Batch kernel SOM and related Laplacian methods for social network analysis

Romain Boulet 1 Bertrand Jouve 1 Fabrice Rossi 2 Nathalie Villa 1, *
* Auteur correspondant
2 AxIS - Usage-centered design, analysis and improvement of information systems
CRISAM - Inria Sophia Antipolis - Méditerranée , Inria Paris-Rocquencourt
Abstract : Large graphs are natural mathematical models for describing the structure of the data in a wide variety of fields, such as web mining, social networks, information retrieval, biological networks, etc. For all these applications, automatic tools are required to get a synthetic view of the graph and to reach a good understanding of the underlying problem. In particular, discovering groups of tightly connected vertices and understanding the relations between those groups is very important in practice. This paper shows how a kernel version of the batch Self Organizing Map can be used to achieve these goals via kernels derived from the Laplacian matrix of the graph, especially when it is used in conjunction with more classical methods based on the spectral analysis of the graph. The proposed method is used to explore the structure of a medieval social network modeled through a weighted graph that has been directly built from a large corpus of agrarian contracts.
Type de document :
Article dans une revue
Neurocomputing / EEG Neurocomputing, Elsevier, 2008, 71 (7-9), pp.1257-1273
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00202339
Contributeur : Nathalie Villa-Vialaneix <>
Soumis le : samedi 5 janvier 2008 - 18:02:29
Dernière modification le : vendredi 15 janvier 2016 - 01:01:46
Document(s) archivé(s) le : mardi 13 avril 2010 - 15:25:23

Fichiers

villa_etal_N2007.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00202339, version 1
  • ARXIV : 0801.0848

Collections

Citation

Romain Boulet, Bertrand Jouve, Fabrice Rossi, Nathalie Villa. Batch kernel SOM and related Laplacian methods for social network analysis. Neurocomputing / EEG Neurocomputing, Elsevier, 2008, 71 (7-9), pp.1257-1273. <hal-00202339>

Partager

Métriques

Consultations de
la notice

467

Téléchargements du document

157