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Sparse Regression Using Mixed Norms

Matthieu Kowalski
LATP, CMI, Université de Provence,
39, rue F. Joliot-Curie,

13453 Marseille cedex

Abstract

Mixed norms are used to exploit in an easy way, both structure and sparsity in the framework of regression problems,
and introduce implicitly couplings between regression coefficients. Regression is done through optimization problems,
and corresponding algorithms are described and analyzed. Beside the classical sparse regression problem, multi-
layered expansion on unions of dictionaries of signals are also considered. These sparse structured expansions are
done subject to an exact reconstruction constraint, using a modified FOCUSS algorithm. When the mixed norms
are used in the framework of regularized inverse problem, a thresholded Landweber iteration is used to minimize the
corresponding variational problem.

Key words: Sparse regression, Structured regression, Mixed norms, FOCUSS, Thresholded Landweber iterations

1. Introduction

Over the last few years, sparsity has emerged as a general principle for signal modeling. In a few words,
whenever a signal may be represented sparsely, i.e. characterized by a small amount of data, many signal
processing tasks become significantly easier. Among the successes of sparse methods, one may mention appli-
cations to signal coding and compression [10], denoising (Basis Pursuit Denoising and related techniques [5]),
source separation [13] and many others.

Most sparsity based approaches start by expanding signals on a given waveform family (basis, frame,
dictionary, ...), and process the coefficients of the expansion individually. Therefore, an assumption on the
coefficients independence is implicitly done, although the latter is generally too coarse a modeling. A good
example is provided by the (sparse) time-frequency representations displayed on Figure 2 (Section 5), where
significant coefficients are clearly organized in structured sets (vertical or horizontal lines). Such structures
are clearly not accounted for when coefficients are treated individually.

On the one hand, we propose sparse expansion methods that explicitly introduce a notion of structured
sparsity. On the other hand we combine this approach with multilayered signal expansion approaches, which
aim at decomposing signals in sums of significantly different components (termed “layers”) (see [3,11,10,28]).

In this paper, structured sparsity is modeled by introducing a coupling between coefficients in the same
structured set. Some probabilistic approaches have implemented this kind of structured modeling with

Email address: kowalski@cmi.univ-mrs.fr Phone: +33-(0)491054743 Fax: +33-(0)491054742 (Matthieu Kowalski).

Preprint submitted to Elsevier 2 June 2009



success (see [13,17]). In the framework of variational formulations, such a coupling may be introduced by
suitable regularization terms, that combine sparsity and persistence.

Such regularization terms have been considered by Fornasier and Rauhut [15] and Teschke and Ram-
lau [31], under the name of joint sparsity: these authors have studied mixed norms £, 1, focusing on multi-
channel signals. Our approach is based on mixed norms, which may be introduced whenever signal expansions
on doubly labeled families are considered ! :

5= qidi;
i

where {¢; ;} are the waveforms of a given basis or frame.
Considering the mixed norm ¢, , norm defined as

a/p\ V4

ladlpg = | D D2 Il :
i

i

we shall be mainly concerned with the regression problem
2

moin S—Zai,j¢i,j +AMallf 1 s
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with A > 0 a fixed parameter.

When {¢; ;} is a basis, we give practical estimates for the regression coefficients «; ;, obtained by gener-
alized soft thresholding. These estimates are summarized in Theorem 3. When {¢}, ; is a frame, the latter
estimates may be plugged in a Landweber iteration scheme to yield a minimizer of the corresponding func-
tional. This former case is well adapted when the observation of the signal is noisy. In the case of a noiseless
observation, we shall be interested by an ezxact reconstruction regression problem

min [|af[? . such that s = Z Q; ;jPij -
,J
We also show that the FOCal Underdetermined System Solver (FOCUSS) algorithm [24,8] may be adapted
to yield minimizers of that functional.

The extension to multilayered signal expansion exploits several doubly labeled families: in the case of two
layers, one seeks expansions of the form

s = Zai,j¢i,j + Zﬁk,ﬂ/fk,z ;
irj kot

with prescribed sparsity and persistence assumptions on the coefficients sets a and (. In a variational
formulation, we consider the following regression problem

2

’
min | fls — D b — > Bretbre|| +Mealld, + plBIL
* i P )

The thresholded Landweber iterations are studied with this more general formulation, and a modification
of the FOCUSS algorithm is provided if an exact reconstruction estimate is required.

The paper is organized as follows. Mixed norms are defined in Section 2, and we give an overview of how
some mixed norms have been used in the literature. Section 3 uses the FOCUSS algorithm to minimize these
norms subject to an equality constraint, and extends the algorithm for multilayered expansion. The noisy
signal estimation problem is studied in Section 4: after a reminder on the corresponding regularized FOCUSS

L The approach of [15,31] clearly applies directly to this more general situation.
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algorithm, we discuss the thresholded Landweber iteration used to minimize the functional. Section 5 gives
a simple illustration of possible uses of the algorithms, in order to illustrate the relevance of mixed norms
for easily modeling dependences between coefficients.

2. Mixed norms

This section recalls the definition of the weighted mixed norms we shall be concerned with and some useful
properties. To our knowledge, the corresponding mixed norm spaces were introduced and studied in [2], and
some main properties are summarized in [26].

We use the following notation. Let the vector x € ¢5(C), labeled using a double index, be such that
x = (x1,...,Xg,...) and for all k, x; = (Tk,1,.-., Tk, -..). This double index is purely conventional and is
used to introduce some dependences between coefficients

Example 1 For example, x can denote the coefficients of a time-frequency or a time-scale expansion of
a signal. In this particular context, we shall denote by (k,f) the index, with k the time index and £ the
frequency index. Then, xy ¢ represents the coefficient at time k and frequency ¢, the vector x;, represents all
the frequency coefficients at time k, and we denote by x_, the vector which contains all the time coefficients
at frequency L.

Definition 1 Let w € (2(R) be such that for all k£, wie > 0. Let p > 1 and ¢ > 1. We call (weighted)
miazed norm of x € £5(C), the norm U,y q defined by

1/q

q/p
1%/l wip,q = Z (Z wk,[|$k,f|p> . (1)
k 4

The cases p = 400 and ¢ = +00 can be obtained by replacing the corresponding norm by the supremum.

Let us stress that not all vectors in £2(C) have finite mixed-norm. However, applications of mixed norms
will consider signal in some specific functional spaces for which the mixed-norms will be finite. A short recall
of such spaces is made at the end of this section.

The mixed norm ¢y, 4 can be seen as a “composition” of the norms v, and £;:

1/q
1%/l wip,g = <Z |Xk7||gv;p>

k
1/p
= (Z W.,z|x.,z|”> ) (2)
¢
q
where |x_4|P = (|z16?,..., Tk, ... |P), and where W , = diag(wi s,..., Wkye,...), i.e W, is the diagonal
matrix with diagonal entries equal to the vector of weights (w1 ¢,..., Wk, .. ).

Remark 1 The mized norms generalize the usual £, norms. Indeed, if p = q: |X|lwipp = [|X[|wip-

Mixed norms explicitly introduce coupling between coefficients instead of the usual independence assump-
tion behind the ¢, norms. This point will be made more explicit in Section 4, with the Bayesian formulation
of the regression problem. The coupling is strongly dependent of the choice of p and ¢. Indeed, if we consider
a vector as sparse/concentrated if it contains a lot of values close to zero, minimising an ¢, norm encourages
sparsity for small values of p (p < 2) and diversity for large values (p > 2). Thus, £, are usually used
as measures of diversity for small values of p (p < 2) and sparsity for large values (p > 2) (see [24] and
references therein for a more detailled discution about sparsity/diversity measures). Mixed norms allow one
to mix those two concepts. Used as regularization terms in a regression context, they enforce some specific
types of joint sparsity and diversity, as we shall see below.

