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aCRAN – CNRS UMR 7039, Université Henri Poincaré, BP 239, F-54506 Vandœuvre-lès-Nancy Cedex

Abstract

This paper deals with static output feedback control of a class of reconfigurable systems with Markovian Parameters and
state-dependent noise. The main contribution is to formulate conditions for multi-performance design related to this class
of stochastic hybrid systems. The specifications and objectives under consideration include stochastic stability, H2 and H∞

performances. Another problematic related to a more general class of stochastic hybrid systems, known as Markovian Jump
Linear Systems (MJLS), is also addressed. This problematic concerns the mode-independent output feedback control of MJLS.
The obtained results are illustrated on a numerical example.
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1 Introduction

Fault tolerant control systems (FTCS) aim at guaran-
teeing that a process keeps fulfilling its mission even in
the presence of failures, although possibly in a degraded
mode. For the design problem, two basic approaches
have been studied: passive fault-tolerance rely on ro-
bust control principles where the faults are considered
as modeling uncertainties. Active fault tolerant control
(AFTC), on the other hand, involves automatically de-
tecting and identifying the failed components using a
fault detection and identification (FDI) scheme and then
reconfiguring the control law on-line in response to the
FDI algorithm decisions. Despite the evident interac-
tion between FDI and reconfiguration algorithms, the
research on FDI and reconfiguration methods has often
evolved separately. Typically, in the reconfiguration lit-
erature, it is usually assumed that a perfect FDI device
is available (i.e. no detection delays, no false alarms, no
missed detection ...etc.). On the other hand, an FDI algo-
rithm is judged satisfactory if it detects failures quickly
and generates few false alarms, regardless of the per-
formance of the closed loop reconfigured system. The
first purpose of this paper is then to use a mathemati-
cal model that includes in the same analysis framework
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the FDI and reconfiguration algorithms. Such a model
was initially proposed by [18,19]. The author shows that
when the FDI output is feedback into a reconfiguration
closed-loop control, a short detection delay and a low
false alarm rate do not guarantee stable operation of the
reconfigurable system. This makes the synthesis of re-
configurable controllers that take explicitly into account
the inherent imperfections of the FDI process of great
importance.
The proposed model in [18] belongs to the class of MJLS.
In MJLS, a single jump process is used to describe the
random variations affecting the system parameters. This
process is represented by a finite state Markov chain and
is called the plant regime mode. The theory of stabil-
ity, optimal control and H2/H∞ control, as well as im-
portant applications of such systems, can be found in
several papers in the current literature, for instance in
[3,4,2,6,8,9,13,14,19]. In the class of stochastic hybrid
systems introduced in [18,19], two random processes are
defined: the first random process represents system com-
ponents failures and the second random process repre-
sents the FDI process used to reconfigure the control law.
The problem of stochastic stability of active fault toler-
ant control systems with Markovian parameters (AFTC-
SMP) in the presence of noise, parameter uncertainties,
detection errors, detection delays and actuator satura-
tion limits as well asH∞ performance analysis have been
investigated in [1,16,17,21,22].
On the other hand, one of the most challenging open
problems in control theory is the synthesis of fixed-order
or static output feedback controllers that meet desired
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performances and specifications [25]. Among all varia-
tions of this problem, this note is concerned with the
problem of static output feedback control of continu-
ous time AFTCSMP with state-dependent noise. The
main contribution is to formulate conditions for multi-
performance design related to this class of stochastic hy-
brid systems. The specifications and objectives under
consideration include stochastic stability and H2/H∞

performances. Another problematic related to a more
general class of stochastic hybrid systems, (MJLS), is
also addressed. This problematic concerns the mode-
independent static output feedback control of this class
of systems. Most of the developed results in the field of
MJLS control are obtained under the restrictive assump-
tion of control with complete state observation (Markov
and system states). However, the access to the system
mode may not be possible in some circumstances, which
limits the use of such controllers. For instance, if the
changes in the Markov chain are associated to failures of
components of non-critical significance, or more gener-
ally if some changes are difficult to measure, it is quite
possible that the associated Markov states are not ac-
cessible to controller. This scenario impose serious limi-
tations in the analytical front [10]. One can distinguish
two approaches for the design of mode-independent con-
trollers. The first one uses a constant Lyapunov func-
tion [5,7,11], which leads to a linear matrix inequality
(LMI) formulation of the design problem. The second
one uses mode-dependent Lyapunov function and there-
fore leads to less conservative results. This approach usu-
ally leads to bilinear matrix inequality (BMI) problem.
All the aforementioned works are based on the critical
assumption of the complete access to the state vector.
Practically, this assumption may sometimes be hard to
satisfy and therefore, the developed results are restric-
tive. To the best of our knowledge, to date the problem
of static output-feedback H2/H∞ control of continuous-
time MJLS with a non-accessible jumping parameter
has not yet been fully addressed. Our approach belongs
to the class of methods that use mode-dependent Lya-
punov functions.
This paper is organized as follows: Section 2 describes
the dynamical model of the system. A brief summary of
basic stochastic terms and results are given in Section 3.
Section 4 addresses the stochastic stabilization problem-
atic. Section 5 considers the H2/H∞ control problem.
In Section 6, a numerical algorithm is provided and its
running is illustrated on a numerical example. Section 7
concludes this paper.
Notations. Rm×n is the set of m-by-n real matrices and
Sn is the subset of symmetric matrices in Rn×n. A′ is
the transpose of the matrix A. The notation X ≥ Y
(X > Y , respectively), where X and Y are symmet-
ric matrices, means that X − Y is positive semi-definite
(positive definite, respectively); I and 0 are identity and
zero matrices of appropriate dimensions, respectively;
E{·} denotes the expectation operator with respect to
some probability measure P ; L2[0,∞) stands for the
space of square-integrable vector functions over the in-

