Random integrals and correctors in homogenization

Abstract : This paper concerns the homogenization of a one-dimensional elliptic equation with oscillatory random coefficients. It is well-known that the random solution to the elliptic equation converges to the solution of an effective medium elliptic equation in the limit of a vanishing correlation length in the random medium. It is also well-known that the corrector to homogenization, i.e., the difference between the random solution and the homogenized solution, converges in distribution to a Gaussian process when the correlations in the random medium are sufficiently short-range. Moreover, the limiting process may be written as a stochastic integral with respect to standard Brownian motion. We generalize the result to a large class of processes with long-range correlations. In this setting, the corrector also converges to a Gaussian random process, which has an interpretation as a stochastic integral with respect to fractional Brownian motion. Moreover, we show that the longer the range of the correlations, the larger is the amplitude of the corrector. Derivations are based on a careful analysis of random oscillatory integrals of processes with long-range correlations. We also make use of the explicit expressions for the solutions to the one-dimensional elliptic equation.
Type de document :
Article dans une revue
Asymptotic Analysis, IOS Press, 2008, 59 (1-2), pp.1-26. 〈10.3233/ASY-2008-0890〉
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00203562
Contributeur : Vincent Perrier <>
Soumis le : jeudi 10 janvier 2008 - 14:48:12
Dernière modification le : vendredi 16 novembre 2018 - 01:50:05
Document(s) archivé(s) le : mardi 13 avril 2010 - 16:57:00

Fichiers

Preprint.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Guillaume Bal, Josselin Garnier, Sébastien Motsch, Vincent Perrier. Random integrals and correctors in homogenization. Asymptotic Analysis, IOS Press, 2008, 59 (1-2), pp.1-26. 〈10.3233/ASY-2008-0890〉. 〈hal-00203562〉

Partager

Métriques

Consultations de la notice

581

Téléchargements de fichiers

202