3



In this framework, it is preferable to have to deal with a convex optimization problem in order to have
guaranties of global optimability. Convexity is given by the following proposition

Proposition 1 Ifp > 1 and g > 1 then the norm ly.p q is convex. The strict convezity is obtained for p > 1
and g > 1.

PROOF. This property is a consequence of the homogeneity of the norm and the triangle inequality. W

Mixed norms make it possible to favor certain kind of structures we can find in signals. Classical properties
of norms (and, in particular, convexity) allow us to use them in regression problems. The following subsection
recalls some models already studied which use a mixed norm to group variables.

2.1. Mized norms in the literature

Some specific instances of mixed norms are already used in various situations. This section presents
functional spaces characterized by mixed norms, and statistical regression problems which use particular
mixed norms.

2.1.1. Characterization of some functional spaces

First, let us recall a few examples of functional spaces that can be defined in terms of mixed norms. The
Besov, Triebel-Lizorkin spaces and the modulation spaces are characterized with mixed norms. Besov and
Triebel-Lizorkin spaces are described in [25], and [12] gives a good overview for modulation spaces.

Let s€ Rand 0 < p,q < 0. Let ¢g € S, S denoting the Schwartz space, following some specific properties
(see [25]) and ¢;(t) = 27 ¢o(27t). The Besov space Bj , is defined by

1/q

By,=<fe8 fllsy, = | D 2*e; « flI§] <oo
J

The Besov norm || f|| s, can be viewed as a mixed norm with w = {2754}, For some particular ranges of
values of p, g, s, Besov spaces are known to be spaces of sparse functions (or distributions), i.e. spaces within
which nonlinear approximation converge faster than linear ones [21,6].

The Triebel-Lizorkin space F}, , is defined by

1/q
Fpo=<fe8 fles, =D 27*e; = f1° < oo
J

P
The Triebel-Lizorkin norm Hf”F;q can also be viewed as a mixed norm with w = {27%¢}. In comparison
with Besov spaces, the roles of the two indices are interchanged [16].

The modulation spaces are characterized also with mixed norms. Let {gm » }meznez be a Gabor frame:
f belongs to the modulation space M) if and only if [27]

1/q

a/p
Z (Z wﬁl,n“fa gm,n>|p> < 00 .

meZ \nezZ

2.1.2. Statistical regression and inverse problems

Several sparse regression techniques have been studied in a supervised learning context. The most classical
one is the ¢; regression, known as the lasso estimate [32], well known in the signal processing community as
the Basis pursuit denoising [5].



The group-lasso [33] introduced by Yan and Lin, uses the mixed norm ¢ ;. This norm was introduced
to preserve entire groups of individuals. More recently Fornasier and Rauhut studied more generally some
¢p1 mixed norm for inverse problems in [15], and Teschke and Ramlau used these norms in [31]. Cotter et
al. [8] used this kind of norms in the same context and provided a comparison of two classes of algorithms:
Matching Pursuit and FOCUSS. Another example is provided by the hierarchical penalization [29] introduced
by Szafranski and Grandvalet, leading to a mixed norm /¢ 41 which is obtained after a hierarchical modeling
of the variables. ’

In the statistical community, mixed norm were used by Peng Zhao et al in [34], under the name of
“Composite Absolute Penalties”. That paper more particularly studies algorithms using the £ ; mixed
norm.

In the following sections, we focus on regression problems. We show how classical algorithms used with £,
norms regularization can be extended to the use of mixed norms. Moreover, we give general algorithms able
to handle the structure in layers for signal, like the morphological component analysis [28]. Although the
£p.1-like mixed norms were specifically used in the literature, we give results for general ¢, ; mixed norms,
and in particular, we show that the ¢; ; mixed norms are also relevant.

3. Signal estimation under equality constraint

We first address the problem of function or signal estimation subject to an exact reconstruction, in the
finite dimensional case. We prove that the FOCUSS algorithm can be adapted to tackle the case of mixed
norms, and we generalize it for a decomposition into layers. We limit ourselves to the finite dimension
setting to follow the original setting of FOCUSS. The generalisation to infinite dimension requires to deal
with Lagrange multipliers in Banach spaces [20] and then is not straightforward.

Let y € CM. Let x € CV with N = K x L be such that x = (x1,...,xx) and for all k, x; =
(g1, s Thos -, 2k,L). Let A € CMXN he a matrix whose columns are the vectors of a dictionary of CM,
with M < N. We consider the cases p < 2 and ¢ < 2 (p,q # 0) with the straightforward definition of the
“mixed norms” for p < 1 or ¢ < 1. These cases allow us to promote sparsity in some directions of the index
lattice, while the problem remains convex for 1 < p,q < 2.

3.1. Minimization of a mized norm

We want to solve the problem:

n;in Sgn(pQ)HXHgv;p,q
subject to y = Ax . @

Problem (3) can be solved with the FOCUSS algorithm [24], which has been designed to minimize a
diversity measure (or equivalently, to maximise the sparsity of the solution), subject to an equality constraint.

In order to use FOCUSS, we have to write the gradient of the diversity measure under a factorized form.
Denoting by E(x) the diversity measure of x, the factorized form of the gradient reads

VxE(x) = a(x)I(x)x .
where X denotes the conjugate of x, a(x) is a scalar and II(x) is a matrix. For example, with the ¢, diversity
measure E®)(x) = x5, (x) = |p| and TI(x) = diag(|z,[?~2).
In our case, we choose the £y, , diversity measure, i.e. E(?9(x) = sgn(pq)||x||%.p,q- The partial derivative
with respect to ¢ is
o E(p,q)(x)

p—2 q—p
5o ]

Wiip

= sgn(p)|q| wr,e Te|Tr,e



Then

Tho P2 i 195, (4)

a(x) = sgn(p)|q| and II(x) = diag(wg,e

FOCUSS is a simple iterative scheme to solve (3) given by the following algorithm 2 :

Algorithm 1
Let x(©) € CN be a bounded feasible solution of (3)
Do
X(7n+1) — H—l(x(m))A* (AH—l(X(m))A*)—ly
until convergence
where a feasible solution x(©) of (3) is a vector which satisfies the constraint equality of the problem, and
A* denotes the Hermitian transpose of A.

Remark 2 7To initialize the algorithm, a simple bounded feasible solution is the solution with the minimum
¢y norm obtained by the Moore-Penrose pseudo inverse of A: x(0) = Aty .

Theorem 1 Starting from a bounded feasible solution x(°) € CN, the sequence of iterates generated by
Algorithm 1 is convergent, and minimizes the Uy, , diversity measure, for p,q <2 (p,q # 0).

PROOF. We rewrite and adapt the original proof in [24]. The main point is to prove that E® (x(m+1)) <
E@a) (x(m)),

To prove the convergence of the algorithm, we have to check the assumptions of the global convergence
theorem [1], which we restate here for the sake of completeness.

Theorem 2 Let A be an algorithm on a set X, and suppose that, given (0, a sequence {x(m)} is generated,
satisfying
M) = A(z™M))

Let a solution set I' C X be given, and suppose the following
(i) All points ™) are contained in a compact set S C X.
(i) There is a continuous function (the descent function) Z on X such that
(a) If x ¢ T, then Z(y) < Z(z), Yy € A(z) ;
(b) Ifx €T, then Z(y) < Z(z), Yy € A(z) ;
(#ii) The mapping A is closed at point outside T.
Then, the limit of any convergent sub-sequence of ™ is a solution, and Z(x™) — Z(z*) for some
el

We define here
I'={x": Ax* =y, and x* = P*(AP") "y} ,

where P* = (Hfl(x*))lm.

