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Online EM Algorithm for Latent Data Models

Olivier Cappé & Eric Moulines

LTCI, TELECOM ParisTech, CNRS.
46 rue Barrault, 75013 Paris, France.

Abstract

In this contribution, we propose a generic online (also sometimes called adaptive or recursive)
version of the Expectation-Maximisation (EM) algorithm applicable to latent variable models
of independent observations. Compared to the algorithm of Titterington (1984), this approach is
more directly connected to the usual EM algorithm and does not rely on integration with respect to
the complete data distribution. The resulting algorithm is usually simpler and is shown to achieve
convergence to the stationary points of the Kullback-Leibler divergence between the marginal
distribution of the observation and the model distribution at the optimal rate, i.e., that of the
maximum likelihood estimator. In addition, the proposed approach is also suitable for conditional
(or regression) models, as illustrated in the case of the mixture of linear regressions model.

Keywords: Latent data models, Expectation-Maximisation, adaptive algorithms, online estima-
tion, stochastic approximation, Polyak-Ruppert averaging, mixture of regressions.

1 Introduction

The EM (Expectation-Maximisation) algorithm (Dempster et al., 1977) is a popular tool for maximum-
likelihood (or maximum a posteriori) estimation. The common strand to problems where this ap-
proach is applicable is a notion of incomplete data, which includes the conventional sense of missing
data but is much broader than that. The EM algorithm demonstrates its strength in situations
where some hypothetical experiments yields complete data that are related to the parameters more
conveniently than the measurements are. Problems where the EM algorithm has proven to be useful
include, among many others, mixture of densities (Titterington et al., 1985), censored data models
(Tanner, 1993), etc. The EM algorithm has several appealing properties. Because it relies on com-
plete data computations, it is generally simple to implement: at each iteration, (i) the so-called E-step
only involves taking expectation over the conditional distribution of the latent data given the obser-
vations and (ii) the M-step is analogous to complete data weighted maximum-likelihood estimation.
Moreover, (iii) the EM algorithm naturally is an ascent algorithm, in the sense that it increases the
(observed) likelihood at each iteration. Finally under some mild additional conditions, (iv) the EM
algorithm may be shown to converge to a stationary point (i.e., a point where the gradient vanishes)
of the log-likelihood (Wu, 1983). Note that convergence to the maximum likelihood estimator cannot
in general be guaranteed due to possible presence of multiple stationary points.

When processing large data sets or data streams however, the EM algorithm becomes impractical
due to the requirement that the whole data be available at each iteration of the algorithm. For this
reason, there has been a strong interest for online variants of the EM which make it possible to estimate
the parameters of a latent data model without storing the data. In this work, we consider online
algorithms for latent data models with independent observations. The dominant approach (see also
Section 2.2 below) to online EM-like estimation follows the method proposed by Titterington (1984)
which consists in using a stochastic approximation algorithm, where the parameters are updated after
each new observation using the gradient of the incomplete data likelihood weighted by the complete
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data Fisher information matrix. This approach has been used, with some variations, in many different
applications (see, e.g., Chung and Böhme, 2005; Liu et al., 2006); a proof of convergence was given
by Wang and Zhao (2006).

In this contribution, we propose a new online EM algorithm that sticks more closely to the
principles of the original (batch-mode) EM algorithm. In particular, each iteration of the proposed
algorithm is decomposed into two steps, where the first one is a stochastic approximation version of
the E-step aimed at incorporating the information brought by the newly available observation, and,
the second step consists in the maximisation program that appears in the M-step of the traditional EM
algorithm. In addition, the proposed algorithm does not rely on the complete data information matrix,
which has two important consequences: firstly, from a practical point of view, the evaluation and
inversion of the information matrix is no longer required, secondly, the convergence of the procedure
does not rely on the implicit assumption that the model is well-specified, that is, that the data under
consideration is actually generated by the model, for some unknown value of the parameter. As a
consequence, and in contrast to previous work, we provide an analysis of the proposed algorithm
also for the case where the observations are not assumed to follow the fitted statistical model. This
consideration is particularly relevant in the case of conditional missing data models, a simple case of
which is used as an illustration of the proposed online EM algorithm. Finally, it is shown that, with
the additional use of Polyak-Ruppert averaging, the proposed approach converges to the stationary
points of the limiting normalised log-likelihood criterion (i.e., the Kullback-Leibler divergence between
the marginal density of the observations and the model pdf) at a rate which is optimal.

The paper is organised as follows: In Section 2, we review the basics of the EM and associated
algorithms and introduce the proposed approach. The connections with other existing methods are
discussed at the end of Section 2.3 and a simple example of application is described in Section 2.4.
Convergence results are stated in Section 3, first in term of consistency (Section 3.1) and then of con-
vergence rate (Section 3.2), with the corresponding proofs given in Appendix A. Finally in Section 4,
the performance of this approach is illustrated in the context of mixture of linear regressions.

2 Algorithm Derivation

2.1 EM Basics

In this section, we review the key properties of the EM algorithm as introduced by Dempster et al.
(1977). The latent variable statistical model postulates the existence of a non-observable or latent
variable X distributed under f(x; θ) where {f(x; θ), θ ∈ Θ} denotes a parametric family of probability
density functions indexed by a parameter value θ ∈ Θ ⊂ R

dθ . The observation Y is then viewed as
a deterministic function of X which takes its values in the set Y. This latent variable mechanism
provides a unified framework for situations which includes missing data, censored observations, noisily
observed data, . . . (Dempster et al., 1977).

We will denote by g(y; θ) the (observed) likelihood function induced by the latent data model.
In addition, the notations Eθ[·] and Eθ[·|Y ] will be used to denote, respectively, the expectation and
conditional expectation under the model parameterised by θ. Likewise, let π denote the probability
density function of the observation Y , where we stress again that we do not restrict ourselves to the
case where π(·) = g(·; θ⋆), for an unknown value θ⋆ of the parameter. The notations Pπ and Eπ will
be used to denote probability and expectation under the actual distribution of the observation.

Given n independent and identically distributed observations Y1:n
def
= (Y1, . . . , Yn), the maximum

likelihood estimator is defined as θ̂n
def
= argmaxθ∈Θ n

−1 log g(Y1:n; θ), where

log g(Y1:n; θ)
def
=

n
∑

i=1

log g(Yi; θ) . (1)
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Note that we normalise the log-likelihood (by n) to ease the transition to the online setting where n
increases when new observations become available.

The EM algorithm is an iterative optimisation algorithm that maximises the above (normalised)
log-likelihood function despite the possibly complicated form of g resulting from the latent data model.
Traditionally, each EM iteration is decomposed in two steps. The E-step consists in evaluating the
conditional expectation

Qθ̂k
(Y1:n; θ)

def
= n−1

n
∑

i=1

Eθ̂k

[

log f(Xi; θ)
∣

∣Yi
]

(2)

where θ̂k is the current estimate of θ, after k iterations of the algorithm. In the M-step, the value
of θ maximising Qθ̂k

(Y1:n; θ) is found. This yields the new parameter estimate θ̂k+1. This two step
process is repeated until convergence. The essence of the EM algorithm is that increasing Qθ̂k

(Y1:n; θ)
forces an increase of the log-likelihood log g(Y1:n; θ) (Dempster et al., 1977).

For µ : Θ → R a differentiable function, denote by ∇θµ = (∂µ/∂θ1, . . . , ∂µ/∂θdθ )
T the gradient of

µ. If µ is twice differentiable, we denote by ∇2
θµ the Hessian matrix which is a dθ × dθ matrix whose

components are given by [∇2
θµ]i,j =

∂2µ
∂θi∂θj

, 1 ≤ i, j ≤ dθ. Following Lange (1995), if the M-step of the

EM algorithm is replaced by a Newton update, one obtains, assuming some regularity, the following
recursion

θ̂k+1 = θ̂k + γk+1

[

J(Y1:n; θ̂k)
]−1

n
∑

i=1

Eθ̂k

[

∇θ log f(Xi; θ̂k)
∣

∣Yi

]

, (3)

where γk+1 is a step size (γk+1 = 1 correspond to the actual Newton update) and J(Y1:n; θ) =
n−1

∑n
i=1 J(Yi; θ) with J(y; θ) = −Eθ

[

∇2
θ log f(X; θ)

∣

∣Y = y
]

. Note that due to the so-called Fisher’s
identity (see discussion of Dempster et al., 1977), the gradient term indeed coincides with the (ob-
served data) score function as

Eθ

[

∇θ log f(X; θ)
∣

∣Y
]

= ∇θ log g(Y ; θ) . (4)

The algorithm in (3) can be shown to be locally equivalent to the EM algorithm at convergence
(Lange, 1995). In practise, the step-size γk+1 is often adjusted using line searches to ensure that the
likelihood is indeed increased at each iteration. In addition, J(Y1:n; θ) is not necessarily a positive
definite matrix or could be badly conditioned; therefore, some adjustment of the weight matrix
J(Y1:n; θ) may be necessary to avoid numerical problems.

