R3). By hypothesis, we dedue
∆u ∈W−1,p

0 (R3). Then, we have
〈∆u, 1〉

W−1,p
0 (R3)×W 1,p′

0 (R3)
= lim

k→+∞
〈∆u, ϕk〉W−1,p

0 (R3)×W 1,p′

0 (R3)

= − lim
k→+∞

〈∇u,∇ϕk〉Lp(R3)×Lp′(R3) = 0.Analogously, sine D(R3) is dense in W̃ 1,p
0 (R3) (see [7℄), then we an deduethat 〈

∂u

∂x1
, 1

〉

W−1,p
0 (R3)×W 1,p′

0 (R3)

= 0.We set
−∆u+

∂u

∂x1
= f. (1.5)Then by hypothesis and [5℄, we have f ∈ W−1,p

0 (R3) satisfying the ompatibilityondition as follows
〈f, 1〉W−1,p

0 (R3)×W 1,p
0 (R3) = 0.5



Then, from [8℄, the equation as follows
−∆w +

∂w

∂x1
= f in R

3 (1.6)has a unique solution w ∈ L
3p

3−p (R3) ∩ L
4p

4−p (R3) suh that ∇w ∈ L
p(R3),

∂w

∂x1
∈ W−1,p

0 (R3) also satisfying
||w||

L
3p

3−p (R3)
+ ||w||

L
4p

4−p (R3)
+ ||∇w||Lp(R3) +

∣∣∣∣
∣∣∣∣
∂w

∂x1

∣∣∣∣
∣∣∣∣
W−1,p

0 (R3)

≤ C|| f ||W−1,p
0 (R3). (1.7)We set z = u−w. Subtrating (1.5) to (1.6), we get −∆z+

∂z

∂x1
= 0 in R

3. Sine
z ∈ L3p/(3−p)(R3), then, from Lemma 4.1 [8℄, we dedue that z is a polynomialand then z = 0. From (1.7), we have (1.4). The proof is omplete.Analogously as in Lemma 1.6, it is easy to dedue the following.Lemma 1.7. Let 1 < p < 2. Assume that u ∈ W 2,p

0 (R3) and ∂u

∂x1
∈ Lp(R3).Then we have u ∈ L

2p
2−p (R3) ∩ L

3p
3−2p (R3) if 1 < p < 3/2 and u ∈ Ls(R3) forall s ≥

2p

2 − p
if 3/2 ≤ p < 2.De�nition 1.8. Let 1 < p < ∞. Let γ, δ ∈ R be suh that γ ∈ [3, 4], γ > p,

δ ∈ [ 32 , 2], δ > p. We de�ne two reals r = r(p, γ) and s = s(p, δ) as follow
1

r
=

1

p
−

1

γ
and

1

s
=

1

p
−

1

δ
.Remark 1.9. From De�nition 1.8, we an dedue thati) If 1 < p < 3, then 4p

4 − p
≤ r ≤

3p

3 − p
,ii) If 3 ≤ p < 4, then 4p

4 − p
≤ r <∞,iii) If 1 < p < 3/2, then 2p

2 − p
≤ s ≤

3p

3 − 2p
,iv) If 3/2 ≤ p < 2, then 2p

2 − p
≤ s <∞.Finally, we introdue the properties onerning the Oseen equations whihwill be useful in the next parts. We onsider the non homogeneous Oseenproblem : given a vetor �eld f and a funtion g, we look for a solution (u, π)to the system

(OS)




−∆u+

∂u
∂x1

+ ∇π = f in R
3,

div u = g in R
3.Theorem 1.10. [7℄ Let r and s be the numbers given in De�nition 1.8. Assume

(f, g) ∈ L
p(R3) × W̃ 1,p

0 (R3).(i) If 1 < p < 2, then Problem (OS) has a unique solution (u, π) ∈ L
s(R3) ×6



W 1,p
0 (R3) suh that ∇u ∈ L

r(R3), ∇2u ∈ L
p(R3) and ∂u

∂x1
∈ L

p(R3). More-over, the following estimate holds
||u||Ls(R3) + ||∇u||Lr(R3) + ||∇2u||Lp(R3) + ||

∂u
∂x1

||Lp(R3) + ||π||W 1,p
0 (R3)

≤ C(||f ||Lp(R3) + ||g||fW 1,p
0 (R3)).(ii) If 2 ≤ p < 3, then Problem (OS) has a solution (u, π) ∈ W

1,r
0 (R3) ×

W 1,p
0 (R3), unique up to an element of N 0, suh that ∇2u ∈ L

p(R3) and ∂u
∂x1

∈

L
p(R3) also satisfying

inf
K∈R3

||u + K||
W

1,r
0 (R3) + ||∇2u||Lp(R3) + ||

∂u
∂x1

||Lp(R3) + ||π||W 1,p
0 (R3)

≤ C(||f ||Lp(R3) + ||g||fW 1,p
0 (R3)

).(iii) If p ≥ 3, then Problem (OS) has a solution (u, π) ∈ W
2,r
0 (R3)×W 1,p

0 (R3),unique up to an element of N 1, suh that ∂u
∂x1

∈ L
p(R3). Moreover, we have

inf
(λ,µ)∈N 1

(||u+ λ||
W

2,p
0 (R3) + ||π + µ||W 1,p

0 (R3)) + ||
∂u
∂x1

||Lp(R3)

≤ C(||f ||Lp(R3) + ||g||fW 1,p
0 (R3)

).Theorem 1.11. [7℄ Let r be the number given in De�nition 1.8. Assume thatf ∈ W
−1,p
0 (R3) and satis�es the ompatibility ondition

∀λ ∈ P [1−3/p′], 〈f,λ〉
W

−1,p
0 (R3)×W

1,p′

0 (R3)
= 0.Let g ∈ Lp(R3) suh that ∂g

∂x1
∈ W−2,p

0 (R3), satis�es the ompatibility ondition
∀λ ∈ P[2−3/p′],

〈
∂g

∂x1
, λ

〉

W−2,p
0 (R3)×W 2,p′

0 (R3)

= 0.(i) If 1 < p < 4, then the Oseen system (OS) has a unique solution (u, π) ∈

L
r(R3)×Lp(R3) suh that ∇u ∈ L

p(R3) and ∂u
∂x1

∈ W
−1,p
0 (R3). Moreover, thefollowing estimate holds

||u||Lr(R3) + ||∇u||Lp(R3) + ||
∂u
∂x1

||
W

−1,p
0 (R3) + ||π||Lp(R3)

≤ C(||f ||
W

−1,p
0 (R3) + ||g||Lp(R3) + ||

∂g

∂x1
||W−2,p

0 (R3)).(ii) If p ≥ 4, then the Oseen system (OS) has a unique solution (u, π) ∈

W̃
1,p
0 (R3) × Lp(R3), unique up to an element of N 0. Moreover, the followingestimate holds

inf
K∈R3

||u+ K||fW
1,p
0 (R3)

+ ||π||Lp(R3)

≤ C(||f ||
W

−1,p
0 (R3) + ||g||Lp(R3) + ||

∂g

∂x1
||W−2,p

0 (R3)).7



2 Existene of weak solutions in weighted SobolevspaesWe shall onsider the Navier-Stokes problem in R
3:

(NS)