In the problem we consider, point i) does not matter, because A is here a continuous function. Point )
can be proved exactly as in [24]. Then only the point i4) remains to be proved.

To prove point ii), we use the same technique as the one used in the original proof, and we make use of
Holder’s inequality: if x;, y; > 0, r > 1, % + % =1, then

Zows (24 (3

The inequality is reversed for r < 1 (r # 0).

1
s

One can write x(™+1) as a function of the minimal £, norm solution b(™*1 of the problem AP(™+tVb =y,

where P("+1) = diag <w,;y2|z,(€?|2?) Xk||\1;/21:p>~ Then we have x(m+1) = pm+hpim+1),

2 One can remark that the algorithm does not depend on a(x) .
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Let us introduce b such that by, = wi{fsgn(az%)ﬂxk e)|2 Hx ||WH, which is a suboptimal solution of

AP+ Db =y, If x(m+1) £ x(M) (ie. the algorithm has not converged), then

b D3 < |bl|3 = Pl 14, (5)

- jg::||)((”1) Vvk,p

= Z ||x<m>||w,c,p||x<’”>||wk,p = x4, -

)|p

V’Ve can SlI‘eSS ‘ha‘
(77b+1) | |

andthen7f0r0<p<2and0<q<2

q/p
E(x(m+1)) _ Z (Z wk,e|x§$+1)|p>
k ¢
- q/p
m), 22=p m m+1
=5 (S5 g
o i q/p
m),, Le—a p p 2 m
—Zuxk i < by “>|>

a(2—p)
a(p—aq)
<2 ™ o (

m-+1 m+1
[ B

)

)|p> o <Z|b(m+l) )2

+1
—Z”ka)\\wk,p 1™ o U™+

m m—+1
—an( o b+

2—gq

3 3
m m—+1
(Z B8 >|wk,p> (Zbé ! >||%>
k
(m) T :
< (I M) T (I )

= B(x™)

where we have used in the 4th line Holder’s inequality with r = ﬁ, s = ]%7 and in the 7th line the Holder
inequality with r = 22—(1, s = 2
Point 4i) is then proved. The cases p = 2 or ¢ = 2 are simple enough to not be specifically written. The

cases p < 0 or ¢ < 0 are similar, but we used the reversed Hélder’s inequality. W

3.2. Eaxtension to multilayered expansions

In some situations, the signals under consideration contain significantly different features (termed layers),
which are accurately encoded using different bases or frames. This leads to regression problems with dictio-
naries built as unions of these bases or frames. Then, it makes sense to use different (mixed) norms on the
corresponding coefficients. FOCUSS may be adapted to this new situation, as we show below.

For simplicity, we limit the present discussion to the case of two layers only. The generalization to an
arbitrary number of layers is straightforward. The problem can be formulated as follows. Let y € C™ and

7



(1]

X )

X = 2 € CV, with M < N and for all i € {1,2}, xll € RYi| with N; = K; x L;. Suppose that
X

xlil = (x[li] XK) and for all k € {1,..., K}, xk = (x%}l, xg]e,.. ajgs]L ). Let A € CM*N be such

that A = Ay @ Ay, with A; € CM*N: for i € {1,2}. Now that all the notations are introduced, we want to

solve the following optimization problem:

min  sgn(p1q1) M1 ||X[ ]||q1 —l—sgn(pgqg))\ng

||W[2 1ip2,q2

X1,X2 ip1,q1
subject to y = Ax = A;x[t + Ayx[? (6)
with A; > 0 and Ay > 0 fixed.
We denote the diversity measure by
E(x) = sgn(prgn)Ar [xM]%y o+ sen(paga) dalx |2y, @
K, q1/p1 Ky q2/p2
= sgn(p1q1) M1 Z (Z wk1 61‘ ko £1p1> + sgn(p2g2) A2 Z (Z w,[i] 0l g,b|p2> ()
ki=1 \l;=1 ko=1 \lo=1
=F (X[l]) —+ EQ(X[Q]) . (9)

In order to write the gradient of E in factorized form, we calculate the partial derivatives

0E(x)

1 _
[ —SgH(P1))\1|Q1\wk1 elmu,ﬂ Li, /1|p1 2|| kJi}[uZ;l (10)
Oz, 4,
OE(x) 2 2
o = s el 2l g, I I, (1)
Ll 2

The gradient of the diversity measure E can be written in factorized form with a(x) = 1 and II(x) =
Hl(I[l]) 0
0 Iy(xP)

where

I (x [1]) _Sgn(pl)A1|Q1| d1ag(wk1 z1| kl,él‘pl 2” k1||33[1p;1)

and
(2] |p2—2|| [2]||q2 D2 ) )

I, (X[2]) = sgn(p2) A2|qz| diag(wh 09 |xk27£2 I:pa
A first idea would be to apply the FOCUSS Algorithm 1 without any change. Unfortunately, the resulting
algorithm does not converge in this case: the diversity measure E is not decreasing during the iterations. To
modify the algorithm in order to ensure the decrease of the diversity measure and henceforth the convergence,
let us take again the ideas of the previous proof, with the same notations. We rewrite inequality (5) as

(m+1) (m+1)

b VI3 = |13+ (b3 (12)

< [IblI3 = [x m)Hgv;p,q (13)

= g+ 1 g - (14)

To prove that E decreases strictly during the iterations, we would like to have ||b[1](m+l) % < Hx[l](m) 1% :p.q

(m+1) (m) (m+1) (m) (m+1) (m)
(resp. |[bl? 13 < =24, ,) and [[b2! 13 < [IxE)4,,, (resp. |bl! 13 < XM, 0)-

Therefore, we slightly modify the FOCUSS algorithm to guarantee that the energy decreases strictly.

Algorithm 2
Let x(© € RN be a bounded feasible solution.
Do



X[l] (m+1)

= 107 e ™) A (AT (<) A%~y
X2 = T () A (AT () A) My
if B(x(mt1)) > E(x(™)) then
if El (X[l](nz+1)) > El (X[l](m)), then X[l](m+1) _ X[l](m)
else x" = x4 (i e By(xP) > By(x@") ) %endif
endif
until convergence

This way, we ensure that F; or Fs decrease stricly during the iterations, so that the energy F decreases
strictly. This ensures the convergence of the algorithm to the desired result.

The FOCUSS algorithms allow us to estimate the coefficients in a dictionary, under an exact signal
reconstruction constraint. The observation of a signal is often noisy, so it can be useful to relax the strict
equality constraint when estimating the signal and its layers. FOCUSS and the above generalization can
be modified as in [23] to take the noise into account; however, this does not seem to be the most efficient
algorithm in this case, as we shall see in the next section, where an alternative approach is also proposed.

4. Signal estimation in the presence of noise

In this section, we deal with the infinite dimensional case. Let y € H, with H C L2(R) a separable Hilbert
space, let x € £5(C) and a linear operator A : £5(C) — H. We are interested here by the noisy case: i.e. the
case of observations of the form y = Ax + b, where b € H is an unspecified noise. We follow the classical
variational formulation of the problem: the regression is made by minimizing the ¢; error between the
observed signal and its estimate, regularized by a mixed norm. Hence, we consider the following functional
to minimize

1 A
e(x) = 5lly - Ax|3 + g||X||3v;p,q ; (15)

with A € R%.