A well-known modification of the Newton recursion consists in replacing J(Y1:n; θ) in (3) by the
Fisher Information Matrix (FIM) associated to a complete observation,

I(θ)
def
= −Eθ

[

∇2
θ log f(X; θ)

]

. (5)

Under the mild assumption that the complete data model is regular, I(θ) is guaranteed to be positive
definite. This modified recursion, which is more robust, may be seen as an approximation of the
scoring method (McLachlan and Krishnan, 1997), where the complete data FIM is used in place of
the actual (observed) FIM

Iobs(θ)
def
= −Eθ

[

∇2
θ log g(Y ; θ)

]

, (6)

despite the fact that, in general, Iobs(θ) and I(θ) are different. I(θ) usually also differs from J(Y1:n; θ),
as J(Y1:n; θ) converges, as n tends to infinity, to

Iπ(θ)
def
= −Eπ

[

Eθ

[

∇2
θ log f(X; θ)

∣

∣Y
]]

, (7)

which doesn’t correspond to a Fisher information matrix in the complete data model, except when π
coincides with f(·; θ). In the particular case, however, where the complete data model belongs to a
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canonical (or naturally parameterised) exponential family of distributions, J(Y1:n; θ) coincides with
I(θ) and thus does not depend on π anymore. Hence, except in some specific cases or if one assumes
that the model is well-specified (i.e., π = g(·; θ⋆)), the convergence behaviour of the recursion in (3)
will be different when I(θ) is used instead of J(Y1:n; θ).

2.2 Stochastic Gradient EM Algorithms

Being able to perform online estimation means that the data must be run through only once, which
is obviously not possible with the vanilla EM algorithm. To overcome this difficulty we consider in
the sequel online algorithms which produce, at a fixed computational cost, an updated parameter
estimate θ̂n for each new observation Yn. Note that in the online setting, the iteration index (which
was previously denoted by k) is identical to the observation index n and we will use the latter when
describing the algorithms. To our best knowledge, the first online parameter estimation procedure
for latent data models is due to Titterington (1984) who proposed to use a stochastic approximation
version of the modified gradient recursion:

θ̂n+1 = θ̂n + γn+1I
−1(θ̂n)∇θ log g(Yn+1; θ̂n) , (8)

where {γn} is a decreasing sequence of positive step sizes. One may also consider using a stochastic
approximation version of the original (Newton) recursion in (3):

θ̂n+1 = θ̂n + γn+1I
−1
π (θ̂n)∇θ log g(Yn+1; θ̂n) . (9)

Note that (9) does not correspond to a practical algorithm as Iπ(θ̂n) is usually unknown, although
it can be estimated, for instance, by recursively averaging over the values of J(Yn; θ̂n). As discussed
above however, this algorithm may be less robust than (8) because J(Yn; θ̂n) is (usually) not guar-
anteed to be positive definite. In the following, we will refer to (8) as Titterington’s online algorithm
and to (9) as the online gradient algorithm (in reference to the title of the paper by Lange, 1995).
Note that both of these algorithms are based on the stochastic gradient approach and bear very little
resemblance with the original EM algorithm.

2.3 The Proposed Online EM Algorithm

We now consider an online approach which is more directly related to the principle underpinning the
EM algorithm. The basic idea is to replace the expectation step by a stochastic approximation step,
while keeping the maximisation step unchanged. More precisely, at iteration n, consider the function

Q̂n+1(θ) = Q̂n(θ) + γn+1

(

Eθ̂n

[

log f(Xn+1; θ)
∣

∣Yn+1

]

− Q̂n(θ)
)

, (10)

and set θ̂n+1 as the maximum of the function θ 7→ Q̂n+1(θ) over the feasible set Θ. One important
advantage of (10) compared to (8) is that it automatically satisfies the parameter constraints without
requiring any further modification. In addition, (10) does not explicitly require the inversion of a
(dθ × dθ) matrix. For further comparisons between both approaches, both practical and in terms of
rate of convergence, we refer to the example of Section 2.4 and to the analysis of Section 3.

Of course, this algorithm is of practical interest only if it is possible to compute and maximise
Q̂n(θ) efficiently. In the following we focus on the case where the complete data likelihood belongs
to an exponential family satisfying the following assumptions. Let 〈·, ·〉 denotes the scalar product
between two vectors of Rd and | · | the associated norm.

Assumption 1. (a) The complete data likelihood is of the form

f(x; θ) = h(x) exp {−ψ(θ) + 〈S(x), φ(θ)〉} . (11)
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(b) The function

s̄(y; θ)
def
= Eθ

[

S(X)
∣

∣Y = y
]

, (12)

is well defined for all (y, θ) ∈ Y ×Θ.

(c) There exists a convex open subset S ⊂ R
d, which is such that

• for all s ∈ S, (y, θ) ∈ Y ×Θ and γ ∈ [0, 1), (1− γ)s+ γs̄(y; θ) ∈ S.
• for any s ∈ S, the function θ 7→ ℓ(s; θ)

def
= −ψ(θ) + 〈s, φ(θ)〉 has a unique global maximum

over Θ denoted θ̄ (s),i.e.

θ̄ (s)
def
= argmaxθ∈Θℓ(s; θ) . (13)

Assumption 1 implies that the evaluation of Eθ

[

log f(X; θ)
∣

∣Y
]

, and hence the E-step of the
EM algorithm, reduces to the computation of the expected value Eθ

[

S(X)
∣

∣Y
]

of the complete data
sufficient statistic S(X). Indeed, the EM reestimation functional Qθ′(Y1:n; θ) is then defined by

Qθ′(Y1:n; θ) = ℓ

(

n−1
n
∑

i=1

s̄(Yi; θ
′); θ

)

.

The (k + 1)-th iteration of the (batch mode) EM algorithm may thus be expressed as

θ̂k+1 = θ̄

(

n−1
n
∑

i=1

s̄(Yi; θ̂k)

)

, (14)

where the M-step corresponds to the application of the function θ̄. Note that the construction of the
set S in Assumption 1(c) reflects the fact that in most applications of EM, the M-step is unambiguous
only when a sufficient number of observations have been gathered. This point will be illustrated in
the example to be considered in Section 4 below. Assumption 1(c) takes care of this issue in the case
of the online EM algorithm. As an additional comment about Assumption 1, note that we do not
require that φ be a one to one mapping and hence the complete data model may also correspond
to a curved exponential family, where typically θ is of much lower dimension than ψ(θ) (see, for
instance, Chung and Böhme (2005); Cappé et al. (2006) for an example involving Gaussian densities
with structured covariance matrices).