−ν∆u+ u.∇u + ∇π = f in R
3,

div u = 0 in R
3,u −→ u∞ if |x| → ∞,where u∞ is a onstant vetor in R

3. Without loss of generality, we an setu∞ = λe1 with e1 = (1, 0, 0) and λ ≥ 0. From now on, we onsider the aseof a �xed λ > 0. First, we prove the existene of weak solutions and then, weshall the regularity of these solutions in dimention 3. We onsider the followinglemma.Lemma 2.1. If f ∈ W−1,2
0 (R3), then there exists F ∈ L

2(R3) suh that f =
divF in R

3 with the estimate
||F ||L2(R3) ≤ C||f ||W−1,2

0 (R3). (2.1)Additionally suppose that f ∈W−1,p
0 (R3), and furthermore assume that 〈f, 1〉 =

0 if p ≤ 3

2
, then F ∈ L

p(R3) and we have the estimate
||F ||Lp(R3) ≤ C′||f ||W−1,p

0 (R3). (2.2)Proof. If f ∈ W−1,2
0 (R3), from Theorem 9.5 [5℄, there exists a unique z ∈

W 1,2
0 (R3) suh that ∆z = f in R

3 and
||z||W 1,2

0 (R3) ≤ C||f ||W−1,2
0 (R3).We set that F = ∇z, but z ∈ W 1,2

0 (R3), from Proposition 9.2 [5℄, we haveF ∈ L
2(R3) and (2.1). Moreover, if f ∈ W−1,p

0 (R3) then there exists a unique
h ∈W 1,p

0 (R3)/P[1− 3
p ] suh that f = ∆h in R

3 and
||h||W 1,p

0 (R3)/P
[1− 3

p
]
≤ C′||f ||W−1,p

0 (R3).Then ∇(z− h) is harmoni in L
2(R3)+L

p(R3)and onsequently, ∇z = ∇h andF ∈ L
2(R3) ∩ L

p(R3) with the estimate (2.2).We now return to the question of the existene of weak solutions of theNavier-Stokes Equations in R
3. The next theorem is well known, then we givehere a sketh of the proof.Theorem 2.2. Given a fore f ∈ W

−1,2
0 (R3), the problem (NS) has a weak so-lution u satisfying u−u∞ ∈ W

1,2
0 (R3) and there exists a funtion π ∈ L2

loc(R
3),unique up to a onstant, suh that (u, π) solves the problem (NS) in the senseof distributions and we have the following estimation

||u− u∞||
W

1,2
0 (R3) ≤ C|| f ||

W
−1,2
0 (R3). (2.3)8



Proof. Thanks to Lemma 2.1, for eah i = 1, 2, 3, we know that there existsFi ∈ L2(R3)3 suh that fi = divFi ∈W−1,2
0 (R3) with the estimation (2.1). Weonsider the following approximating problems (for eah m ∈ N

∗):
−ν∆um + um.∇um + ∇πm = divF in BRm = Bm,

div um = 0 in Bm,um = u∞ on ∂Bm

(2.4)where Bm is the open ball of radiusRm > 0 entered at the origin. We know thatthere exists a weak solution (um, πm) ∈ H
1(Bm) × L2(Bm) of (2.4) satisfyingthe following estimation:

ν||∇um||L2(Bm) ≤ ||F ||L2(Bm) ≤ || f ||
W

−1,2
0 (R3).We extend um by u∞ outside Bm and we denote the extended funtion by ∼um.We set ∼vm =

∼um −u∞. Sine ∼vm ∈ W
1,2
0 (R3), then we dedue from Lemma 1.3that

||
∼um −u∞||L6(R3) + ||∇

∼um ||L2(R3) ≤ C|| f ||
W

−1,2
0 (R3).Thus there exists a subsequene of (

∼um) and u suh that u− u∞ ∈ W
1,2
0 (R3)and suh that ∼vm =

∼um −u∞ ⇀ u − u∞ = v in L
6(R3) and ∇

∼um⇀ ∇u in
L

2(R3). Moreover, we have
ν||∇u||L2(R3) ≤ lim inf ν||∇

∼um ||L2(R3) ≤ || f ||
W

−1,2
0 (R3)

(2.5)and (2.3) is satis�ed.Let us now hek that u is a weak solution. Let ϕ ∈ V(R3) and N > 0 bean integer suh that suppϕ ⊂ BN . Then, for all m ≥ N , we dedue from (2.4)that
ν

∫

R3

∇
∼um .∇ϕ dx +

∫

R3

∼um .∇
∼um .ϕ dx = 〈f,ϕ〉 . (2.6)In view of (2.5), we an pass to limit in the �rst integral. We know that theimbedding H

1(BN ) ⊂ L
2(BN ) is ompat, then ∼um onverges strongly to u in

L
2(BN ). Then, this onvergene together with (2.5) ensures the onvergene ofthe seond integral of (2.6), then we have u is a weak solution of (NS).Finally, the existene of a pressure π ∈ D′(R3) suh that (u, π) satis�es(NS) in the sense of distributions follows from the De�nition 1.1 and from awell-known onsequene of a very general theorem of G.de Rham. It is easy tothat f− u.∇u+ ν∆u ∈ H

−1
loc(R

3) whih implies that π ∈ L2
loc(R

3).In Theorem 2.2, we see that a pressure π loally belongs to L2. At thebeginning, we shall establish, without additional assumption, of the propertiesof integrability at in�nity of the pressure.Proposition 2.3. Let f ∈ W
−1,2
0 (R3). The pressure π obtained in Theorem2.2 has a representative suh that

π = τ1 + τ2 with τ1 ∈ L2(R3) and τ2 ∈W
1,3/2
0 (R3).9



Proof. Let R1 and R2 be reals suh that R2 > R1 > 0 and hoose some funtions
ψ1 and ψ2 suh that

ψ1 ∈ C∞(R3), ψ1(x) = 0 if |x| ≤ R1, ψ1(x) = 1 if |x| ≥ R2,

∀x ∈ R
3, ψ1(x) + ψ2(x) = 1.Let v = u−u∞ where u is a solution given by Theorem 2.2 and let π ∈ L2

loc(R
3)be the assoiated pressure. We de�ne (v1, π1) as follows

(v1, π1) = (vψ1, πψ1) in R
3, (v1, π1) = (0, 0) in B1,where B1 is the open ball of radius R1 and set (v2, π2) = (vψ2, πψ2) in R

3.Then (vi, πi) (i = 1, 2), satis�es
−ν∆vi + λ

∂vi

∂x1
+ ∇πi = f i and div vi = gi in R

3, (2.7)where f i = [fψi − νv∆ψi − 2ν∇v∇ψi + π∇ψi] + [λv∂ψi

∂x1
− (v.∇v)ψi] := ki + hiand gi = −v.∇ψi. We have π = π1 + π2 and from Theorem 2.2, we obtain

π2 ∈ L2(R3). Thus, the main of the proof deals with the properties of π1 andtherefore of (f 1, g1). We onsider
−ν∆a1 + λ