In a Bayesian setting, the choice of /5 norm for the data fidelity term is usually justified by assuming a
Gaussian i.i.d. distribution for the noise. The mixed norm corresponds to a prior on the coefficients of the
form

p(x) = exp{—gnxnzv;p,q} (16)
[T expt=2xellt, ) (17)
L q

which is a product of Gibbs distributions. This Bayesian formulation shows the coupling between coefficients
as stressed in Section 2.

More generally, in a multilayered signal decomposition setting (see Subsection 3.2 above) our aim is to
minimize a functional of the form:

g\ii;iﬂwh ’ (18)

I
1 Ny
2(x) = 5y — Ax|3+ D0
i=1 *

with \; € R%.
In the finite dimensional case, in order to minimize (18), the FOCUSS algorithm can be adapted as
suggested in [23]. We provide here the modified algorithm for I = 2 only for the sake of simplicity

Algorithm 3
Let x(© € RN be a bounded feasible solution.
Do



x0T = T () A (AT (kM) A* 4 Td)
X[Q](m+1) _ Hgl(X[z](m))A;(Anfl(x(m))A* + Id)fly
if B(x(mt1)) > E(x(™)) then

an

if B (x") > By(x1™), then x[1™ = X"
else x2 = x@™ i By(x2) > By(x2)) %endif
endif
until convergence
with ) ) )
0y (21V) = sgn(p) M| diag(wil],, 2], 721207 ) (19)
and , , ,
Iz () = sgn(pa) dolgz| ding(wi 12 1,17 IIx12502) - (20)

Unlike the algorithm given by Rao et al. in [23], one can notice the presence of the term (ATT~!(x(™))A* 4
Id) instead of (AT~ (x("™))A* 4+ \Id). This is because in our case, the \; must be integrated in the matrix
II; to be able to write the algorithm.

This algorithm can perform the minimization for any p,q < 2 (p,q # 0). However, it is not very efficient
and becomes very slow for high dimensional problems, due to a matrix inversion involved at each iteration.

A valuable alternative is provided by thresholded Landweber iteration algorithm, like the algorithm in-
troduced by Daubechies et al. in [9]. In the next subsection, we study the simple case where A is unitary
(and corresponds to the operator of an orthogonal basis). In this case, the iterative thresholding algorithm
is developed for 1 < p, ¢ < 2. Although this algorithm is more restrictive in terms of admissible values for p
and ¢ than FOCUSS, it is really faster.

4.1. The unitary case

In this subsection, A is assumed to be an unitary operator: denoting by A* the adjoint of A, A*A = AA* =
Id. This allows us to introduce some useful operators associated with a given mixed norm. Moreover, the
regression problem formulated in the unitary case gives a good idea of the influence of the mixed norms
when they are used as a penalty term.

Regression in the unitary case is equivalent to the optimization problem:

1 A
min [y = 418 + 2 1xli | (21)

which can be written like the minimization with respect to x of
a/p
p)

1 A
@) =5 ly - Ax(} + 2 3 (Z we el s
k 4

1 A
=5lly - Ax|3 + 1 D Ikl - (22)
k

Several cases have to be dealt with:
— p>1and g >1 ® is differentiable at all points.
— p>1and ¢ =1 ® is not differentiable at points x; = 0.
— p=1and ¢ > 1 ® is not differentiable at points zj , = 0.
As A is an unitary operator, we have

ly — Ax|3 = 14"y —x[13 = > ([A"ylie —w0)”
k.l

Let y = A*y and 6,, , (vesp. 03, ,) be the argument of ¢ (resp. Jx,¢). We have, for all k, ¢

2 2|$k7g

|gk,€ — Tk ?= |gk,€|2 + |xk7f |gk,@| COS(Hﬂk,e - ewk,z) :

10



Then, one can differentiate the functional ¢ with respect to the modulus of xj ¢, for a fixed pair k, ¢, and
obtains

= |gk,l‘ COS(egk,e - ewk/) - )‘wkl'xk,@lp_lek”q_p . (23)

|Zk.0 WP

The differentiation of ® with respect to 0, , gives

Z‘xlegk,@I Sin(‘gﬂk,e - 99%,2) =0. (24)

From (23) and (24), one can deduce that 6., , = 03, , and state that variational equations are equivalent
to the following system:
|ke = |G| — Mg elzy o P~ %k 15,5, (25)
arg(we,e) = arg(Ye,e)

The variational equations are coupled, so that their solution may be difficult to obtain. The following
discussion shows that an analytical solution can be obtained in most cases, otherwise an iterative algorithm
is given to obtain the solution. It will appear that the solution is obtained by a shrinkage operation, as
suggested by the variational equations. In all cases, the argument of xj, ¢ is the same as g, ¢.

411. p>1landg>1
Let us introduce the function F : £5(C) — lo(R), [v| — F(|v]) = |[v] + AWi|v[P~!||[v[|4 2. F is bijective,
and the system has a unique solution which can be obtained numerically.

412. p>landg=1
For the particular case p = 2 and ¢ = 1, Proposition 2 below gives an analytical expression of the solution.
The more general cases 1 < p < 2 and g = 1 are solved using fixed point Algorithm 4 (see below).

Proposition 2 Let A be a unitary operator. We suppose that, for all k,¢, wy, = wy. The solution of
Problem (21), where £, , = {21 is given by?>

_ Mg\ "
Tkt = Yk,0 (1 - = ) .
[¥kll2

PROOF. The proof is postponed to Appendix A.1. R

Let us stress that the weighting term wy in the solution above, depends only on the index k, and does
not depend on the index ¢. Hence, we can rewrite the solution in vector form:

+
Xk = Yk (1 — W) . (26)
[¥l2
Remark 3 The result given in Proposition 2 shows a mizture of a weighting (remembering the o mini-
mization), and a thresholding (remembering the {1 minimization) which acts on an entire group of variables.
In this case, the groups with many “big”(or “significant”) coefficients are kept (i.e. not set to zero) over the
groups with small coefficients. The coupling appears to be between significant coefficients.
Furthermore, note that this solution is identical to the group-lasso estimate, given in [35].

For the more general case ¢ =1 and 1 < p < 2 we cannot give any analytical expression for the solution,
and Equation (25) must be solved numerically. In the finite dimensional case a simple iterative thresholding
algorithm can be constructed.

3 For x € R, we shall set T = max(0,z) .

11



Algorithm 4

Let x(O =y
For all k,/ do
- _ _ o\t
oyt = arg(fin.e) (Fie — MwelvieP~ %k ]145,,)
endfor

Proposition 3 Let y € CEXL gnd Ly, = Zf:l Wy ,¢. Fized point algorithm 4 converges for

2(p—1)
Lp(Z*p)

Wi

A< ) mkin(||yk||wmpf2) .

2(p—1

PROOF. The proof is postponed to Appendix A.2 N

Remark 4 Fornasier and Rauhut studied more specifically this kind of mized norms in [15]. They show
that the solution is given by a shrinkage operator and give the analytical solutions for the norms £y, {21 and
ls,1. The study of the shrinkage operator for the €, 1 mized norm was also done by Teschke and Ramlau
in [31] for non linear inverse problems. Here, we gave Algorithm 4 to find the minimizer of 21 with ¢ = 1
and 1 < p < 2, in the unitary case, and Proposition 3 gave a sufficient condition for the convergence.

413. p=1landg>1

We show here that the solution is obtained by a coordinatewise soft-thresholding. The following proposition
gives the threshold analytically for the case ¢ = 2, and shows how to obtain a numerical estimation for the
other cases.