In this setting, the proposed online EM algorithm takes the following form

ŝn+1 = ŝn + γn+1(s̄(Yn+1; θ̂n)− ŝn) ,

θ̂n+1 = θ̄ (ŝn+1) . (15)

Algorithm of that kind have a rather long history in the machine learning community. The idea of
sequentially updating the vector of sufficient statistics has apparently been first proposed by Nowlan
(1991), using a fixed step size (or learning rate) γn = γ (see also Jordan and Jacobs, 1994). The
online EM algorithm (15) is also closely related to the “incremental” version of the EM algorithm
derived by Neal and Hinton (1999). The incremental setting is more general than the recursive setting
considered here, because the observations are not necessarily processed sequentially in time and might
be used several times. The incremental EM algorithm of Neal and Hinton (1999) defines the (k+1)-th
parameter estimate as

θ̂k+1 = θ̄



[min(k + 1, n)]−1
min(k+1,n)
∑

i=1

ŝk+1,i



 , (16)
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where ŝk+1,i = ŝk,i if i 6= Ik+1 and ŝk+1,Ik+1
= s̄(YIk+1

; θ̂k). The index Ik+1 is typically chosen as
k + 1 while k ≤ n − 1 and runs through the data set, that is, Ik ∈ {1, . . . , n}, in a fixed or pseudo
random scanning order for subsequent iterations. When used in batch mode (that is when k > n) it
is seen that it mostly differs from the traditional EM strategy in (14) by the fact that the parameters
are updated after each computation of the conditional expectation of the complete data sufficient
statistic corresponding to one observation. When used in online mode (k ≤ n), the algorithm of
Neal and Hinton (1999) coincides with the proposed online EM algorithm with a step-size of γk = 1/k
(see Section 3 for further discussion of this particular choice of step sizes). A specific instance of the
proposed online EM algorithm has been derived by Sato and Ishii (2000) for maximum likelihood
estimation in the so-called normalised Gaussian network; this algorithm was later extended by Sato
(2000) to a canonical exponential family (φ(θ) = θ in (11)) and a sketch of the proof of convergence,
based on stochastic approximation results, was given. The online EM algorithm defined in (15) may
be seen as a generalisation of this scheme.

2.4 An Example: Poisson Mixture

Before analysing the convergence of the above algorithm, we first consider a simple example of appli-
cation borrowed from Liu et al. (2006): consider the case of a mixture of m Poisson distributions

g(y; θ) =

m
∑

j=1

ωj

λyj
y!

e−λj , for y = 0, 1, 2, . . . , (17)

where the unknown parameters θ = (ω1, . . . , ωm, λ1, . . . , λm) satisfies the constraints ωj > 0,
∑m

i=1 ωj =
1 and λj > 0. In the mixture problem, the incompleteness is caused by the ignorance of the com-
ponent of the mixture. Let W be a random variable taking value in {1, . . . ,m} with probabilities
{ω1, . . . , ωm}. The random variable W is called the regime or state and is not observable. The
probability density defined in (17) corresponds to the assumption that Y is distributed, given that
W = j, according to a Poisson random variable with parameter λj. Note that in this case, as in
all examples which involve the simpler missing data mechanism rather than the general latent data
model introduced in Section 2.1, the complete data X simply consists of the couple (Y,W ) and hence
conditional expectations of X given Y really boils down to expectations of W given Y .

For the Poisson mixture, the complete data log-likelihood is given by

log f(y,w; θ) = − log(y!) +

m
∑

j=1

[log(ωj)− λj ] δw,j +

m
∑

j=1

log(λj)yδw,j , (18)

where δi,l is the Kronecker delta symbol: δi,l = 1 if i = l and δi,l = 0 otherwise. The complete data
likelihood may be rewritten as in (11) with h(y,w) = − log(y!), S(y,w) = (S1(y,w), . . . , Sm(y,w))
and φ(θ) = (φ1(θ), . . . , φm(θ)), where

Sj(y,w)
def
=

(

δw,j

yδw,j

)

, and φj(θ)
def
=

(

log(ωj)− λj
log(λj)

)

.

In this case, the conditional expectation of the complete data sufficient statistics is fully determined
by the posterior probabilities of the mixture components defined by

w̄j(y; θ)
def
= Pθ[W = j|Y = y] =

ωjλ
y
j e

−λj

∑m
l=1 ωlλ

y
l e

−λl
, for j = 1, . . . ,m .
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The (n + 1)-th step of the online EM algorithm consists in computing, for j = 1, . . . ,m,

ŝj,n+1 = ŝj,n + γn+1

{(

w̄j(Yn+1; θ̂n)

w̄j(Yn+1; θ̂n)Yn+1

)

− ŝj,n

}

,

ω̂j,n+1 = ŝj,n+1(1) , λ̂j,n+1 =
ŝj,n+1(2)

ŝj,n+1(1)
. (19)

Comparing with the generic update equations in (15), one recognises the stochastic approximation
version of the E-step, in the first line of (19), followed by the application of θ̄.

To compare with Titterington’s online algorithm in (8), one first need to evaluate the complete
Fisher information matrix I(θ). To deal with the equality constraint

∑m
j=1 ωj = 1, only the first

m− 1 weights are used as parameters and the remaining one is represented as ωm = 1−∑m−1
j=1 ωj as

in Titterington (1984). The complete data Fisher information matrix defined in (5) is then given by

I(θ) =

(

diag(ω−1
1 , . . . , ω−1

m−1) + ω−1
m 1m−11

T
m−1 0(m−1)×m

0m×(m−1) diag(ω1/λ1, . . . , ωm/λm)

)

,

where the superscript T denotes transposition, 1 and 0 respectively denote a vector of ones and
a matrix of zeros, whose dimensions are specified as subscript. Upon inverting I(θ), the following
expression for the (n+ 1)-th step of Titterington’s online algorithm is obtained :

ω̂j,n+1 = ω̂j,n + γn+1

(

w̄j(Yn+1, θ̂n)− ω̂j,n

)

,

λ̂j,n+1 = λ̂j,n + γn+1
w̄j(Yn+1; θ̂n)

ω̂j,n

(

Yn+1 − λ̂j,n

)

. (20)

To make the connection more explicit with the update of the online EM algorithm, note that due to
the fact that, in this simple case, there is an identification between some components of the vector
of sufficient statistics and the weight parameters (i.e., θ̄ (sj,n) = ωj), it is possible to rewrite (19) in
terms of the latter only:

ω̂j,n+1 = ω̂j,n + γn+1

(

w̄j(Yn+1; θ̂n)− ω̂j,n

)

,

λ̂j,n+1 =
λ̂j,nω̂j,n + γn+1

(

w̄j(Yn+1; θ̂n)Yn+1 − λ̂j,nω̂j,n

)

ω̂j,n+1
.

In the Poisson mixture example, the two algorithms differ only in the way the intensities of the
Poisson components are updated. Whereas the online EM algorithm in (19) does ensure that all
parameter constraints are satisfied, it may happen, in contrast, that (20) produces negatives values
for the intensities. Near convergence however, the two algorithms behave very similarly in this simple
case (see Proposition 6 below).

2.5 Extensions

As previously mentioned, Neal and Hinton (1999) advocate the use of online algorithms also in the
case of batch training with large sample sizes. The online algorithm then operates by repeatedly scan-
ning through the available sample. In our setting, this use of the proposed online EM algorithm may
be analysed by letting π denote the empirical measure associated with the fixed sample X1, . . . ,Xn.
The results to follow thus also apply in this context, at least when the data scanning order is random.

In semi-parametric regression models, each observation Y comes with a vector of covariates Z
whose distribution is usually unspecified and treated as a nuisance parameter. To handle latent data
versions of regression models (mixture of regressions, mixture of experts, etc.—see Grün and Leisch,

7



2007; Jordan and Jacobs, 1994, as well as the example of Section 4) in our framework, one only needs
to assume that the model consists of a parametric family {f(x|z; θ), θ ∈ Θ)} of conditional pdfs. In
this setting however, it is not possible anymore to compute expectations under the complete data
distribution and the model can never be well-specified, as the distribution of Z is left unspecified.
Thus Titterington’s algorithm in (8) does not directly apply in this setting. In contrast, the proposed
algorithm straightforwardly extends to this case by considering covariate-dependent expectations of
the sufficient statistics of f(x|z; θ), of the form s̄(y, z; θ) = Eθ[S(X)|Y = y, Z = z], instead of (12).
For notational simplicity, we state our results in the following section without assuming the presence
of covariates but extension to the case where there are covariates is straightforward; the example of
Section 4 corresponds to a case where covariates are available.

3 Convergence Issues

3.1 Consistency

In this section, we establish the convergence of the proposed algorithm towards the set of stationary
points of the Kullback-Leibler divergence between the actual observation density and the model
likelihood. These results are the analogues of those given by Wang and Zhao (2006) for Titterington’s
online algorithm, with a somewhat broader scope since we do not assume that the model is well-
specified. The proofs corresponding to this section are given in Appendix A. In addition to the
conditions listed in Assumption 1, we will require the following additional regularity assumptions.

Assumption 2. (a) The parameter space Θ is a convex open subset of Rdθ and ψ and φ in (11) are
twice continuously differentiable on Θ.