∂a1

∂x1
+ ∇b1 = k1 and div a1 = −v∇ψ1 in R

3. (2.8)Sine ψ1 is bounded and has bounded derivatives with ompat support, it iseasy to hek that the term fψ1, v∆ψ1, ∇v∇ψ1 and π∇ψ1 belong to W
−1,2
0 (R3)and beause W

1,2
0 (R3) ⊂ L

6(R3) then we have v.∂ψ1

∂x1
∈ L

q(R3) for all q ∈ [1, 6].Even simple is to prove that g1 = −v.∇ψ1 ∈ L2(R3)∩W−1,2
0 (R3) and therefore

∂g1

∂x1
∈ W−2,2

0 (R3) satisfying the following ompatibility ondition
〈
∂g1

∂x1
, 1

〉

W−2,2
0 (R3)×W 2,2

0 (R3)

= 0.Applying Theorem 1.11, there exists a unique solution (a1, b1) ∈ (W̃1,2
0 (R3) ×

L2(R3)) of (2.8) suh that a1 ∈ L
r1(R3) where 4 ≤ r1 ≤ 6. Thanks to Hölderinequality, we dedue that (v.∇v)ψ1 ∈ L

3/2(R3) and, in partiular, we havev.∂ψ1

∂x1
∈ L

3/2(R3). Therefore, from Theorem 1.10, the system as follows
−ν∆a2 + λ

∂a2

∂x1
+ ∇b2 = h1 and div a2 = 0 in R

3, (2.9)has a unique solution (a2, b2) ∈ L
s1(R3)×W

1,3/2
0 (R3) suh that ∇a2 ∈ L

r2(R3),
∇2a2 ∈ L

3/2(R3) and ∂a2

∂x1
∈ L

3/2(R3) for all s1 ∈ [6,∞) and r2 ∈ [12/5, 3].We set z = v1 − a1 − a2 and θ = π1 − b1 − b2. Subtrating (2.7) to (2.8) and(2.9), we get
−ν∆z+ λ

∂z
∂x1

+ ∇θ = 0 and div z = 0 in R
3.10



Proeeding as in the proof of Theorem 3.1 part a) in the next setion, we andedue that z = 0, then ∇θ = 0, and by the way the existene of a onstant
c suh that π1 = b1 + b2 + c. Therefore, the proposition is proved setting
τ1 = π2 + b1, τ2 = b2.3 Regularity of the weak solutionsLet v = u − u∞ where u is the weak solution of the Navier-Stokes problem
(NS) given by Theorem 2.2. Then we rewrite the Navier-Stokes problem (NS)as follows:

(NS)





−ν∆v + λ
∂v
∂x1

+ ∇π = f− v.∇v in R
3,

div v = 0 in R
3,v −→ 0 if |x| → ∞.

(3.1)Remark that the Navier-Stokes problem is redued to the Oseen problem orthe Stokes one, aording to whether u∞ is di�erent from or equal to zero.However, if u∞ = 0, several fundamental questions remain open. For instane,we annot do when u∞ = 0 is to show that v ∈ L
q(R3) for some q < 6 or

∇v ∈ L
r(R3) for some r < 2 exepting the ase where the fores are small insuitable norm (see Galdi [11℄, Farwig [10℄ for example). When u∞ 6= 0, thesituation is di�erent. Thanks to the results obtained on the Oseen system, weshall see here that the weak solutions satisfy the regularity properties aordingto f. We start our studies by adding assumptions on the fore �eld f. First, weassume additionally that f ∈ W

−1,3
0 (R3), and then, we will onsider the asemore generally f ∈ W

−1,2
0 (R3)∩W

−1,p
0 (R3) with p ≥ 3. Following this idea, westate and prove theTheorem 3.1. Given p ≥ 3 and f ∈ W

−1,2
0 (R3)∩W

−1,p
0 (R3). Then, eah weaksolution u to the problem (NS) satis�esv ∈ W

1,2
0 (R3) ∩ W

1,p
0 (R3) ∩ L

r1(R3) and
∂v
∂x1

∈ W
−1,r2

0 (R3) (3.2)for any r1 ≥ 6 and any r2 ≥ 3. Besides, the assoiated pressure has a represen-tative
π ∈ L3(R3) ∩ Lp(R3), (3.3)and if p > 3, then we have v ∈ L

∞(R3).Proof. We �rst prove the ase p = 3 and then onsider the ase p > 3.a) The ase p = 3: f ∈ W
−1,2
0 (R3) ∩ W

−1,3
0 (R3). Let u be a weak solu-tion of (NS) given by Theorem 2.2 and v = u − u∞. Sine v ∈ L

6(R3) andv.∇v = div (v⊗v), we have that v.∇v ∈ W
−1,3
0 (R3) and f−v.∇v ∈ W

−1,3
0 (R3).Therefore, from Theorem 1.11, the following Oseen system

−ν∆w+ λ
∂w
∂x1

+ ∇q = f− v.∇v and div w = 0 in R
3 (3.4)11



has a unique solution (w, q) ∈ (W̃1,3
0 (R3) × L3(R3)) suh that w ∈ L

r(R3) forany r ≥ 12. We set z = v−w and θ = π − q. Subtrating (3.1) to (3.4), we get
−ν∆z+ λ

∂z
∂x1

+ ∇θ = 0 and div z = 0 in R
3.Therefore, we have

−ν∆curl z+ λ
∂(curl z)
∂x1

= 0 in R
3,and we get Ψ = curl z, then for eah i = 1, 2, 3,

−ν∆Ψi + λ
∂Ψi

∂x1
= 0 in R

3,where Ψi ∈ L2(R3) + L3(R3) →֒ S′(R3). Then, from Lemma 4.1 [8℄, Ψ is apolynomial whih belongs to L
2(R3) + L

3(R3). Consequently, Ψ = 0 = curl zand div z = 0. Therefore,
−∆z = curl curl z + ∇div z = 0 in R

3.Sine z belongs to W
1,2
0 (R3) + W

1,3
0 (R3), then z must be a onstant  and

∇v = ∇w. As z ∈ L
6(R3) + L

12(R3), then c = 0, i.e. v = w and v ∈

W
1,2
0 (R3) ∩ W

1,3
0 (R3). Moreover, we have v ∈ L

r1(R3) and ∂v
∂x1

∈ W
−1,r2

0 (R3)for any r1 ≥ 6 and any r2 ≥ 3. Sine z = 0, we dedue that ∇θ = 0, then θmust be a onstant, i.e, q = π + a with a ∈ R, q ∈ L3(R3). This ends the proofof the ase p = 3.b) The ase 3 < p < 4: Let f ∈ W
−1,2
0 (R3) ∩ W

−1,p
0 (R3). It is lear thatf ∈ W

−1,3
0 (R3) and sine we have proved the theorem for p = 3, we know thatv ∈ W
1,2
0 (R3) ∩ W

1,3
0 (R3) ∩ L

r1(R3) for any r1 ≥ 6, and π ∈ L3(R3). Sine
div (v⊗ v) ∈ W

−1,r
0 (R3) for all r ≥ 3, by Theorem 1.11, we an dedue as pre-viously that v ∈ W