Proposition 4 Let A be a unitary operator. The solution of Problem (21), with €, , = {1,4 is given by a
soft thresholding operator.
For each k, we denote ¢, (Tesp. Wy, ) the coefficients |Gk e, | (resp. Wy, ) sorted such that the ry o, =

[Tk,e4 |
Wk, ¢,

The threshold is given by wy &, with & the (unique) solution in Ry of the following equation

are ordered by descending order (for each k).

. L 1~
P AT Ly = AT [,

Ly
with ||¥kllw, = D WkeUke and Ly, = ZeL::1 w;ek. The quantity Ly, is the number such that
(=1 ’

Li+1 a1 Ly a1
Tk L+l < A < > wie (e, — %Lml)) and  Tr,p, > A (Z W o, (Pt — %u)) :
lr=1 lr=1
In particular, for ¢ = 2, the threshold wy, (&) s equal to
AWk
m”\}’kmm :
W

PROOF. The proof is postponed to Appendix A.3. N

Remark 5 This proposition generalises the result given in the wavelet and Besov spaces framework in [4].

In the case ¢ = 2, the ¢; 5 norm is associated with the problem called elitist-lasso [18] (as opposite of group-
lasso). Let us point out some properties of this estimator in the following two remarks. These properties
illustrate the expected consequence of using this mixed norm in the context of regression.

12



Remark 6 After a suitable rewriting, the solution is obtained by a mizture of £y-like weighting and £ -like
soft thresholding:

|Zk,e| = |k — 5% llw,

A
1+ ALy,

)\w )\ il

~ k.l - -

_ 1— y _ .
= |yk,Z| ( Y, k) EY; E Wk, 1Yk,

Wk =157y,

This mizture of weighting and thresholding is here very different from the one we obtained for the case of
the mized norm U1 (see Proposition 2). Here, we weight each coefficient, before comparing it to a threshold
which depends on the norm of the group k. Contrary to the £3 1 mized norm, the coupling is not between the
significant coefficients: a coefficient appears significant if the others are unsignificant. In other words, only
the largest coefficients — compared to the others — are kept, for each index k.

Remark 7 Let us take a look at the particular case X >> 1 and wye = 1 for all k, ¢, for the {15 mized
norm. Then, for a fized k, at least one coefficient is not set to zero. Indeed, if all the coefficients are set to
zero, then ||¥x|| = 0 and no coefficient is thresholded, which is a contradiction. Consequently, the {1 o mized
norm cannot give estimates as sparse as the £1 norm. This property is the consequence of the structures and
illustrate well the coupling between significant and unsignificant coefficients as explained before in Remark 6.

4.2. Summary of the main results

Here, we summarize the preceeding results in a single theorem:

Theorem 3 Let x € l2(C) and z € £5(C). Let 1 < p,q <2 and w = (wy¢) a sequence of stricly positive

weights such that [|x[|&., ., = > O, wk7g|xk7g|p)q/p. Then, the solution of the following optimization problem

1 )
min o |z — x|z + Allx[l%p.q

is given by Si‘v;pﬂ(z), with S‘),‘vmq a “generalized” soft-thresholding (or shrinkage) operator defined coordi-

natewise by, for all k,0:
— &),

where the & o(N), simply denoted by & ¢, are given here after.

— Ifp>1andq> 1. Then, the thresholds are given a posteriori, the solution being given by the inverse of
F : bo(R) = (R), [v] = F(Iv]) = [v| + AWk |vIPHIV[IED

- Ifp=q=1 then f}mg = )\wk,g.

Awy,
- Ifp=q=2 then e = 1_;,.1)1\]1,;2['

~Ifp=1and 1 < q < co. For each k, we denote Zq, (resp. Wie,) the coefficients |z, | (resp. Wg.e, )
e

sorted such that the T ¢, = o are ordered by descending order. The threshold is &, ¢ = wy, ¢&k, where
k

Wi,

Uk,o > arg(vi,e) (|vk,e

&k is the solution on Ry of

e 1 1
ko AT L & = AT |zl

Ly,
with ||zgllw, = D, Wk,e,2k,0, and Ly is the quantity verifying:

l=1

Li+1 q-1 Lk g—1

2 2

PeLett SA| D W (P, — Tz, 41) and rpp, > A Y wi o (Phe, — ThL,) :
lr=1 lr=1

_ Ly, ~2
and Ly, = szﬂ Wi 0y, -
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In particular, if p=1 and g = 2,

)\’wk,g

Ehye = m”‘zkmw .

- Ifp=2and q=1, and for a fired k, wy o = wy, VL. Then

A\/wk

zkelllzell2

ke

- If1<p<2andq=1. Then the solution is given by Algorithm 4 in finite dimension.

Remark 8 Theorem & gives the so-called proximity operator associated with the mized norm £, 4. Prozimity
operators were introduced by Moreau [22] in the 60’s and nicely used more recently by Combettes et al. in
particular in [7] to minimize some nondifferentiable convex functionals.

The previous theorem shows that the minimizer is obtained by a soft-thresholding operator. This remark
gives us the following corollary

Corollary 1 Let x € ¢3(C). Let A : £5(C) — H be an unitary operator. Let 1 < p,q < 2 and w = (wky) @
p)q/p'

strictly positive sequence such that |[x[|&., , = > (D0, Wk e|Tre
Then, for ally € H, there exists a strictly positive sequence & = ({x,¢) (which depends on'y) such that the

minimum of the functional

O(x) = |ly — Ax||3 + [|x[|%,

p,q

coincides with the minimum of the functional
O(x) = ly — Ax|3 + [|x[|¢x -

We saw how to obtain an estimation of the minimizer when A is a unitary operator, and we defined
operators allowing us to obtain the solution. Next section generalizes this problem, and shows that the
corresponding iterative algorithm inspired by Daubechies et al. in [9] and by Teschke in [30] may be extended
to this new setting, with the same convergence properties.

4.3. A thresholded Landweber iteration

We study here a more general case than Problem (21). A is now a general linear operator, and we want
to exploit the structure in layers which can appear in a signal. In the particular case where A is the matrix
of a dictionary constructed as a union of orthogonal bases, one can apply the Block Coordinate Relaxation
algorithm, as it was shown in [18]. The algorithm studied here is more general, and can be applied to any
linear operator A, e.g. a matrix corresponding to frame (or union of frames), convolution operator, etc.

Let us introduce the functional

I I
1 i i i 1
060 = 5lly = Do AxF+ 30w = Sy = Ax| + Av(x) (27)
i=1 i=1 **

with y € H, for all i, A; is a linear operator and A = @ A;. Let x = (x!Y,... xl/]) € £,(C)! and X =
I .
(%, ce %) € RY . We have Ax = Y, A;x1 and ¥(x) = (¥ (x1)),.. .,\I’](X[I])>T. '
Here, the penalty term is the mixed norm introduced before. So we have W, (x!") = ||x[? llwlil;p, ;- To solve
Problem (27), following [9,30], we introduce a surrogate functional

14



sur 1 C 1
0 (x,2) = 5 ly — Ax + 5 [1x — allf — 5l 4x — Aal3 + AU(x) (28)
1 I , . \ K ) ) qi/pi
2 (T (et - ol et i) 33 (Sullielir )
i=1 ko0 %5\
(29)
1
+3 (Iyll3 + Cllal3 - [ Aal3)
with C such that C' > C7 + ...+ Cr, where each C; bounds the operator norm of AfA;.
Then, the solution of the associated variational problem verifies, for all ¢, k, ¢:
i _ X i X Ai [ yp— i |19 —ps
‘xgc]ﬁ =C! ‘[Aiy + Cal'l - A Aa]kl‘ - 6w1[c,]e fgg,]e‘pi 1HXL] 351[311;1 (30)
arg (xgjé) — arg ([A;"y +call - A;"Aa]M) (31)

In the usual situation of the ¢; norm [9,30], the introduction of the surrogate functional decouples the
problem into scalar problems. In our case, it also performs some decoupling, yielding vector subproblems
of smaller dimension, which can be solved as described in Section 4.1. Consequently, the solution of (30) is

obtained from z = C~'[A*y+Call — A* Aa], using the operators Si‘:[{]c_’p_ “ given by Theorem 3 in Section 4.2,
for all 7.