(b) The function s 7→ θ̄ (s), defined in (13), is continuously differentiable on S,

(c) For some p > 2, and all compact subsets K ⊂ S,

sup
s∈K

Eπ

(∣

∣s̄(Y ; θ̄ (s))
∣

∣

p)
<∞ .

To analyse the recursion (15), the first step consists in expressing it as a standard Robbins-Monro
stochastic approximation procedure operating on the complete data sufficient statistics:

ŝn+1 = ŝn + γn+1 (h(ŝn) + ξn+1) , (21)

where h : S → R
dθ is the so-called mean field given by

h(s)
def
= Eπ

[

s̄(Y ; θ̄ (s))
]

− s , (22)

and {ξn}n≥1 is a sequence of random variables representing stochastic perturbations defined by

ξn+1
def
= s̄(Yn+1; θ̄ (ŝn))− E

[

s̄(Yn+1; θ̄ (ŝn))
∣

∣Fn

]

, (23)

where Fn is the σ-field generated by (ŝ0, {Yi}ni=1). The aim of the Robbins-Monro procedure (21) is
to solve the equation h(s) = 0. As a preliminary step, we first characterise the set of roots of the
mean field h. The following proposition shows that, if s⋆ belongs to

Γ
def
= {s ∈ S : h(s) = 0} , (24)

then θ⋆ = θ̄ (s⋆) is a stationary point of the Kullback-Leibler divergence between π and gθ,

K (π ‖gθ ) def
= Eπ

[

log

(

π(Y )

g(Y ; θ)

)]

. (25)

8



Proposition 3. Under Assumptions 1–2, if s⋆ ∈ S is a root of h, i.e., h(s⋆) = 0, then θ⋆ = θ̄ (s⋆) is
a stationary point of the function θ 7→ K(π ‖gθ ), i.e., ∇θ K(π ‖gθ )|θ=θ⋆ = 0. Conversely, if θ⋆ is a
stationary point of θ 7→ K(π ‖gθ ), then s⋆ = Eπ[s̄(Y ; θ⋆)] is a root of h.

We then show that the function w : S → [0,∞) defined by

w(s)
def
= K

(

π
∥

∥

∥
gθ̄(s)

)

, (26)

is a Lyapunov function for the mean field h and the set Γ, i.e. for any s ∈ S, 〈∇sw(s),h(s)〉 ≤ 0
and 〈∇sw(s),h(s)〉 = 0 if and only if h(s) = 0. The existence of a Lyapunov function is a standard
argument to prove the global asymptotic stability of the solutions of the Robbins-Monro procedure.
This property can be seen as an analog of the monotonicity property of the EM algorithm: each
unperturbed iteration s̄k+1 = s̄k + γk+1h(s̄k) decreases the Kullback-Leibler divergence to the target
distribution π, provided that γk+1 is small enough.

Proposition 4. Under Assumptions 1–2,

• w(s) is continuously differentiable on S,

• for any compact subset K ⊂ S \ Γ,

sup
s∈K

〈∇sw(s),h(s)〉 < 0 .

Using this result, we may now prove the convergence of the sequence {ŝk}. Denote by L =
{θ ∈ Θ : ∇θK(π ‖gθ ) = 0} the set of stationary points of the Kullback-Leibler divergence, and, for
x ∈ R

m and A ⊂ R
m, let d(x,A) = inf{y ∈ A, |x− y|}.

Theorem 5. Assume 1–2 and that, in addition,

1. 0 < γi < 1,
∑∞

i=1 γi = ∞ and
∑∞

i=1 γ
2
i <∞,

2. ŝ0 ∈ S and with probability one, lim sup |ŝn| <∞ and lim inf d(ŝn,Sc) > 0.

3. The set w(Γ) is nowhere dense.

Then, limn→∞ d(ŝn,Γ) = 0 and limn→∞ d(θ̂n,L) = 0, with probability one.

The first condition of Theorem 5 is standard for decreasing step-size stochastic approximation
procedures (Kushner and Yin, 1997). It is satisfied for instance by setting γi = γ0i

−α, with α ∈
(1/2, 1]. The additional requirements that γi be less than 1 and ŝ0 be chosen in S is just meant
to ensure that the whole sequence {ŝk} stays in S (see Assumption 1(c)). The rest of the second
assumption of Theorem 5 correspond to a stability assumption which is not trivial. In general settings,
the stability of the algorithm can be enforced by truncating the algorithm updates, either on a fixed
set (see, e.g., Kushner and Yin, 2003, chapter 2) or on an expanding sequence of sets (see, e.g., Chen,
2002, chapter 2, or Andrieu et al., 2005). We do not explicitly carry out these constructions here to
keep the exposition concise.

3.2 Rate of Convergence

In this section, we show that when approaching convergence, the online EM algorithm is comparable
to the online gradient algorithm in (9). The existence of such links is hardly surprising, in view of
the discussions in Section 4 of Titterington (1984) and Section 3 of Lange (1995), and may be seen
as a counterpart, for stochastic approximation, of the asymptotic equivalence of the gradient EM
algorithm of Lange (1995) and the EM algorithm. To highlight these relations, we first express the
online EM algorithm as a stochastic approximation procedure on θ.
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Proposition 6. Under the assumptions of Theorem 5, the online EM sequence {θ̂n}n≥0 given by (15)
follows the recursion

θ̂n+1 = θ̂n + γn+1 I
−1
π (θ̂n)∇θ log g(Yn+1; θ̂n) + γn+1ρn+1 (27)

where limn→∞ ρn = 0 a.s. and Iπ(θ) is defined in (7).

Hence, the online EM algorithm is equivalent, when approaching convergence, to the online gradi-
ent algorithm defined in (9) which coincides with Titterington’s online algorithm with Iπ(θ̂n) substi-
tuted for I(θ̂n). It is remarkable that the online EM algorithm can achieve a convergence performance
similar to that of the online gradient algorithm without explicit matrix approximation nor inversion.
Note that, as previously discussed in Section 2.1, in the particular case of canonical exponential
families, Iπ(θ) and I(θ) coincide and the proposed online EM algorithm is thus also equivalent (near
convergence) to Titterington’s online algorithm.

Although the recursion (27) will not lead to asymptotic efficiency, we can, under appropriate

additional conditions, guarantee γ
−1/2
n -consistency and asymptotic normality. We use the weak con-

vergence result presented in Pelletier, 1998, Theorem 1.

Theorem 7. Under the assumptions of Theorem 5, let θ⋆ be a (possibly local) minimum of the
Kullback-Leibler divergence: θ 7→ K(π ‖gθ ). Denote by

H(θ⋆)
def
= I−1

π (θ⋆)
[

−∇2
θ K(π ‖gθ )|θ=θ⋆

]

,

Γ(θ⋆)
def
= I−1

π (θ⋆)Eπ

(

∇θ log g(Y ; θ⋆) {∇θ log g(Y ; θ⋆)}T
)

I−1
π (θ⋆) .

Then,

1. H(θ⋆) is a stable matrix whose eigenvalues have their real part upper bounded by −λ(θ⋆), where
λ(θ⋆) > 0.

2. Let γn = γ0n
−α, where γ0 may be chosen freely in (0, 1) when α ∈ (1/2, 1) but must satisfy γ0 >

λ(θ⋆) when α = 1; then, on the event Ω(θ⋆) = {limn→∞ θ̂n = θ⋆}, the sequence γ
−1/2
n

(

θ̂n − θ⋆
)

converges in distribution to a zero mean Gaussian distribution with covariance Σ(θ⋆), where
Σ(θ⋆) is the solution of the Lyapunov equation

(H(θ⋆) + ζId) Σ(θ⋆) + Σ(θ⋆)
(

HT (θ⋆) + ζId
)

= −Γ(θ⋆) , (28)

where ζ = 0 if α ∈ (1/2, 1) and ζ = γ−1
0 if α = 1, and, Id denotes the identity matrix.

Solving equation (28) is easy for a well-specified model, i.e., when π = gθ⋆ , as the FIM Iobs(θ
⋆)

that is associated with the (observed) data model then satisfies

Iobs(θ
⋆) = −Eθ⋆

[

∇2
θ log g(Y ; θ⋆)

]

= ∇2
θ K(gθ⋆ ‖gθ )|θ=θ⋆ = Eπ

(

∇θ log g(Y ; θ⋆) {∇θ log g(Y ; θ⋆)}T
)

.

