The Chapman-Jouguet closure for the Riemann Problem with vaporization

Abstract : This work is devoted to the modelling of phase transition. The thermodynamic model for phase transition chosen is a model with two equations of state, each of them modelling one phase of a given fluid. The mixture equation of state is obtained by an entropy optimization criterion. Both equations of state are supposed to be convex and a necessary condition is found to ensure the convexity of the mixture equation of state. Then we investigate the Riemann problem for the Euler system with these equations of state. More precisely, we propose to take into account metastable states. We check that the Chapman-Jouguet theory can be applied in our context, and that it is consistent with the entropy growth criterion. As the characteristic Lax criterion does not hold for this solution, an additional relation, the kinetic closure is necessary. The common closure, i.e. the Chapman-Jouguet closure is proved to be uncorrect in general in that context.
Type de document :
Article dans une revue
SIAM Journal on Applied Mathematics, Society for Industrial and Applied Mathematics, 2008, pp.1333-1359
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00203534
Contributeur : Vincent Perrier <>
Soumis le : jeudi 10 janvier 2008 - 13:55:56
Dernière modification le : lundi 22 janvier 2018 - 10:08:40
Document(s) archivé(s) le : mardi 13 avril 2010 - 16:56:29

Fichiers

Preprint.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00203534, version 1

Collections

Citation

Vincent Perrier. The Chapman-Jouguet closure for the Riemann Problem with vaporization. SIAM Journal on Applied Mathematics, Society for Industrial and Applied Mathematics, 2008, pp.1333-1359. 〈hal-00203534〉

Partager

Métriques

Consultations de la notice

255

Téléchargements de fichiers

155