Proposition 5 Let a be fixred. The surrogate functional ®U"(x,a) has a minimizer given by

argmin(®**"(x,a)) = S(C~'[y + Ca — A*Aa]) ,

where S = (S’\l/c gri/C )

willipi,q” " S wlllipr,qr

PROOF. The surrogate functional decouples the variational equations, so we just have to exploit the work
done in Section 4.1. N

Then, we can deduce the following iterative algorithm

Algorithm 5
Let x(9) € £,(C)

Do
Fori=1:1
X[i](mﬂ) _ Sé\;i/;g,qi(c_l[A:y + Cx[i](M) _ A:Ax(m)])
] " ) m m +
_ arg(c’_l[A;‘y n me( ) A:‘Ax(m)]) <O_1 ’A:Y_FCXM( ) A;"Ax(m)‘ _ 5[1]( ))
EndFor

until convergence
where the & [ are the vectors containing the thresholds & ,[f’];m'). These thresholds are given by the operators
Sif[f]i)i’qi, associated with the adequate £, ,, mixed norm, applied to z = C~'[Afy + Ooxli™ A Ax(m)].
Theorem 3 explains how to obtain these thresholds in practice.

As in [9,30], we show that the preceeding algorithm converges, and then that limit is the desired minimizer
(i.e. a solution of Problem (27)).
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Theorem 4 Let I € N. For all i € {1,...1}, let A; be a linear operator, A; : £2(C) — H. Let A be the
linear operator such that A = @ A; and C such that C > |A*Al|. Suppose y is an element of H, and the
sequence of weights w is uniformly bounded from below by a stricly positive number. Then, the sequence of
iterates generated by Algorithm 5 with x©) arbitrarily chosen in €5(C), converges weakly to a fired point
which is a minimizer of functional (27):

2
_ Z Axli
i 2

i 1
+ Z )\i\I/i(X[ ]) = iHY - Ax||§ + AU (x) .

PROOF. The proof follows the lines originally given by Daubechies et al. in [9], and summarized in various
papers (see e.g. [30]) to prove the weak convergence of a thresholded Landweber iteration. We just have to
check [9, Lemma 3.6] (or [30, Lemma 14]), and [9, Proposition 3.10] ([30, Proposition 17]). We choose to
postpone these proofs to Appendix A.4.

The same algorithm and the weak convergence can be obtained with the approach of proximal algorithm
introduced by Combette et al. in [7] W

The weak convergence of the thresholded Landweber algorithm allows us to state the following theorem

Theorem 5 Let I € N. For all i € {1,...I}, let A; be a linear operator, A; : £2(C) — H. Let A be the
linear operator such that A =@ A; and C’ such that C > ||A* A

There exists a (non unique) sequence of Ry &€ = (fk e) such that
®(x) = |y — Ax|3 + A¥(x)
and
O(x) = [ly — Ax[3 + [|x[|¢x
have the same minimum reached at the same point x*. Moreover, a choice of § is given coordinatewise by
— il (. [i]" | 1as
(d { )\iwk’aémw i/][:]§pi¢qi if x 7é0

pi—1 ka
k¢ .
> B otherwzse,

where

B = Hmln{f | xkz #0}~ 4/f’1||y|| (2pi(6+¢i—pi)—44:)/(Pigi)

PROOF. Eq. (30) tells us that the minimum of ® is attained at x* such that, for any C' > ||A*A||
i)* _ * i % )\ [ i _
e = O Ay + Ox" — Ap Al = Gl 1 I 2

We denote by x* the minimizer of <i>(x), which is the limit of the sequence %(") generated by Algorithm 5
applied to ®. Lemma 1 ensure that there exist a uniform bound B(x(?)) such that ||| < B(x(®)). Then,
e > B(x©) for af ¢ = 0 ensure that 77 , = 0. As the convergence does not depend of the choice of %),
we can choose £ ¢ > B( ) where B is given by Lemma 1

plflux[i] qi—DPi

Hence, with fk]e =\ w[Z |xk ¢ Wl when xk ' 7$ 0, we have
WP ’

x* = argmin ®(x) = argmin ®(x) = x*

Moreover, for all ¢ € {1,...I}
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i 0 ot [ vaneps 1]
! lecra = A Z wl[cl,]ﬂxg}e b 1||XLZ] i,[z‘]z.)pi IE;]Z
kot | a1 20 s
=i Z ||X£§] z;m?;, Zw;[i,]elxﬁﬂe b
k ROTETY
R .
= Aif[x"" i:li];m,qi

then AW(x*) = [|x*[|¢.; and ®(x*) = &(x*). N

Using the previous theorem, we can state

Theorem 6 The sequence x™ of iterates generated by Algorithm 5 with x(©) arbitrarily chosen in £(C),
converges strongly to a fized point which is a minimizer of functional (27).

PROOF. Let x* be the weak limit of x(™). Let ® and & be defined by applying Theorem 5 to ®. Let x(™)
the sequence of iterates generated by Algorithm 5 applied to P. By Theorem 5 this sequence converges —
strongly (see [9]) — to x* which is a minimiser of ® and ®.

With L the operator defined by L = +/CIld — A* A, we have

@ (x, %) = B(x™) + L) — ) .

Moreover,
lim &% (x(™ %) = &5 (x*, x*) = B(x*) .

Then, for any € > 0, there exist N, M, such that for all n > N and m > M,
1L = %) |5 = @ (x™, (M) — (x| < e .

Finally, for all n > N and m > M, with p a stricly positive lower bound for the spectrum of L*L we have
1 1
5™ = x5 < ]x™ = %3+ (%0 - x*5 < ;IIL(X(") x5 +e< (; +1e.

Therefore, we can conclude that the sequence of x(™ converges strongly to the fixed point x*. W

We have now several algorithms to solve some specific regression problems. Next section gives some
illustrations of these algorithms and provides hints regarding the influence of the mixed norms.

5. Two illustrations

We choose to limit ourselves to two illustrations for our algorithms, in the field of audio signal processing.
The first one is an application to signal declicking and illustrates the thresholded Landweber algorithm.
The FOCUSS algorithm is illustrated by a decomposition of an audio signal in “transients + tonal” layers,
following [11,10]. These technique may be similarly applied to image processing problems in a straightforward
manner.

5.1. Illustration of the thresholded Landweber algorithm

Our declicking example is a “toy example” which allows us to show the consequences of using the mixed
norms compared to the classical ¢; norm. In this example we limit ourselves to the ¢; » norm. This choice is
justified in Remark 9 below.

We choose a 44.1 KHz sampled, 3 secondes long ( samples) trumpet signal. We add to this signal
random clicks simulated by Dirac pulses with amplitudes +1 to obtain a Signal to Noise Ratio (SNR) equal

217
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Fig. 1. Trumpet signal (left) and its clicked version (right).

to 20.33 dB. The time representation of the samples of the original signal and its clicked version are provided
in Figure 1.