When ζ = 0, the solution of the Lyapunov equation is thus given by Σ(θ⋆) = I−1
π (θ⋆)/2. The model

being well-specified also implies that Iπ(θ
⋆) = I(θ⋆), and, hence, the asymptotic covariance matrix

is given by half the inverse of the complete data FIM in this case. When ζ 6= 0, the Lyapunov
equation cannot be solved in explicitly, except when the parameter is scalar (the result then coincides
with Titterington, 1984, Theorem 1). Note that using γn = γ0n

−α with α = 1 provides the optimal
convergence rate of 1/

√
n but only at the price of a constraint on the scale γ0, which is usually

impossible to check in practice. On the other hand, using α ∈ (1/2, 1) results in a slower convergence
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rate but without constraint on the scale γ0 of the step-size (except for the fact that it has to be
smaller than 1).

To circumvent this difficulty, we recommend to use the so-called Polyak-Ruppert averaging tech-
nique (Polyak, 1990; Ruppert, 1988) as a post-processing step. Following Polyak (1990) —see also
Polyak and Juditsky (1992); Mokkadem and Pelletier (2006)—, if γ = γ0n

−α, with α ∈ (1/2, 1), then
the running average

θ̃n
def
= n−1

n
∑

j=n0

θ̂j , n ≥ 1 (29)

converges at rate 1/
√
n, for all values of γ0. Furthermore, on the event Ω(θ⋆) defined in Theorem 7

above,
√
n(θ̃n − θ⋆) is asymptotically normal, with asymptotic covariance matrix

Σ(θ⋆) = H−1(θ∗)Γ(θ⋆)H−1(θ⋆) =
[

−∇2
θ K(π ‖gθ )|θ=θ⋆

]−1
π
(

∇θ log gθ⋆ {∇θ log gθ⋆}T
)

[

−∇2
θ K(π ‖gθ )|θ=θ⋆

]−1
, (30)

which is known to be optimal (Kushner and Yin, 1997). If π = gθ⋆ , the previous result shows that
the averaged sequence θ̃n is an asymptotically efficient sequence of estimates of θ⋆, i.e. the asymptotic
covariance of

√
n(θ̃n − θ⋆) is equal to the inverse of the (observed data) FIM Iobs(θ

⋆).

4 Application to Mixtures of Gaussian Regressions

To illustrate the performance of the proposed method, we consider a regression model which, as
discussed in Section 2.5, corresponds to a case where the complete data FIM is not available. In
contrast, we illustrate below the fact that the proposed algorithm, without explicitly requesting the
determination of a weighting matrix does provide asymptotically efficient parameter estimates when
Polyak-Ruppert averaging is used.

The model we consider is a finite mixture of Gaussian linear regressions, where the complete
data consists of the response variable R, here assumed to be scalar for simplicity, the dz-dimensional
vector Z that contains the explanatory variables, and, W which corresponds, as in the example of
Section 2.4, to a latent mixture indicator taking its value in the finite set {1, . . . ,m}. We assume that
given W = j and Z, R is distributed as a N (βTj Z, σ

2
j ) Gaussian variable, while W is independent

of Z and such that Pθ(W = j) = ωj. Thus the parameters of the model are the mixture weights ωj

and the regression vectors βj and variances σ2j , for j = 1, . . . ,m. As is usually the case in conditional
regression models, we specify only the part of the complete data likelihood that depends on the
parameters, without explicitly modelling the marginal distribution of the vector of regressors Z. In
terms of our general notations, the complete data X is the triple (R,Z,W ), the observed data is the
couple (R,Z) and the model is not well-specified, in the sense that the distribution of the observation
(R,Z) is not fully determined by the model. We refer to Hurn et al. (2003) or Grün and Leisch (2007)
and references therein for more information on mixture of regression models and their practical use.

In the mixture of Gaussian regressions model, the part of the complete data log-likelihood that
depends on the parameters may be written as

log f(r, w, z; θ) =

m
∑

j=1











log(ωj)−
1

2






log σ2j +

(

r − βTj z
)2

σ2j

















δw,j , (31)

where δ denotes, as before, the Kronecker delta. To put (31) in the form given in (11), one needs to
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define the statistics S = (S1,j , S2,j, S3,j , S4,j)1≤j≤m where

S1,j(r, w, z) = δw,j (scalar) ,

S2,j(r, w, z) = δw,jrz (dz × 1) ,

S3,j(r, w, z) = δw,jzz
T (dz × dz) ,

S4,j(r, w, z) = δw,jr
2 (scalar) . (32)

As in the simple Poisson mixture example of Section 2.4, the E-step statistics only depend on the
conditional expectation of the indicator variable W through

s̄1,j(r, z; θ) = w̄j(r, z; θ) ,

s̄2,j(r, z; θ) = w̄j(r, z; θ)rz ,

s̄3,j(r, z; θ) = w̄j(r, z; θ)zz
T ,

s̄4,j(r, z; θ) = w̄j(r, z; θ)r
2 , (33)

where

w̄j(r, z; θ)
def
= Eθ[W = j|R = r, Z = z] =

ωj

σj
exp

[

−1
2

(r−βT
j z)2

σ2
j

]

∑m
l=1

ωl

σl
exp

[

−1
2
(r−βT

l
z)2

σ2
l

] .

Finally, it is easily checked that that the M-step is equivalent to an application of the function
θ̄ : s 7→

(

ω̄j(s), β̄j(s), σ̄j(s)
)

1≤j≤m
where

ω̄j(s) = s1,j ,

β̄j(s) = s−1
3,js2,j ,

σ̄2j (s) =
(

s4,j − β̄Tj (s)s2,j
)

/s1,j . (34)

In this example, the role played by the set S in Assumption 1(c) is important: In order to
apply (34), its required that the scalars s1,j belong to the open set (0, 1) and that the (dz + 1)-
dimensional matrices block-defined by

Mj =

(

s3,j s2,j
sT2,j s4,j

)

,

be positive definite, since σ̄2j (s) is, up to normalisation by s1,j, the Schur complement of Mj . These
constraints, for j = 1, . . . ,m define the set S which is indeed open and convex. The function s̄ defined
in (33) however never produces values of s which are in S. In particular, s̄3,j(r, z; θ) is a rank one
matrix which is not invertible (unless dz = 1). Hence the importance of using an initialisation s0
which is chosen in S. For the simulations below, we took care of this issue by inhibiting the parameter
re-estimation step in (34) for the first twenty observations of each run. In other words, the first twenty
observations are used only to build a up a value of ŝ20, using the first line of (15), which is in S with
great probability.

For illustration purpose, we consider a variation of a simple simulation example used in the
flexmix R package (Leisch, 2004), where m = 2, ω1 = ω2 = 0.5, and

R =

{

5U + V (when W = 1)

15 + 10U − U2 + V (when W = 2)
,

where U ∼ Unif(0, 10) and V ∼ N (0, 92). In order to balance the asymptotic variances of the regres-
sion parameters (see below) we used ZT = (1, U, U2/10) as the vector of regressors, hence the actual
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value of the regression parameter is βT1 = (0, 5, 0) for the first component and βT2 = (15, 10,−10). The
corresponding data is shown in Figure 1 where the points corresponding to both classes are plotted
differently for illustration purpose, despite the fact that only unsupervised estimation is considered
here. The labelling is indeed rather ambiguous in this case as the posterior probability of belonging
to one of the two classes is between 0.25 and 0.75 for about 40% of the points.

0 1 2 3 4 5 6 7 8 9 10
−20

−10

0

10

20

30

40

50

60

70

80

U

Z

Figure 1: 500 points drawn from the model: circles, points drawn from the first class, and, crosses,
points drawn from the second class (the algorithms discussed here ignore the class labels).

Clearly, the mixture of regressions model is such that the associated complete data sufficient
likelihood has the form given in Assumption 1(a), where the marginal density of the explanatory
variables in Z appears in the term h(x) since it does not depend on the parameters. Hence the
previous theory applies straightforwardly and the online EM algorithm may be used to maximise
the conditional likelihood function of the responses R given the regressors Z. However, the explicit
evaluation of the complete data FIM I(θ) defined in (5) is not an option here because the model does
not specify the marginal distribution of Z. Titterington’s online algorithm may thus not be used
directly. Applying the recursion in (8) without a weighting matrix is not recommended here as the
regression parameters are greatly correlated due to the non-orthogonality of the regressors.