1,2
0 (R3) ∩ W

1,p
0 (R3) with ∂v

∂x1
∈ W

−1,r2

0 (R3) for all r2 ≥ 3.Moreover, we an hek that π ∈ L3(R3) ∩ Lp(R3). This ends the proof of thease 3 < p < 4.) The ase p ≥ 4: From the ase a) and b), we have v ∈ W
1,k
0 (R3), v ∈ L

r1(R3),
∂v
∂x1

∈ W
−1,r2

0 (R3) and π ∈ Ls(R3) for all q ∈ [2, 4), k ∈ [2, 4), r1 ∈ [6,∞),
r2 ∈ [3,∞) and s ∈ [3, 4). We use the same method of preedent ases, byapplying Theorem 1.11, we an remark that ∇w = ∇v even if w ∈ W

1,p
0 (R3) isunique up to an element of N 0 and we still have (3.2) and (3.3).If p > 3, we have ∇v ∈ L

p(R3) and v ∈ L
r1(R3) for any r1 ≥ 6. Hene,we dedue v ∈ L

∞(R3). The proof is omplete.From Sobolev injetions theorem and the properties of the duality, we knowthat L
3/2(R3) →֒ W

−1,3
0 (R3). Then, if we reinfore the assumptions of Theorem3.1, f belongs to L

3/2(R3) instead of W
−1,3
0 (R3), we an prove the following.12



Theorem 3.2. i) Assume that f ∈ W
−1,2
0 (R3) ∩ L

3/2(R3). Then eah weaksolution u to the problem (NS) satis�esv ∈ W
1,2
0 (R3) ∩ W

1,3
0 (R3) ∩ L

r1(R3), (3.5)
∂v
∂x1

∈ L
3/2(R3) ∩ L

3(R3) ∩ W
−1,r2

0 (R3) and ∇2v ∈ L
3/2(R3) (3.6)for any r1 ≥ 9

2 , r2 ≥ 3. Besides, the assoiated pressure π has a representativein W 1,3/2
0 (R3).ii) Let 3

2
< p < 3. Assume that f ∈ W

−1,2
0 (R3)∩L

p(R3). Then eah solution uto the problem (NS) satis�esv ∈ W
1,2
0 (R3) ∩ W

1,p∗
0 (R3) ∩ L

r1(R3) and
∂v
∂x1

∈ W
−1,r2

0 (R3) (3.7)for any r1 ∈ [3p,∞] if 3
2 < p < 2, for any r1 ∈ [6,∞] if 2 ≤ p < 3 and for any

r2 ≥ 3. Besides, the assoiated pressure has a representative
π ∈ L3(R3) ∩ Lp∗(R3) (3.8)where p∗ =

3p

3 − p
. Moreover, we have

∇2v ∈ L
p(R3),

∂v
∂x1

∈ L
p(R3) and π ∈W 1,p

0 (R3). (3.9)Proof. i) Note that L
3/2(R3) →֒ W

−1,3
0 (R3) and let u be a weak solution of

(NS). Thanks to Theorem 3.1, we know that u and π satisfy (3.2) and (3.3)for the ase p = 3. Besides, we have f − v.∇v belongs to L
3/2(R3). Then, byapplying Theorem 1.10, the following Oseen system

−ν∆w+ λ
∂w
∂x1

+ ∇µ = f− v.∇v and div w = 0 in R
3, (3.10)has a solution w ∈ L

s(R3) suh that, ∇w ∈ L
r(R3), ∇2w ∈ L

3/2(R3), ∂w
∂x1

∈

L
3/2(R3) and the pressure µ ∈ W

1,3/2
0 (R3) for all s ∈ [6,∞) and r ∈ [12/5, 3].We set z = v−w and θ = π − µ. Subtrating (3.1) to (3.10), we get

−ν∆z+ λ
∂z
∂x1

+ ∇θ = 0 and div z = 0 in R
3.By the analogous tehniques as in the proof of Theorem 3.1, we onlude v = wand π = µ ∈ W

1,3/2
0 (R3). Then, ∂v

∂x1
∈ L

3/2(R3)∩L
3(R3) and ∇2v ∈ L

3/2(R3).Thanks to Lemma 1.5 with q =
3

2
, we an dedue v ∈ L

9/2(R3). Combiningthese results with (3.2) and (3.3), we obtain (3.5) and (3.6).ii) Thanks to the Sobolev embedding theorem, sine f ∈ L
p(R3) where 3

2
<

p < 3, we an dedue that f ∈ W
−1,p∗
0 (R3) and p∗ > 3. From Theorem 3.1, we13



have v ∈ W
1,2
0 (R3)∩W

1,p∗
0 (R3)∩L

∞(R3). In partiular, we have ∇v ∈ L
q1(R3)for all 2 ≤ q1 ≤ 3. Then, from Hölder's inequality, we obtain v.∇v ∈ L
q2(R3)for all 3

2
≤ q2 < 3. Therefore, we dedue that f − v.∇v ∈ L

p(R3). By us-ing the methods as in the proof of Theorem 3.1 (part a) and from Theo-rem 1.10 for the ase 3

2
≤ p < 2, we have v ∈ L

s(R3) where s ≥
2p

2 − p
,

π ∈ W 1,p
0 (R3), ∇v ∈ L

r(R3) where 4p

4 − p
≤ r ≤

3p

3 − p
, ∇2v ∈ L

p(R3) and
∂v
∂x1

∈ L
p(R3). We note that 6 ≤

2p

2 − p
and 4 ≤

4p

4 − p
< 6 ≤

3p

3 − p
. Sinev ∈ W

1,2
0 (R3) ∩ W

1,p∗
0 (R3) ∩ L

r1(R3) for any r1 ∈ [6,∞], we don't obtainmore results for v. But by applying Lemma 1.5, we have v ∈ L
3p(R3). Pro-eeding analogously for the ase 2 ≤ p < 3, we have v ∈ W

1,r
0 (R3) where

4p

4 − p
≤ r ≤

3p

3 − p
, π ∈ W 1,p

0 (R3), ∇2v ∈ L
p(R3) and ∂v

∂x1
∈ L

p(R3). Remarkthat 2 <
4p

4 − p
<

3p

3 − p
= p∗, then v and π an not be improved on and weshall keep all results in (3.7), (3.8) and (3.9) for any r1 ∈ [6,∞] and r2 ≥ 3.The theorem is ompletely proved.4 More regularityFor our studies, we shall introdue the following problem. Let a �xed z ∈ L

3(R3)suh that div z = 0 in R
3, we searh a solution (w, θ) to the following problem

−ν∆w+ λ
∂w
∂x1

+ z.∇w+ ∇θ = f in R
3,

div w = 0 in R
3.

(4.1)This problem is here linear, we limit ourselves to the ondition w → 0 at in�nity.This ondition is satis�ed if p < 3 and w ∈ W
1,p
0 (R3) or w ∈ L

q(R3) for some
q ≥ 1 and w ∈ W

1,p
0 (R3) if p ≥ 3 (see [7℄).We now prove theLemma 4.1. Assume that z ∈ L

3(R3) with div z = 0 and let f ∈ W
−1,2
0 (R3).Then Problem (4.1) has a unique solution (w, θ) ∈ W

1,2
0 (R3) × L2(R3). More-over, we have w ∈ L

4(R3), ∂w
∂x1

∈ W
−1,2
0 (R3) and w satis�es the energy equality

ν

∫

R3

|∇w|2dx = < f ,w >
W

−1,2
0 (R3)×W

1,2
0 (R3) . (4.2)Proof. Let (Rm)m≥0 be an inreasing sequene of reals with a �xed R0 > 0 andsuh that lim

m→+∞
Rm = +∞. Sine f ∈ W

−1,2
0 (R3), then its restrition to theopen ball of radius Rm>0 belongs to H

−1(Bm). Now proeeding as in Theorem2.2, we an dedue that the following approximating problem
−ν∆wm + λ

∂wm

∂x1
+ z.∇wm + ∇θm = f in Bm,

div wm = 0 in Bm,wm = 0 on ∂Bm.

