Computation of 2-groups of positive classes of exceptional number fields

Abstract : We present an algorithm for computing the 2-group of the positive divisor classes of a number field F in case F has exceptional dyadic places. As an application, we compute the 2-rank of the wild kernel WK2(F) in K2(F) for such number fields.
Document type :
Journal articles
Liste complète des métadonnées

Cited literature [16 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00203111
Contributor : Jean-François Jaulent <>
Submitted on : Wednesday, January 9, 2008 - 7:59:49 AM
Last modification on : Thursday, January 11, 2018 - 6:23:15 AM
Document(s) archivé(s) le : Tuesday, April 13, 2010 - 4:46:10 PM

Files

CalClPos.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00203111, version 1
  • ARXIV : 0801.1367

Collections

Citation

Jean-François Jaulent, Sebastian Pauli, Michael Pohst, Florence Soriano-Gafiuk. Computation of 2-groups of positive classes of exceptional number fields. Journal de Théorie des Nombres de Bordeaux, Société Arithmétique de Bordeaux, 2008, 20 (3), pp.0. ⟨hal-00203111⟩

Share

Metrics

Record views

208

Files downloads

53