In order to determine a suitable weighting matrix, one can use Fisher’s relation (4) which gives,
for the regression parameters,

∇βj
log g(r|z; θ) = Eθ

[

∇βj
log f(R,W |Z; θ)

∣

∣R = r, Z = z; θ
]

= Eθ

[

δW,j

(R− βTj Z)Z

σ2j

∣

∣

∣

∣

∣

R = r, Z = z; θ

]

= w̄j(r, z; θ)
(r − βTj z)z

σ2j
.

Hence, if we assume that the model is well-specified, the (observed) FIM Iobs(θ) may be approximated,
near convergence, by computing empirical averages of the form

1/n

n
∑

i=1

∇βj
log g(Ri|Zi; θ)

{

∇βj
log g(Ri|Zi; θ)

}T
.

As the online EM algorithm does not require such computations, this estimate has been used only to
determine the FIM at the actual parameter value for comparison purpose. It is easily checked that
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Figure 2: Box-and-whisker plots of the three components of β2 (from top to bottom) estimated from
500 independent runs of length n = 100 for, EM5: five iterations of the batch EM algorithm, OL1:
online EM algorithm with γi = 1/i, OL06: online EM algorithm with γi = 1/i0.6, OL06a: online EM
algorithm with γi = 1/i0.6 and averaging started from the 50th iteration. The horizontal dashed line
corresponds to the actual parameter value and the interval in bold at the right of each plot to the
interquartile range deduced from the asymptotic normal approximation.
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Figure 3: Same plots as in Figure 2 for signals of length n = 10, 000 (OL06a uses averaging started
from the 5, 000th iteration).
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due to the linearity of the model and the fact that both components have equal weights and variance,
the covariance matrices for β1 and β2 are the same. The numerical approximation determined from
a million simulated observations yields asymptotic standard deviations of (47.8, 22.1, 21.1) for the
coordinates of βj , with an associated correlation matrix of





1 −0.87 0.75
−0.87 1 −0.97
0.75 −0.97 1



 .

As noted above, the coordinates of the regression vector are very correlated which would make the
unweighted parameter-space stochastic approximation algorithm (i.e., (8) with an identity matrix
instead of I−1(θ̂n)) very inefficient.
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Figure 4: Example of parameters trajectories for the three components of β2 (from top to bottom)
for a signal of length n = 5, 000: OL1, dashed line, OL06 doted line, OL06a solid line (with averaging
started after 1, 000 iterations.

For run-lengths of n = 100 and n = 10, 000 observations, we illustrate the performance of the
following four algorithmic options :

EM5 Five iterations of the batch EM algorithm, using the whole data.

OL1 The online EM algorithm with step size γn = 1/n.

OL06 The online EM algorithm with step size γn = n−0.6.

OL06a The online EM algorithm with step size γn = n−0.6 and averaging started from n0 = n/2
according to (29).

Note that whereas OL1 and OL06a have the same computational complexity (as the averaging post-
processing has a negligible cost), EM5 is significantly more costly requiring five times as many E-step
computations; it is also non-recursive. All algorithm are started from the same point and run for 500
independent simulated replicas of the data. The results (for β2) are summarised as box-and-whisker
plots in Figure 2, for n = 100, and Figure 3 for n = 10, 000. Comparing both figures, one observes
that OL06a is the only approach which appears to be consistent with a variance compatible with
the asymptotic interquartile range shown on the right of each plot. EM5 (five iterations of batch
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EM) is clearly the method which has the less variability but Figure 3 suggests that it is not 1/
√
n

consistent, which was indeed confirmed using longer runs not shown here. This observation supports
the claim of Neal and Hinton (1999) that, for large sample sizes, online EM approaches are more
efficient, from a computational point of view, than the batch EM algorithm which requires several
iterations to converge properly. The online EM with step size γn = 1/n (OL1) presents a bias which
becomes very significant when n increases. According to Theorem 7, this problem could be avoided
(asymptotically) by choosing a sufficiently small value of γ0. For fixed n however, lowering γ0 can
only reduce the perceived speed of convergence, which is already very slow, as illustrated by Figure 4.
In contrast, the online EM algorithm with Polyak-Ruppert averaging (OL06a) appears to be very
efficient: averaging significantly reduces the variability of the OL06 estimate, reducing it to a level
which is consistent with the asymptotic interquartile range, while maintaining a systematic bias which
vanishes as n increases, as expected.

5 Conclusion

Compared to other alternatives, the main advantages of the proposed approach to online parameter
estimation in latent data models are its analogy with the standard batch EM algorithm, which
makes the online algorithm easy to implement, and its provably optimal convergence behaviour. In
addition, the combination of a slow parameter decrease (γn = n−0.5+ǫ being a typical choice) with
Polyak-Ruppert averaging appears to be very robust.

A limitation is the fact that the function θ̄ (s) has to be explicit, which, for instance, would not
be the case for mixture of regression models with generalised link functions. Another extension of
interest concerns non independent models and in particular hidden Markov models or Markov random
fields.
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P.-J. Chung and F. B. Böhme. Recursive EM and SAGE-inspired algorithms with application to
DOA estimation. IEEE Trans. Signal Process., 53(8):2664–2677, 2005.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the
EM algorithm. J. Roy. Statist. Soc. Ser. B, 39(1):1–38 (with discussion), 1977.

B. Grün and F. Leisch. Fitting finite mixtures of generalized linear regressions in R. Comput. Statist.
Data Anal., 51(11):5247–5252, July 2007. doi: 10.1016/j.csda.2006.08.014.

M. Hurn, A. Justel, and C. P. Robert. Estimating mixtures of regressions. Comput. Statist. Data
Anal., 12(1):55–79, 2003. ISSN 1061-8600.

M. Jordan and R. Jacobs. Hierarchical mixtures of experts and the EM algorithm. Neural computa-
tion, 6:181–214, 1994.

H. J. Kushner and G. G. Yin. Stochastic Approximation Algorithms and Applications. Springer, 1997.

16



H. J. Kushner and G. G. Yin. Stochastic Approximation and Recursive Algorithms and Applications,
volume 35. Springer, New York, 2nd edition, 2003.

K. Lange. A gradient algorithm locally equivalent to the EM algorithm. J. Roy. Statist. Soc. Ser. B,
57(2):425–437, 1995.

F. Leisch. FlexMix: A general framework for finite mixture models and latent class regression in R.
Journal of Statistical Software, 11(8):1–18, 2004.

Z. Liu, J. Almhana, V. Choulakian, and R. McGorman. Online EM algorithm for mixture with
application to internet traffic modeling. Comput. Statist. Data Anal., 50(4):1052–1071, 2006.

G. McLachlan and T. Krishnan. The EM Algorithm and Extensions. Wiley, 1997.

A. Mokkadem and M. Pelletier. Convergence rate and averaging of nonlinear two-time-scale stochastic
approximation algorithms. Ann. Appl. Probab., 16(3):1671–1702, 2006. ISSN 1050-5164.

R. M. Neal and G. E. Hinton. A view of the EM algorithm that justifies incremental, sparse, and
other variants. In M. I. Jordan, editor, Learning in graphical models, pages 355–368. MIT Press,
Cambridge, MA, USA, 1999.

S. Nowlan. Soft competitive adaptation: neural network learning algorithms based on fitting statistical
mixtures. PhD thesis, School of Computer Science, Carnegie Mellon University, 1991.

M. Pelletier. Weak convergence rates for stochastic approximation with application to multiple targets
and simulated annealing. Ann. Appl. Probab., 8(1):10–44, 1998. ISSN 1050-5164.

B. T. Polyak. A new method of stochastic approximation type. Autom. Remote Control, 51:98–107,
1990.

B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging. SIAM J.
Control Optim., 30(4):838–855, 1992.

D. Ruppert. Efficient estimation from a slowly convergent Robbins-Monro process. Technical Report
781, Cornell University, School of Operations Research and Industrial Engineering, 1988.

M. Sato. Convergence of on-line EM algorithm. In prooceedings of the International Conference on
Neural Information Processing, volume 1, pages 476–481, 2000.