(4.3)14



has a unique solution (wm, θm) ∈ H
1(Bm)×(L2(Bm)/R). Extendingwm and θmby zero outsideBm and whenm→ +∞, we an prove analogously as in Theorem2.2 that Problem (4.1) has a weak solution (w, χ) ∈ W

1,2
0 (R3) × L2

loc(R
3). It iseasy to hek that ∆w and z.∇w = div (z ⊗ w) belong to W

−1,2
0 (R3). Thenfrom (4.1), we have ∇χ ∈ L

2(R3) + W
−1,2
0 (R3). In addition, sine z ⊗ w ∈

L
2(R3), we have

∆χ = div f− div div (z⊗w). (4.4)The right-hand side of (4.4) being a element of W
−2,2
0 (R3) ⊥ R, then thereexists a unique θ ∈ L2(R3) suh that ∆θ = ∆χ. Thus, ∇(θ − χ) is a harmonidistribution belonging to W

−1,2
0 (R3)+L

2(R3), i.e, ∇χ = ∇θ. Then, there exists
k ∈ R suh that θ = χ + k ∈ L2(R3). Moreover, we have ∂w

∂x1
∈ W

−1,2
0 (R3)beause ∆w, z.∇w, ∇θ and f belong to W

−1,2
0 (R3). Thanks to Lemma 1.6, wededue w ∈ L

4(R3). It is easy to hek as in the proof of Lemma 1.6 that
〈
∂w
∂x1

,w〉
= 〈∇θ,w〉 = 〈div (z⊗w),w〉 = 0, (4.5)where the brakets denote the duality W

−1,2
0 (R3) × W

1,2
0 (R3). Therefore, weobtain the energy equality (4.2).We now introdue the following results whih we shall need in the future.Lemma 4.2. Let z ∈ L

4(R3) suh that div z = 0. Then, for all ε > 0, thereexist ρ = ρ(ε, z) > 0 and a sequene (zk)k∈N ∈ L
3(R3) ∩ L

4(R3), suh that
div zk = 0, satisfying zk → z in L

4(R3). (4.6)Moreover, there exist sequenes (ak) and (bk) in L
3(R3)∩L

4(R3) satisfying foreah k ∈ Nzk = ak + bk with ||ak||L4(R3) ≤ ε and supp bk ⊂ B(0, ρ). (4.7)Proof. Let ϕ ∈ C∞(R+) suh that 0 ≤ ϕ ≤ 1 satisfying ϕ(t) = 1 if 0 ≤ t ≤ 1and ϕ(t) = 0 if t ≥ 2. For a > 0, we set
ϕa(x) = ϕ

(
|x|

a

)
, x ∈ R

3.Let ε > 0, then there exists ρ = ρ(ε, z) > 0 suh that
||z− ϕρz||L4(R3) ≤

ε

2
.Let (Rk)k∈N be an inreasing unbounded sequene of positive numbers with

R0 > 2ρ. Sine the support of ϕRk
is ompat for all k ∈ N, then div (ϕRk

z) =z.∇ϕRk
belongs to L

4(R3) and has a ompat support. In partiular, div (ϕRk
z)belongs to L

3/2(R3) ∩ L
12/7(R3), and from [5℄, we dedue that there exists yk

∈ W
1,3/2
0 (R3) ∩ W

1,12/7
0 (R3) suh that div yk = −div (ϕRk

z) satisfying thefollowing estimation
||yk||L4(R3) ≤ C||z.∇ϕRk

||L12/7(R3)

≤ C||z||
L4(B

2Rk
Rk

)
||∇ϕRk

||
L3(B

2Rk
Rk

)

≤ C||z||
L4(B

2Rk
Rk

)
. (4.8)15



Here, BRk
is a open ball of radius Rk > 0 entered at the origin and B2Rk

Rk
=

B2Rk
\BRk

. Note that W
1,12/7
0 (R3) →֒ L

4(R3) and W
1,3/2
0 (R3) →֒ L

3(R3). Wede�ne zk = ϕRk
z+ yk. Then, from (4.8), we have (4.6). We set thatzk = ϕRk
z+ yk = [ϕRk

(1 − ϕρ)z+ yk] + (ϕRk
ϕρz) =: ak + bk.Note that supp bk ⊂ B(0, ρ) and bk ∈ L

3(R3). Furthermore, for all k ≥ k̄(ε) ∈
N, we have

||ak||L4(R3) ≤ ||ϕRk
(1 − ϕρ)z||L4(R3) + ||yk||L4(R3)

≤
ε

2
+ C||z||

L4(B
2Rk
Rk

)
≤
ε

2
+
ε

2
= εand we obtain (4.7). Moreover, sine yk ∈ L

3(R3) ∩ L
4(R3), we have alsoak ∈ L

3(R3) ∩ L
4(R3).In Theorem 3.2 (i), we proved v ∈ L

r1(R3) for any r1 ≥ 9/2. To obtainv ∈ L
r1(R3) with r1 < 9/2, we have to assume additionally a ondition for f.We an state theTheorem 4.3. Assume that f ∈ W

−1,2
0 (R3) ∩ L

3/2(R3) ∩ L
4/3(R3). Then eahweak solution u and the assoiate pressure π to the problem (NS) satisfy theresults in Theorem 3.2 i). Moreover, for any r1 ≥ 4v ∈ L

r1(R3), ∇2v ∈ L
4/3(R3),

∂v
∂x1

∈ L
4/3(R3) and π ∈ W

1,4/3
0 (R3).Proof. From the ase i) of Theorem 3.2, sine v ∈ L

r1(R3) for any r1 ≥ 9/2 and
∇v ∈ L

2(R3)∩L
3(R3), then we have f−v.∇v ∈ L

p(R3) for any p ∈ [18/13, 3/2].From Theorem 1.10 and proeeding as in the proof of Theorem 3.1 with p =
18

13
, we obtain ∂v

∂x1
∈ L

18/13(R3), ∇2v ∈ L
18/13(R3) and π ∈ W

1,18/13
0 (R3).Moreover, we have

λ||
∂v
∂x1

||L18/13(R3) ≤ C|| f− v.∇v ||L18/13(R3)

≤ C(|| f ||L18/13(R3) + || v ||L9/2(R3)||∇v ||L2(R3))
≤ C(|| f ||L18/13(R3) + || v ||L9/2(R3)||f ||W−1,2

0 (R3)).