The signal is then decomposed in a Gabor frame with a 2048 sample long Gaussian window, with a time
shift of 128 samples, and 2 samples in frequency. As it can be seen on the time-frequency representation in
Figure 2, the clicks appear clearly as vertical lines that are sparse in time, but cover all the frequencies.

4

x10° x10

o

Frequency
Frequency

0.5F

il

Time Time

Fig. 2. Time-frequency representation of the Gabor coefficients for the original trumpet signal (left) and its clicked version
(right).

Several strategies could be imagined to declick the signal. First, we used the thresholded Landweber
algorithm with a ¢; norm penalty and compared it with the same algorithm using a mixed norm penalty.
The functional ® that one wants to minimize is the following;:

1 \ qa/p
P(x) = 5“)’ — Ax|3 + 7 Z (Z |$k,e|p> ) (32)
k ¢

where y is the clicked signal and A the matrix corresponding to the operator of the Gabor frame; p and ¢
are chosen as follows

— p = q = 1: this correspond to the classical £; norm.

— p=1 and ¢ = 2: the index k corresponds to the time, and the index £ corresponds to the frequency. This

choice is made to promote sparsity in frequency.

The minimization of ® was performed for various values of A: the bigger the A, the smaller the number
of nonzero coeflicients. Figure 3 provides the SNR as a function of the number of retained coefficients. The
mixed norm obviously outperforms the classical £; norm. To clearly illustrate the consequence of using the
mixed norm, Figure 4 shows the time-frequency representation of the Gabor coefficients, for a comparable
number of retained coefficients of ¢; and ¢; » norms. The time-frequency representations clearly show that
the clicks are better eliminated with the ¢; » mixed norm than with the classical ; norm: the ¢; norm keeps
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more vertical lines which correspond to clicks. Moreover, the partial harmonics are better preserved by the
mixed norm.
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Fig. 4. Time-frequency representation of the Gabor coefficients for the denoised version. Left: £1 estimate. Right: ¢1 o estimate.

Remark 9 The {12 mized norm appeared well adapted for the problem we chose if we look back to the
estimate given in the orthogonal case in Proposition 4 in Subsection 4.1.3. For a fized time index k, the
threshold is equal to ﬁ A*Y]k|l. Thus, when a click appears at time index k, one expects that the threshold
is higher than at a time index without a click.

We did not use the {21 mized norm because this norm keeps entire groups (the sparsity are on the groups,
not on the coefficients). This structure in “lines” does not seem to be very adapted to estimate the trumpet
signal: the partials can evolve slowly in time, and their number may jump from a time frame to another.
However, this structure in lines could be adapted to estimate only the clicks, and then obtain the clean signal
in the residual of the functional. This strategy corresponds to an another functional than (32) and we did
not try this strategy here.

5.2. Illustration of the FOCUSS algorithm

To illustrate the modified FOCUSS algorithm, we choose a xylophone signal of 0.7 sec long (2'° samples)

represented in Figure 5. The goal is to provide a decomposition in two layers ”transient + tonal” subject to
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an exact reconstruction constraint. To this end, we choose to expand the signal in a dictionary constructed
as the union of two MDCT (Modified Discrete Cosine Transform) bases. The first MDCT basis is chosen
with a 4096 sample long window (about 90 msec) and is adapted for the tonal layer. The second one is
chosen with a 128 sample long window and is adapted for the transient layer. The MDCT coefficients of
transient layer are represented in Figure 5.

0.6

. 1 il b ’ .

-0.2f

5}

Frequency

-0.4

-0.6f

r I I I I I
0'80 0.5 1 15 2 25 3 3.5

x10°

Fig. 5. Left: the xylophone signal. Right: MDCT coefficients of the signal, with a window of length 128 samples.

The classical strategy is to minimize the ¢; norm of all the coefficients. Each layer is then obtained by
the inverse transform of the corresponding MDCT coefficients. This minimization is done by the original
FOCUSS algorithm.

Our adaptation of FOCUSS is used with two mixed norms. For the tonal layer the ¢,, 4, mixed norm
is chosen to promote sparsity in frequency with py = 1.2 and ¢; = 2 (and k is the time index and ¢ the
frequency index). For the transient layer, with k the frequency index and ¢ the frequency one, we choose a
lp,.q, mixed norm with p; = 1 and g2 = 1/2. This last choice was made to obtain a very sparse layer, but
with a “structured sparsity”. In order to balance the penalty with the two mixed norms terms, we choose
)\1:1311(1/\225.

in Figure 6, we provide the MDCT coefficients of the transient layer estimated by the ¢; norm and the
mixed norms. One can see that the estimate obtained by the mixed norm is sparser than the ¢; estimate,
and one can observe that the chosen mixed norm promote some structures compared to the ¢; norm.
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Fig. 6. MDCT coeficients of two estimates of the transient layer for the xylophone. Left: £; estimate. Right: ¢; ; /> estimate.

6. Conclusion and outlooks

In this paper we showed that when the data can be labelled by a double index, mixed norms can help
easily introduce sparsity structure. This indexing can indeed be used to introduced a hierarchy throught the
coefficients. This hierarchy is then explicitly used in the model through mixed norms ¢, ,. Then, one can
play on both p and ¢ to promote different structured sparsity.

Mixed norms £, , are well adapted to two differents situations in regression:
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— Signal estimation subject to an exact reconstruction;

— Noisy signal estimation.

Two algorithms were presented, corresponding to these different problems. For the sake of clarity, we sum-
marize their strengths and weaknesses in Table 1.

FOCUSS Iterative thresholding

Range of p and ¢ p,g<2and p,qg#0 1 < p,qg < 2, and for any
p < 1if ¢ = 2. The cases ¢ =
1 and 1 < p < 2 use an iter-
ative algorithm which works
for suitably chosen A.

Speed - +
Ease of implementation + +
Optimization subject to equality constraint + Not designed for
Optimization subject to inequality constraint - +

Table 1
Compared advantages and shortcomings of the algorithms.

Let us notice that in the particular case of regression in an union of orthogonal bases, the Block Coordinate
Relaxation (BCR) algorithm with mixed norms [18] provides a valuable alternative to the thresholded
Landweber iteration presented here. Our numerical experiments (not provided here) seem to show that both
algorithms perform quite similarly.

The behavior of the iterative thresholding algorithms was illustrated on a specific example in order to
stress the influence of mixed norms compared to the classical £; norm. The audio signals were chosen for
the intuitive structures provided by their time-frequency representations. But let us stress that mixed norm
are certainly not specific of audio signal and can be used on any applications with structures given by a
suitable double indexing of the coefficients of the signal’s expansion.

The ¢, 1-like norms have already enjoyed significant succes in the statistical community for variable selec-
tion [33,29,34], and were more specifically studied and applied for color image restoration in [15] and [31].
Our work studied mixed norms in a general manner, and we want to stress the utility of the ¢; ,-like norms
to promote structures without imposing sparsity only on grouped variables (see remark 6 in section 4.1.3,
and remark 9 in section 5). The simple example provided here encourages us to use mixed norms in signal
restoration. The preceding paper [18] gave promising results in multichannel denoising and multilayered
“tonal + transients + noise” decomposition. In [19], the thresholded Landweber iteration with the 1 o
norms was applied with success to source separation of underdetermined convolutive mixtures.