M. Sato and S. Ishii. On-line EM algorithm for the normalized Gaussian network. Neural Computa-
tion, 12:407–432, 2000.

M. A. Tanner. Tools for Statistical Inference. Springer, New York, 2nd edition, 1993.

D. M. Titterington. Recursive parameter estimation using incomplete data. J. Roy. Statist. Soc. Ser.
B, 46(2):257–267, 1984.

D. M. Titterington, A. F. M. Smith, and U. E. Makov. Statistical Analysis of Finite Mixture Distri-
butions. Wiley, Chichester, 1985.

S. Wang and Y. Zhao. Almost sure convergence of Titterington’s recursive estimator for mixture
models. Statist. Probab. Lett., 76:2001–2006, 2006.

C. F. J. Wu. On the convergence properties of the EM algorithm. Ann. Statist., 11:95–103, 1983.

17



A Proofs

For µ = (µ1, . . . , µm)T a differentiable function from Θ to R
m, we define by ∇θµ

T the dθ ×m matrix
whose columns are the gradients, ∇θµ

T = [∇θµ1, . . . ,∇θµm]. Thus the symbol ∇θ denotes either a
vector or a matrix, depending on whether the function to which it is applied is scalar or vector-valued.
With this convention, the matrix ∇θµ

T is the transpose of the usual Jacobian matrix.

Proof of Proposition 3. Let s⋆ be a root of h, and set θ⋆ = θ̄ (s⋆). For any s ∈ S, the function
θ 7→ ℓ(s; θ) has a unique stationary point at θ̄ (s). Therefore,

−∇θψ(θ
⋆) +∇θφ

T (θ⋆)s⋆ = 0 . (35)

Note that, from Fisher’s identity,

∇θ log g(y; θ) = Eθ [∇θ log f(X; θ)| Y = y] = −∇θψ(θ) +∇θφ
T (θ)s̄(y; θ) . (36)

As ∇θK(π ‖gθ ) = Eπ [∇θ log g(Y ; θ)], the latter relation implies

∇θK(π ‖gθ ) = −∇θψ(θ) +∇θφ
T (θ)Eπ [s̄(Y ; θ)] . (37)

Since h(s⋆) = 0, s⋆ = Eπ[s̄(Y ; θ⋆)], and thus (35) and (37) imply

∇θK(π ‖gθ )|θ=θ⋆ = −∇θψ(θ
⋆) +∇θφ

T (θ⋆)s⋆ = 0 ,

establishing the first assertion. Conversely, suppose that ∇θK(π ‖gθ )|θ=θ⋆ = 0 and set s⋆ = Eπ[s̄(Y ; θ⋆)].
By (37),

−∇θψ(θ
⋆) +∇θφ

T (θ⋆)s⋆ = 0 .

Under Assumption 1(c), the function θ 7→ −ψ(θ) + 〈φ(θ), s⋆〉 has a unique stationary point at θ̄ (s⋆),
which is a maximum. Hence, θ⋆ = θ̄ (s⋆) establishing the second assertion.

Proof of Proposition 4. Using (37) and the chain rule of differentiation,

∇sw(s) = −∇sθ̄
T (s)

{

−∇θψ(θ̄ (s)) +∇θφ
T (θ̄ (s))Eπ

[

s̄(Y ; θ̄ (s))
]}

. (38)

For any s ∈ S, θ̄ (s) is the maximum of θ 7→ ℓ(s; θ), thus,

∇θℓ(s; θ)|θ=θ̄(s) = 0 = −∇θψ(θ̄ (s)) +∇θφ
T (θ̄ (s))s . (39)

Plugging this relation into (38) and using the definition (22), we obtain

∇sw(s) = −∇sθ̄
T (s)∇θφ

T (θ̄ (s))h(s) . (40)

By differentiating the function s 7→ Φ(s; θ̄ (s)) where Φ(s, θ)
def
= ∇θℓ(s; θ), we obtain

∇sΦ
T (s; θ̄ (s)) = ∇sΦ

T (s; θ̄ (s)) +∇sθ̄
T (s)∇θΦ

T (s, θ̄ (s)) .

Since ∇sΦ
T (s; θ) = ∇s [∇θℓ(s; θ)]

T =
[

∇θφ
T (θ)

]T
and ∇θΦ

T (s, θ) = ∇2
θℓ(s, θ), the latter relation

may be alternatively written as

∇s

[

∇θℓ(s; θ)|θ=θ̄(s)

]T
=
[

∇θφ
T (θ̄ (s))

]T
+∇sθ̄

T (s) ∇2
θℓ(s; θ)

∣

∣

θ=θ̄(s)
.

Because the function s 7→ ∇θℓ(s; θ)|θ=θ̄(s) is identically equal to 0, ∇s[∇θℓ(s; θ)|θ=θ̄(s)]
T = 0, and

thus,

∇θφ
T (θ̄ (s)) = − ∇2

θℓ(s; θ)
∣

∣

θ=θ̄(s)

[

∇sθ̄
T (s)

]T
. (41)
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Plugging this relation into (40) yields

〈∇sw(s),h(s)〉 = hT (s)
[

∇θφ
T (θ̄ (s))

]T
{

∇2
θℓ(s; θ)

∣

∣

θ=θ̄(s)

}−1
∇θφ

T (θ̄ (s))h(s) , (42)

where assumption 1(c) implies that, for any s ∈ S, the matrix ∇2
θℓ(s; θ)

∣

∣

θ=θ̄(s)
is negative defi-

nite (and hence invertible). Hence, for any s ∈ S, 〈∇sw(s),h(s)〉 ≤ 0 with equality if and only if
∇θφ

T (θ̄ (s))h(s) = 0.
To deal with the equality case, assume that s⋆ is such that ∇θφ

T (θ̄ (s⋆))h(s⋆) = 0, or equivalently
that

∇θφ
T (θ̄ (s⋆))Eπ

[

s̄(Y ; θ̄ (s⋆))
]

= ∇θφ
T (θ̄ (s⋆))s⋆ .

Under Assumptions 1(a) and 1(c), θ⋆ = θ̄ (s⋆) is the unique solution to the score equation (39), that
is, such that ∇θψ(θ

⋆) = ∇θφ
T (θ⋆)s⋆. Hence, ∇θφ

T (θ⋆)Eπ [s̄(Y ; θ⋆)] = ∇θψ(θ
⋆), which implies that

θ̄ (Eπ [s̄(Y ; θ⋆)]) = θ⋆ showing that θ⋆ ∈ L and thus, from Proposition 3, that s⋆ ∈ S. The proof then
follows upon noting that s 7→ 〈∇sw(s),h(s)〉 is continuous.

Proof of Theorem 5. Under the stated assumptions, for any ǫ > 0, there exists a compact K ⊂ S and

n, such that, P
(

⋂

k≥n{ŝn ∈ K}
)

≥ 1− ǫ. Therefore, for any η > 0,

P

(

sup
k≥n

∣

∣

∣

∣

∣

k
∑

i=n

γiξi

∣

∣

∣

∣

∣

≥ η

)

≤ P



sup
k≥n

∣

∣

∣

∣

∣

k
∑

i=n

γiξi1K(ŝi)∣∣∣∣
∣

≥ η,
⋂

i≥n

{ŝi ∈ K}



 + P





⋃

i≥n

{ŝi /∈ K}



 ,

≤ ǫ+ P

(

sup
k≥n

∣

∣

∣

∣

∣

k
∑

i=n

γiξi1K(ŝi)∣∣∣∣
∣

≥ η

)

.

Note that Mn,k =
∑k

i=n γiξi1K(ŝi) is a L2-martingale, and that its angle-bracket is bounded by

sups∈K Eπ[|s̄(Y ; θ̄ (s))|2]∑k
i=n γ

2
i <∞. Using Chebyshev’s inequality associated to the Doob martin-

gale inequality, we conclude that

P

(

sup
k≥n

|Mn,k| ≥ η

)

≤ 2η−2 sup
s∈K

Eπ[|s̄(Y ; θ̄ (s))|2]
∞
∑

i=n

γ2i ,

finally showing that lim supn supk≥n |Mn,k| = 0 with probability one. The proof is concluded by
applying Theorem 2.3 of Andrieu et al. (2005) which states that the sequence of sufficient statistics
defined by (21) is then such that lim supn d(ŝn,Γ) = 0 with probability one; the result on the sequence
of parameter estimates θ̂n follows by continuity of θ̄.