(4.9)Applying Lemma 1.5, we have v ∈ L
54/13(R3) and

||v||L54/13(R3) ≤ C(||
∂v
∂x1

||L18/13(R3) + ||∇v||L2(R3)). (4.10)From (4.9) and (4.10), we dedue that
||v||L54/13(R3) + λ||

∂v
∂x1

||L18/13(R3) ≤ C(|| f ||L18/13(R3) + || v ||L9/2(R3) + 1).Therefore, repeating the reasoning previously employed, we dedue for 1 < q <
18/13 that

||v||L3q(R3) + λ||
∂v
∂x1

||Lq(R3) ≤ C(|| f ||Lq(R3) + || v ||L2q/(2−q)(R3) + 1).16



We de�ne the sequene {qk} as follows
2qk+1

2 − qk+1
= 3qk, k ∈ N (4.11)with q0 = 18/13. Repeating the same tehniques, we thus �nd, for any k ∈ N,

||v||L3qk (R3) + ||
∂v
∂x1

||Lqk (R3) ≤Mfor a onstant M independent of k. Clearly, the sequene {qk} is stritly de-reasing and is bounded from below by 4/3. Therefore, there exists a number
Q ≥ 4/3 suh that

lim
k→∞

qk = Q.We shall pass to limit in (4.11), we obtain Q = 4/3. Sine v ∈ L
4(R3) and

∇v ∈ L
2(R3), we obtain f − v.∇v ∈ L

4/3(R3). Hene, by applying Theorem1.10, we an dedue that ∇2v ∈ L
4/3(R3) and π ∈ W

1,4/3
0 (R3). The Theoremis ompletely proved.Note that L

6/5(R3) →֒ W
−1,2
0 (R3) and L

3/2(R3) →֒ W
−1,3
0 (R3), and withthe previous results in hand, we an now prove the following theorem.Theorem 4.4. Let f ∈ L

6/5(R3)∩L
3/2(R3). Then eah weak solution (u, π) tothe problem (NS), satis�esv ∈ L

q(R3) for all q ∈ [3,∞), π ∈W
1,6/5
0 (R3) ∩ W

1,3/2
0 (R3),

∇v ∈ L
12/7(R3) ∩ L

3(R3), ∇2v ∈ L
6/5(R3) ∩ L

3/2(R3),
∂v
∂x1

∈ L
6/5(R3) ∩ L

3(R3).

(4.12)Proof. Let u be a weak solution of (NS). As f satis�es the hypothesis ofTheorem 4.3, then v ∈ L
4(R3) and ∂v

∂x1
∈ L

4/3(R3). Let ε > 0, ρ > 0 and vk bea sequene as zk in Lemma 4.2. Sine vk ∈ L
3(R3) and div vk = 0, from Lemma4.1, there exists a unique solution (wk, θk) ∈ W̃

1,2
0 (R3) × L2(R3) satisfying

−ν∆wk + λ
∂wk

∂x1
+ vk.∇wk + ∇θk = f and div wk = 0 in R

3. (4.13)Sine f − vk.∇wk ∈ L
6/5(R3), thanks to Theorem 1.10, there exists a unique

(yk, µk) suh that
−ν∆yk + λ

∂yk

∂x1
+ ∇µk = f− vk.∇wk and div yk = 0 in R

3, (4.14)satisfying ∇2yk ∈ L
6/5(R3), ∇yk ∈ L

12/7(R3) ∩ L
2(R3), yk ∈ L

3(R3) ∩ L
6(R3),

∂yk

∂x1
∈ L

6/5(R3) and µk ∈ W
1,6/5
0 (R3). Using the method in the proof of Theo-rem 3.1 (part a), we have yk = wk and µk = θk. Moreover, we have

(λν)1/2 ||wk||L3(R3) + λ1/4ν3/4||∇wk||L12/7(R3)

+ λ

∣∣∣∣
∣∣∣∣
∂wk

∂x1

∣∣∣∣
∣∣∣∣
L6/5(R3)

+ ν||∇2wk||L6/5(R3) + ||θk||W 1,6/5
0 (R3)

≤ C
(
||f ||

L6/5(R3) + ||vk.∇wk||L6/5(R3)

)
. (4.15)17



Note now that
||vk.∇wk||L6/5(R3)

≤ ||ak||L4(R3)||∇wk||L12/7(R3) + ||bk||L6(Bρ)||∇wk||L3/2(Bρ)

≤ ε||∇wk||L12/7(R3) + ||v||L6(R3)||∇wk||L3/2(Bρ). (4.16)But there exists C1 ∈ R suh that
∀k ∈ N

∗, ||∇wk||L3/2(Bρ) ≤ C1||f ||L6/5(R3). (4.17)Contraditing (4.17) means that there exists a sequene (km)m∈N∗ suh that,for all m ∈ N
∗,

||∇wkm ||L3/2(Bρ) = 1,

|| − ν∆wkm + λ
∂wkm

∂x1
+ vkm .∇wkm + ∇θkm ||L6/5(R3) ≤

1

m
.

(4.18)Then we dedue from (4.15), (4.16) and (4.18) that
(λν)

1/2 ||wkm ||L3(R3) + λ1/4ν3/4||∇wkm ||L12/7(R3) + ν||∇2wkm ||L6/5(R3)

+λ

∣∣∣∣
∣∣∣∣
∂wkm

∂x1

∣∣∣∣
∣∣∣∣
L6/5(R3)

+ ||θkm ||
W

1,6/5
0 (R3)

≤ C. (4.19)Therefore (wkm)m is bounded in W
2,6/5
0 (R3) ∩ W

1,12/7
0 (R3),

(
∂wkm

∂x1

)

m

isbounded in L
6/5(R3), (wkm)m is bounded in L

3(R3) and (θkm)m is boundedin W 1,6/5
0 (R3). Thus, there exist subsequenes, again denoted by (wkm)m and

(θkm)m, suh that wkm ⇀ w in W
2,6/5
0 (R3) ∩ W

1,12/7
0 (R3),

∂wkm

∂x1
⇀

∂w
∂x1

in
L

6/5(R3), wkm ⇀ w in L
3(R3), and θkm ⇀ θ in W

1,6/5
0 (R3). Moreover, sine

W
2,6/5(Bρ) →֒ W

1,3/2(Bρ) with ompat imbedding, we have wkm → w in
W

1,3/2(Bρ) with
||∇w ||L3/2(Bρ) = 1, (4.20)and

−ν∆w+ λ
∂w
∂x1

+ v.∇w + ∇θ = 0 in R
3. (4.21)Sine w ∈ W

1,2
0 (R3) and θ ∈ L2(R3), then we have ∆w and ∇θ belongingto W

−1,2
0 (R3). On the other hand, we dedue that v.∇w = div (v ⊗ w) ∈

W
−1,2
0 (R3) beause v and w belong to L

4(R3). Sine L
6/5(R3) →֒ W

−1,2
0 (R3)we also have ∂w

∂x1
∈ W

−1,2
0 (R3). Hene,

ν

∫

R3

|∇w|2 dx+

〈
λ
∂w
∂x1

+ v.∇w + ∇θ,w〉

W
−1,2
0 (R3)×W

1,2
0 (R3)

= 0. (4.22)From (4.5) and (4.22), we dedue ∇w = 0 and w = 0 in R
3 whih ontradits(4.20). Thanks to (4.15), (4.16) and (4.17), we have the following estimation