Some natural extensions can also be studied, as mixed norms with more than a two levels index, or using
the sum of mixed norms (as in elastic-net [35] which uses a sum of ¢; and ¢5 penalty, or the regularization
penalty proposed in [15,14]) for the regularization term in the context of regression. Furthermore, it could
be interesting to use mixed norms for the data term in the transformed domain. Indeed, the £ norm is used
in a Bayesian context to model Gaussian noise. The use of such norms could be adapted to penalise noise
which is known not to be Gaussian.
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Appendix A. Proofs
A.1. Proof of Proposition 2

From (25), we have, for all k, ¢ such that x; # 0

_ 1\t
= (|7l — we2)
Then for all v, )\wk||x;€||wk o = %, which gives
_ Tk ¢ _ Gk,el
kel = 1 BTl TGRAE
e '

Then, we obtain

+
g | = |ﬂke|*M
" ’ >, Wk|Tk, |2

+
- )\|35k p|wk
= | [9k.el = -
\/Z wk|yk v g:;ﬁly)
+
- - )\|J}k7g‘wk
= | [9k.el =

Eﬂﬁwm
_ 1/ EA
= \yk,e\

3l

which is the desired result.

A.2. Proof of Proposition 3 (convergence of the fixed point algorithm,)

We prove that for all k, the sequence of vectors x; converges to an unique fixed vector. We denote by s
the soft-thresholding operator which maps |x,(€m)| to

m—+1 m m +
e = s ) = (Il = Mol P s) (A1)

To prove the proposition, we simply apply Picard’s fixed point theorem to s.
We have
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—Awp [k [P wg el P = p) el 2P
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wi1|ze P71

1-2p
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= —Awgelzg P (1 = p)lIxkll = Mp — Dwgelzr ok llw 5 | 1

wy o|Tp 0P

Since we want to give an upper bound for the ¢; norm of s, we use the general mean inequality: let the

following quantities
1
M, = Z Wy | Ty |P )
(Z =1Wn p=1

If o < 3, then M, < Mg for all @ and 3 in R*.
Denoting by Ly, = Ele wy, ¢, and as we have 1 < p < 2, we can give an upper bound for the ¢; norm:

e

1 2
6‘xk,g| <Ap-— )(HXk”wk wkl|mké|p ka”ka 1+’wk1g|1'k4|p kaHWkp)

N = 1) ([ 2 oy 3+ i 2ol )

<Ap-1) (L\’Lk

2(p—1)
1— . .
15k 2 13¢5 B 15 B Ly 1568 [y QIIXkIIW,f;’pz> (means inequality)

2(p—1) 2(p—1)
Ap— )(L:ek||xzf||wkp+m el ) < Alp— Dlxellal, (Lw T i 2>)

1 2((p:;) 2((p*;)
M= Dlvaly o (20857 ) < A - Digxylit, o) (2087
1)t .
<Ap—1)— (2[/5’\,?_ ) .
ming (||yk||wyp—2) *

If one chooses A small enough, one can make this quantity strictly smaller than 1. So that, the application
s is contractive, which ensures the convergence of the algorithm.

A.3. Proof of Proposition 4

For all k, £, we have from (25)

+
el = (el = A i lxuli )

eel=lorel ohich gives, for all k, v, ¢ such that Tk #0and xyp # 0

Wkl_ Wk, e

Then, Vk, £, \||xg|| %
W (| k0| — |2k,e])
W '

With Ly, = > wi,, and ||[Jillw, = > wku|yry| , we have
Vil £0 Vil g £0

= |Fr| —
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= | |Un,e| — Awp,e

+
) i [.e] = |z 77
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Wk, ¢

Denoting by & = Al|X w1, we must now determine the set {v : |zx,| # 0} = {v : [yku| > wiei}

Yk, 2 .
—k are ordered by decreasin,
Wk, ey,

To do so, for each k, we sort the |yg .| (resp. wy e, ) such that the ry, =
order. We denote the ordered coefficients by @i ¢, (resp. wg e, )-
We must have “-2l < g < 2 P, L’“ , then, from (25) Ly, is such that

Wk, Ly +1
Ly+1 q-1 Ly q-1
ThLy+1 < A ( > wig (e, — fk)) and 7T, > A <Z Wi g Tk — 5k)> :
=1 =1
And finally, L; is such that
Li+1 a1 Ly a1
kL1 < A (Z Wi o, Tk, — %Lwl)) and  rgr, > A <Z Wi oy Tk, — Tk,Lk)> ~
tr=1 =1

Ly
Then, ||¥llw, = D Wk,e, Uk ey, and the thresholds & can be found by solving in Ry the equation

l=1

_1_ 1 1~
B AT L&k = AT (|95l -

One can easily verify that this equation has a unique solution on R;. Then we have

[Tke) = (ke — wr o)™
Awg ¢

In the case ¢ = 2, wi & = mmykmwk .
A.4. Proof of Theorem 4

We need to prove the following Lemma in order to be able to prove that the sequence x(™) converges
weakly to a fixed point, following [9].

Lemma 1 We can uniformly bound below the sequence formed by w by a strictly positive real number. Then
the ||x")|| are uniformly bounded in m.

PROOF. The sequence formed by w is bounded from below by a strictly positive number, so we have
Wg,¢ > ¢, uniformly in (k,¢), with ¢ > 0.
We can write
T(x™) < o(x™) < (x|

because ®(x(™)) is a non-increasing sequence ([9, Lemma 3.5]), the ¥(x("™)) are then uniformly bounded.
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So, for all 4
I g, < 2 (A.3)

W,Diqi —

and then, for all &,

e < (x| (A4)

W,pi —

For all i, we can bound ||xm(m) 12
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Furthermore, we can show that
i1(m) o/ ) /1 L] qom) _ (m) GO Py 7(m)
i 13 < 2/ manc(w @ PO/ Pe 2 T < e e T 2 B = T2,
and then, as we have 2 — ¢;/p; > 0
1(m) _ ) i1(m) i1(m) o (m)
[P < et max( IR Py max(! R I,

which, with Equations (A.3) and (A.4), allow us to give an uniform upper bound for ||x("™)|? . &

We also need to prove that the obtained fixed point is a minimizer of Functional (27). To do so, we denote
by x* a fixed point of Algorithm 5. We have ®*“"(x* + h;x*) = ®(x* + h) + C|/h||3 — || Ah||3.
We first prove that, if x is a critical point of ®54"(x,x(™)), then

For this, we calculate 0®°"" (x, a):

0P (x,a) = —A*(y — Ax) + 2C(x — a) — 24" (Ax — Aa) + A0V (x) ,
so that, one can check that
U (x 4 h, x(™)) — &7 (x, x(M)) = 9" (x, x™))h + C||h||2 + M¥(x + h) — U(x) — d¥(x)h} .

As x is a critical point, i.e. for all v in 9®*%"(x,x(™)) and for all h, we have 9®*""(x,x(™))h = 0, then

O (x + h, x™) — &7 (x,x(™)) = C||h)|2 + 22{T(x + h) — ¥(x) — d¥(x)h} .
By definition of the sub-gradient, an element v belong to W (x)if and only if for all y ¥(x)+ (v,y —x) <
U(y). In particular, for y = x + h, this give for all h and for all v € 0¥ (x)

U(x)+ (v,h) < ¥(y) ie. 0 < ¥(x+h) — ¥(x) — 9¥(x)h

Finally
" (x + h,x™) — " (x,x™)) > C||h|3 .

As @5UT (x*,x*) = ®(x*) and **"(x* + h,x*) = ®(x* + h) + C||h||3 — ||Ah||3, we can conclude that for
all h:
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®(x* +h) > ¢(x*) + || Ah|3,

which concludes the proof.
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