To prove Proposition 6, we will make use of the following stability lemma.

Lemma 8. Let p ≥ 1. Assume that for any compact subset K ⊂ S, sups∈K Eπ

[

|s̄(Y ; θ̄ (s))|p
]

<∞ for
some p > 0 and that Pπ-a.s. lim ŝn exists and belongs to S. Then, the sequence {s̄(Yn+1; θ̄ (ŝn))}n≥0

is bounded in probability, i.e.

lim
M→∞

lim sup
n→∞

P
(

|s̄(Yn+1; θ̄ (ŝn) |)| ≥M
)

= 0 .

Proof. Let K be a compact subset of S. We may decompose P
(

|s̄(Yn+1; θ̄ (ŝn) |)| ≥M
)

as follows

P
(

|s̄(Yn+1; θ̄ (ŝn) |)| ≥M
)

≤ P(ŝn 6∈ K) + P
(

|s̄(Yn+1; θ̄ (ŝn) |)| ≥M, ŝn ∈ K
)

,

≤ P(ŝn 6∈ K) +M−p sup
s∈K

Eπ

[

|S(Y, θ̄ (s))|p
]

P (ŝn ∈ K) ,

19



which implies that

lim sup
n→∞

P
(

|s̄(Yn+1; θ̄ (ŝn) |)| ≥M
)

≤ P( lim
n→∞

ŝn 6∈ K) +M−p sup
s∈K

Eπ

[

|S(Y, θ̄ (s))|p
]

.

Proof of Proposition 6. A Taylor expansion with integral remainder shows that

θ̂n+1 = θ̄
(

ŝn + γn+1

(

s̄(Yn+1; θ̂n)− ŝn

))

= θ̂n + γn+1

[

∇sθ̄
T (ŝn)

]T
(

s̄(Yn+1; θ̂n)− ŝn

)

+ γn+1rn+1 , (43)

where the remainder rn+1 is given by

rTn+1
def
=
(

s̄(Yn+1; θ̂n)− ŝn

)T

×
∫ 1

0

[

∇sθ̄
T
(

ŝn + tγn+1

{

s̄(Yn+1; θ̂n)− ŝn

})

−∇sθ̄
T (ŝn)

]

dt . (44)

We will first show that limn→∞ rn = 0 a.s. Lemma 8 shows that {s̄(Yn+1; θ̂n)}n≥0 is bounded
in probability, which we denote by s̄(Yn+1; θ̂n) = OP(1). Under the assumption of Theorem 5,
ŝn = OP(1), which implies that s̄(Yn+1; θ̂n) − ŝn = OP(1). Choose ǫ > 0 and then a compact subset
K and a constant M large enough such that

lim sup
n→∞

P (ŝn 6∈ K) + lim sup
n→∞

P

(∣

∣

∣
s̄(Yn+1; θ̂n)− ŝn

∣

∣

∣
≥M

)

≤ ǫ . (45)

Since the function∇sθ̄ (·) is assumed continuous, it is uniformly continuous over every compact subset,

i.e., there exists a constant δ0 such that Kδ0
def
= {s ∈ S, d(s,K) ≤ δ0} ⊂ S and

sup
|h|≤δ0,s∈K

|∇sθ̄ (s+ h)−∇sθ̄ (s) | ≤ ǫ . (46)

Since limn→∞ γn = 0 and (s̄(Yn+1; θ̂n)−ŝn) is bounded in probability, γn+1(s̄(Yn+1; θ̂n)−ŝn) converges
to zero in probability, which we denote by γn+1(s̄(Yn+1; θ̂n)− ŝn) = oP(1). For δ0 > 0 satisfying (46),
this implies in particular that

lim
n→∞

P

(

γn+1

∣

∣

∣s̄(Yn+1; θ̂n)− ŝn

∣

∣

∣ ≥ δ0

)

= 0 .

Therefore,

lim sup
n→∞

P (|rn+1| ≥Mǫ) ≤ lim sup
n→∞

P

(

γn+1

∣

∣

∣
s̄(Yn+1; θ̂n)− ŝn

∣

∣

∣
≥ δ0

)

+ lim sup
n→∞

P (ŝn 6∈ K) + lim sup
n→∞

P

(∣

∣

∣
s̄(Yn+1; θ̂n)− ŝn

∣

∣

∣
≥M

)

≤ ǫ ,

showing that rn = oP(1).
We now proceed with the first order term in (43). From (41) we have,

∇sθ̄
T (s) =

[

∇θφ
T (θ̄ (s))

]T
[

− ∇2
θℓ(s; θ)

∣

∣

θ=θ̄(s)

]−1
. (47)

In addition, (36) and (39) show that

∇θφ
T
(

θ̄ (s)
) {

s̄(y; θ̄ (s))− s
}

= ∇θ log g(y; θ̄ (s)) . (48)
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Therefore, by combining (47) and (48), the first order term in (43) may be rewritten as

[

∇sθ̄
T (ŝn)

]T (
s̄(Yn+1; θ̄ (ŝn))− ŝn

)

= I−1
π (θ̂n)∇θ log g(Yn+1; θ̂n)

+

{

[

− ∇2
θℓ(ŝn; θ)

∣

∣

θ=θ̂n

]−1
− I−1

π (θ̂n)

}

∇θ log g(Yn+1; θ̂n) . (49)

By definition, the complete data FIM may be rewritten as Iπ(θ) = ∇2
θℓ (s; θ)

∣

∣

s=Eπ[s̄(Y ;θ)]
. Note also

that θ̂n converges a.s. to θ⋆ and that Iπ(θ
⋆) is assumed to be positive definite. Hence, to ensure that

the term between braces in (49) may be neglected, we need to show that:

∇2
θℓ(ŝn; θ)

∣

∣

θ=θ̂n
− ∇2

θℓ(s; θ)
∣

∣

(s,θ)=(E[s̄(Yn+1;θ̂n)|Fn],θ̂n)
= oP(1) . (50)

Since the function (s, θ) 7→ ∇2
θℓ(s; θ) is continuous, there exists δ1 > 0 such that, Kδ1 = {s ∈

S, d(s,K) ≤ δ1} ⊂ S and

sup
|h|≤δ1,s∈K

∣

∣∇2
θℓ(s+ h; θ̄ (s))−∇2

θℓ(s; θ̄ (s))
∣

∣ ≤ ǫ ,

where the set K is defined in (45). Under the stated assumption limn→∞ d(ŝn,L) = 0 a.s., which
implies that

lim
n→∞

h(ŝn) = lim
n→∞

{E[s̄(Yn+1; θ̄ (ŝn))|Fn]− ŝn} = 0 , a.s.

By combining the latter two equations, we therefore obtain

lim sup
n→∞

P

(∣

∣

∣∇2
θℓ(ŝn; θ)

∣

∣

θ=θ̂n
− ∇2

θℓ(s; θ)
∣

∣

(s,θ)=(E[s̄(Yn+1;θ̂n)|Fn],θ̂n)

∣

∣

∣ ≥ ǫ
)

≤

lim sup
n→∞

P (ŝn 6∈ K) + lim sup
n→∞

P (|h(ŝn)| ≥ δ0) ≤ ǫ ,

showing (50).

Proof of Theorem 7. We use the definition of the recursive EM sequence given by Proposition 6.

The mean field associated to this sequence is given by hθ(θ)
def
= −I−1

π (θ)∇θK(π ‖gθ ). The Jaco-
bian of this vector field at θ⋆ is equal to H(θ⋆). Since θ⋆ is a (possibly local) minimum of the
Kullback-Leibler divergence, the matrix ∇2

θK(π ‖gθ )
∣

∣

θ=θ⋆
is positive definite. Because the two ma-

trices I−1
π (θ⋆) ∇2

θK(π ‖gθ )
∣

∣

θ=θ⋆
and I

−1/2
π (θ⋆) ∇2

θK(π ‖gθ )
∣

∣

θ=θ⋆
I
−1/2
π (θ⋆) have the same eigenvalues,

counting multiplicities, the eigenvalues of the matrix H(θ⋆) = I−1
π (θ⋆) ∇2

θK(π ‖gθ )
∣

∣

θ=θ⋆
are all real

and strictly positive. This shows the first assertion of the theorem; the proof of the second assertion
follows directly from Pelletier, 1998, Theorem 1.
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