(λν)1/2 ||wk||L3(R3) + λ1/4ν3/4||∇wk||L12/7(R3)

+λ

∣∣∣∣
∣∣∣∣
∂wk

∂x1

∣∣∣∣
∣∣∣∣
L6/5(R3)

+ ν||∇2wk||L6/5(R3) + ||θk||W 1,6/5
0 (R3)

≤ C
(
||f ||

L6/5(R3) + ||v||L6(R3)||f ||L6/5(R3)

)
.18



We an show that there exist a subsequene of (wk)k whih onverges weaklytowards w in W
2,6/5
0 (R3) ∩ W

1,12/7
0 (R3) ∩ L

3(R3) and a subsequene of (θk)kwhih onverges weakly towards θ in W 1,6/5
0 (R3) being a solution of the systemas follows

−ν∆w+ λ
∂w
∂x1

+ v.∇w + ∇θ = f and div w = 0 in R
3.We set y = v−w and χ = π − θ. Then we dedue that (y, χ) is a solution ofthe following system

−ν∆y+ λ
∂y
∂x1

+ v.∇y + ∇χ = 0 and div y = 0 in R
3.Sine y satis�es the energy equality (4.2) with f = 0, we dedue that y = 0then χ = 0. Thanks to uniqueness arguments, we show that w = v and θ = π.Theorem is ompletely proved.We now searh weak solutions of Navier-Stokes system (NS) suh that v ∈

L
q(R3) for small values of q (q < 3) with similar properties for∇v. The followingtheorem allow us to improve the results in Theorem 4.4 by taking an additionalassumption for f.Theorem 4.5. Let 1 < p < 2. Assume that f ∈ L

6/5(R3) ∩ L
3/2(R3) ∩

W
−1,p
0 (R3) satisfying the ompatibility ondition

∀λ ∈ P[1−3/p′], < f,λ >
W

−1,p
0 (R3)×W

1,p′

0 (R3)
= 0. (4.23)Then eah weak solution (u, π) to the problem (NS) satis�es (4.12). Besides,we have

∂v
∂x1

∈ W
−1,s
0 (R3) for any s ≥ p and π ∈ Lp(R3). (4.24)In partiular, if 1 < p <

12

7
, we obtain additionallyv ∈ L

q(R3) for any q ≥ 4p

4 − p
and ∇v ∈ L

p(R3). (4.25)Proof. Let f ∈ W
−1,p
0 (R3) with 1 < p < 2. From Theorem 4.4 and if u is asolution of (NS), v satis�es (4.12) and in partiular, v ∈ L

3(R3) ∩ L
4(R3) and

div (v⊗ v) ∈ W
−1,3/2
0 ∩ W

−1,2
0 (R3).a) The ase 3/2 ≤ p < 2: We have f− v.∇v ∈ W

−1,p
0 (R3). Thanks to Theorem1.11, there exists a unique (w, θ) suh that

−ν∆w + λ
∂w
∂x1

+ ∇θ = f− v.∇v and div w = 0 in R
3,with w ∈ L

4p
4−p (R3) ∩ L

3p
3−p (R3), ∇w ∈ L

p(R3), ∂w
∂x1

∈ W
−1,p
0 (R3) and θ ∈

Lp(R3). Sine v ∈ L
3(R3), by uniqueness arguments, we an dedue that w = v ,

θ = π and then, we have (4.24). 19



b) The ase 1 < p < 3/2: Sine f ∈ L
6/5(R3) →֒ W

−1,2
0 (R3), then in par-tiular f ∈ W

−1,3/2
0 (R3) and from the ase a), we have v ∈ L

12/5(R3)∩L
3(R3).Hene, we an show that v.∇v = div (v ⊗ v) ∈ W

−1,6/5
0 (R3) ∩ W

−1,3/2
0 (R3).We distinguish two following ases:b1) The ase 6

5
≤ p <

3

2
: We an prove that f − v.∇v ∈ W

−1,p
0 (R3) satisfyingthe ompatibility ondition (4.23). Proeeding as in previous ases, we havev ∈ L

4p
4−p (R3) ∩ L

3p
3−p (R3), π ∈ Lp(R3),

∇v ∈ L
p(R3),

∂v
∂x1

∈ W
−1,p
0 (R3).

(4.26)Hene, we shall gain (4.24) from (4.12). Furthermore, we have (4.25).b2) The ase p < 6

5
: We have that f ∈ W

−1,6/5
0 (R3) and proeeding as in thease a), we prove that v ∈ L

q(R3) for all q ≥ 12/7. Then, we dedue v.∇v =div (v ⊗ v) ∈ W
−1,q
0 (R3) for all q > 1 and we obtain f − v.∇v ∈ W

−1,p
0 (R3)satisfying (4.23). Analogously as in the ase b1), we an prove that v and πsatisfy (4.26). Therefore, we have (4.24) and (4.25).The proof is omplete by ombining the ase a) with the ase b).Thanks to Theorem 3.2 (part ii), Theorem 4.4, Sobolev embedding theoremand the properties of the duality, we an prove the following.Corollary 4.6. i) Assume that f ∈ L

p(R3) for all p ∈ [6/5, 2). Then theNavier-Stokes problem (NS) has a solution (u, π) satisfyingv ∈ L
q(R3), ∇v ∈ L

s1(R3), π ∈ W 1,s2

0 (R3),

∇2v ∈ L
s2(R3),

∂v
∂x1

∈ L
s3 (R3),

(4.27)for any q ∈ [3,∞], any s1 ∈ [12/7, 6), any s2 ∈ [6/5, 2) and any s3 ∈ [6/5, 6).ii) Assume that f ∈ L
p(R3) for all p ∈ [6/5, 3). Then we have (4.27) for any

q ∈ [3,∞], any s1 ∈ [12/7,∞), any s2 ∈ [6/5, 3) and any s3 ∈ [6/5,∞).The question an be raise that if we suppose additionally onditions for f,then what we shall reeive more. We onsider the following.Theorem 4.7. Let f ∈ L
p(R3) for all p ∈ (1, 3/2]. Then eah weak solution

(u, π) to the problem (NS) satis�esv ∈ L
q(R3), ∇v ∈ L

s1 (R3), π ∈W 1,s2

0 (R3),

∇2v ∈ L
s2(R3),

∂v
∂x1

∈ L
s3(R3),

(4.28)for any q ∈ (2,∞), any s1 ∈ (4/3, 3], any s2 ∈ (1, 3/2] and any s3 ∈ (1, 3].Proof. Remark that if f ∈ L
6/5(R3) ∩ L

3/2(R3), from Theorem 4.4, we an de-due that f−v.∇v ∈ L
12/11(R3). From Theorem 1.10 with p =

12

11
and proeed-ing as in the proof of Theorem 3.1, we obtain v ∈ L

12/5(R3) ∩ L
12/7(R3), ∇v ∈20



L
4/3(R3) ∩ L

12/7(R3), ∇2v and ∂v
∂x1

belong to L
12/11(R3), π ∈ W

1,12/11
0 (R3).Combining with the results in Theorem 4.4, we have v ∈ L

q(R3) for all q ∈
[12/5,∞) and ∇v ∈ L

4/3(R3)∩L
3(R3). Hene, it is easy to prove that f− v.∇vbelongs to L

p(R3). Thanks to Theorem 1.10 for all p ∈ (1, 3/2], we an deduethat v ∈ L
2p

2−p (R3) ∩ L
3p

3−p (R3), ∇v ∈ L
4p

4−p (R3) ∩ L
3p

3−p (R3), ∇2v ∈ L
p(R3),

∂v
∂x1

∈ L
p(R3) and π ∈ W 1,p

0 (R3). Clearly, we have (4.28) by ombining with(4.12).Thanks to Corollary 4.6 and Theorem 4.7, we obtain the following results.Corollary 4.8. i) Assume that f ∈ L
p(R3) for all 1 < p < 2. Then eah weaksolution (u, π) to (NS) satis�esv ∈ L

q(R3), ∇v ∈ L
s1(R3), π ∈ W 1,s2

0 (R3),

∇2v ∈ L
s2(R3),

∂v
∂x1

∈ L
s3 (R3),

(4.29)for any q ∈ (2,∞], any s1 ∈ [4/3, 6), any s2 ∈ [1, 2) and any s3 ∈ [1, 6).ii) Assume that f ∈ L
p(R3) for all 1 < p < 3. Then we have (4.29) for any

q ∈ (2,∞], any s1 ∈ (4/3,∞), any s2 ∈ (1, 3) and any s3 ∈ (1,∞).In Theorem 4.7, we know that if f ∈ L
p(R3) for all p ∈ (1, 3/2], then vsatis�es (4.28). With additional assumption for f, we shall prove that the weaksolutions given in Theorem 4.7 satisfy better properties.Theorem 4.9. Given r > 1. Assume that f ∈ L

p(R3) ∩ W
−1,r
0 (R3) for all

p ∈ (1, 3/2] satisfying the ompatibility ondition
∀λ ∈ P[1−3/r′], < f,λ >

W
−1,r
0 (R3)×W

1,r′

0 (R3)
= 0.Then eah weak solution (u, π) to (NS) satis�es (4.28) and ∂v
∂x1

∈ W
−1,s
0 (R3)for any s ≥ r. Moreover,if 1 < r ≤

3

2
, π ∈ Lt(R3) for all r ≤ t ≤ 3, (4.30)if 1 < r ≤

4

3
, v ∈ L

q(R3) for all q ≥
4r

4 − r
and ∇v ∈ L

r(R3). (4.31)Proof. We know that (u, π) satis�es (4.28). In addition, thanks to Theorem 4.7,we have v⊗ v ∈ L
q(R3) for all q > 1 andf− div (v⊗ v) ∈ W

−1,r
0 (R3) ⊥ P[1−3/r′].Hene, thanks to Theorem 1.10, it is easy to prove that v ∈ L

4r
4−r (R3)∩L

3r
3−r (R3),

∇v ∈ L
r(R3), ∂v

∂x1
∈ W

−1,r
0 (R3) and π ∈ Lr(R3). As v ∈ L

q(R3) for any q ≥ 2,we have ∂v
∂x1

∈ W
−1,s
0 (R3) for any s ≥ r. Remark that 4r

4 − r
≤ 2 if r ≤ 4

3
, thenwe obtain (4.31). For the pressure, we note that thanks to (4.28), π ∈ Lt(R3)for all 3/2 < t ≤ 3 and then, we have (4.30). The Theorem is ompletelyproved. 21



We now prove the following theorem.Theorem 4.10. Let 1 < p < ∞ and q0 ≥ 3. Assume that f ∈ L
q(R3) ∩

W
−1,p
0 (R3) for all q ∈ (1, q0] and satisfying the ompatibility ondition

∀λ ∈ P[1−3/p′], 〈f,λ〉
W

−1,p
0 (R3)×W

1,p′

0 (R3)
= 0.Then the problem (NS) has a solution (u, π) satisfyingv ∈ L

s0 (R3), ∇v ∈ L
s1(R3), π ∈W 1,s2

0 (R3),

∇2v ∈ L
s2(R3),

∂v
∂x1

∈ L
s3 (R3),for all s0 ∈ (2,∞], s1 ∈ (4/3,∞), s2 ∈ (1, q0], s3 ∈ (1,∞). In partiular, if

1 < p ≤ 3/2, we have additionally π ∈ Lk1(R3) for any k1 ≥ p. Moreover, if
1 < p ≤ 4/3, we obtain v ∈ L

k2(R3) for any k2 ∈ [ 4p
4−p ,∞] and ∇v ∈ L

k3(R3)for any k3 ≥ p.Proof. In partiular, we have f ∈ L
q(R3) for all 1 < q < 3. From Corollary 4.8part ii), we have v ∈ L

s0 (R3), ∇v ∈ L
s1(R3), π ∈W 1,s2

0 (R3),

∇2v ∈ L
s2(R3),

∂v
∂x1

∈ L
s3 (R3),

(4.32)for any s0 ∈ (2,∞], any s1 ∈ (4/3,∞), any s2 ∈ (1, 3) and any s3 ∈ (1,∞).Then, we dedue that f − v.∇v ∈ L
q(R3) for all q ∈ (1, q0] and we an obtainthat π ∈W 1,q

0 (R3), ∇2v ∈ L
q(R3), ∂v

∂x1
∈ L

q(R3). Combining with the previousresults, we have (4.32) for all s2 ∈ (1, q0], s3 ∈ (1,∞). As v ⊗ v ∈ L
r(R3) forany r > 1, then f− v.∇v ∈ W

−1,p
0 (R3) ⊥ P[1−3/p′].If 1 < p < 3, from Theorem 1.11, the Oseen system (3.4) has a unique solution

(w, θ) ∈ (W̃1,p
0 (R3) × Lp(R3)) suh that w ∈ L

s(R3) for all 4p
4−p ≤ s ≤ 3p

3−p .We use the same tehnique in the proof of Theorem 3.1, we dedue that w = vand θ = π. Note that π ∈ Lk1(R3) for any k1 ≥ p if 1 < p ≤ 3/2. Moreover, if
1 < p ≤ 4/3, we an dedue 4p

4−p ≤ 2, then v ∈ L
k2 (R3) for any k2 ∈ [ 4p

4−p ,∞]and ∇v ∈ L
k3 (R3) for any k3 ≥ p. The Theorem is ompletely proved.We now onsider the energy identity. The key idea to �nd the onditions toobtain the energy identity (4.33), is to test the Navier-Stokes problem with v.Following this idea, we an dedue the following theorem.Theorem 4.11. Let f ∈ L

6/5(R3) ∩ L
3/2(R3) and (u, π) be a weak solution of

(NS). Then we have the energy identity
ν

∫

R3

|∇v|2dx = 〈f, v〉
W

−1,2
0 (R3)×W

1,2
0 (R3) . (4.33)
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Proof. Thanks to Theorem 4.4, we have that v ∈ L
4(R3) ∩ W

1,2
0 (R3), ∂v

∂x1
∈

W
−1,2
0 (R3) and π ∈ L2(R3). As in Lemma 4.1, we show that

〈
λ
∂v
∂x1

+ v.∇v+ ∇π, v〉
W

−1,2
0 (R3)×W

1,2
0 (R3)
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