terval [0,∞); ‖ · ‖ refers to either the Euclidean vector
norm or the matrix norm, which is the operator norm
induced by the standard vector norm; ‖ · ‖2 stands for
the norm in L2[0,∞); while ‖ · ‖E2

denotes the norm
in L2((Ω,F , P ), [0,∞)); (Ω,F , P ) is a probability space.
We also denote •(t) = •t, and the initial conditions
•(t0) = •0. In block matrices, ⋆ indicates symmetric

terms:

[
A B

B′ C

]
=

[
A ⋆

B′ C

]
=

[
A B

⋆ C

]
.

2 Dynamical model

To describe the class of linear systems with Markovian
jumping parameters that we deal with in this paper, let
us fix a complete probability space (Ω,F , P ). The dy-
namical model of the reconfigurable system with Marko-
vian process and state dependent noise, defined in the
fundamental probability space (Ω,F , P ), is described by
the following differential equations:

ϕ :






dxt = A(ξt)xtdt + B(ηt)utdt + E(ξt, ηt)wtdt

+
∑v

l=1
Wl(ξt, ηt)xtd̟lt

yt = C2xt + D2(ξt, ηt)wt

zt = C1xt + D1(ηt)u(yt, ψt, t)

(1)

where xt ∈ Rn is the system state, ut ∈ Rr is the system
input, yt ∈ Rq is the system measured output, zt ∈ Rp

is the controlled output, wt ∈ Rm is the system external
disturbance, ξt, ηt and ψt represent the plant compo-
nent failure process, the actuator failure process and the
FDI process, respectively. ξt, ηt and ψt are separable and
measurable Markov processes with finite state spaces
Z = {1, 2, ..., z}, S = {1, 2, ..., s} and R = {1, 2, ..., r},
and transition rate matrices Π = [πij , i ∈ Z, j ∈ Z], Υ =
[νij , i ∈ S, j ∈ S], Λ = [λkl

iv, i ∈ R, v ∈ R, k ∈ Z, l ∈ S]
respectively. πij is the plant components failure rate, and
νkl is the actuator failure rate. Here, λkl

iv represents the
transition rate from i to v for the Markov process ψ(t)
conditioned on ξ = k ∈ Z and η = l ∈ S. Depending on
the values of i, v ∈ R, k ∈ Z and l ∈ S, various interpre-
tations, such as rate of false detection and isolation, rate
of correct detection and isolation, false alarm recovery
rate, etc, can be given to λkl

iv [17,24]. ̟t = [̟1t . . . ̟vt]
′

is a v-dimensional standard Wiener process on a given
probability space (Ω,F , P ), that is assumed to be inde-
pendent of the Markov processes.
In AFTC, we consider that the control law is only a func-
tion of the mesurable FDI process ψ(t). Therefore, we
introduce a static output feedback compensator (ϕs) of
the form:

ϕs :
{

ut = K(ψt)yt (2)

Applying the controller ϕs to ϕ, we obtain the following
closed loop system:

ϕcl :






dxt = Ā(ξt, ηt, ψt)xtdt + Ē(ξt, ηt, ψt)wtdt

+
∑v

l=1
Wl(ξt, ηt)xtd̟lt

yt = C2xt + D2(ξt, ηt)wt

zt = C̄1(ηt, ψt)xt + D̄1(ξt, ηt, ψt)wt

(3)
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where



 Ā(ξt, ηt, ψt) Ē(ξt, ηt, ψt)

C̄1(ηt, ψt) D̄1(ξt, ηt, ψt)



 =



 A(ξt) E(ξt, ηt)

C1 0



 +



 B(ηt)

D1(ηt)



K(ψt)
[

C2 D2(ξt, ηt)
]

For notational simplicity, we will denote •(ξt) = •i when
ξt = i ∈ Z, •(ηt) = •j , •(ξt, ηt) = •ij when ξt = i ∈
Z, ηt = j ∈ S and •(ψt) = •k when ψt = k ∈ R.

3 Definitions and Basic Results

In this section, we will first give basic definitions related
to stochastic stability notions and then we will summa-
rize some results about stochastic stability of reconfig-
urable systems with Markovian processes.

3.1 Stochastic Stability

For system (1), when ut ≡ 0 for all t ≥ 0, we have the
following definition.
Definition 1. System (1) is said to be internally expo-
nentially stable in the mean square sense (IESS), if there
exist positive constants α and β such that the solution of

dxt = A(ξt)xtdt +

v∑

l=1

Wl(ξt, ηt)xtd̟lt

satisfies the following inequality
E

{
‖xt‖

2
}
≤ β‖x0‖

2 exp [−α(t − t0)] (4)

for arbitrary initial conditions (x0, ξ0, η0).
Definition 2. System (1) is said to be internally expo-
nentially stabilizable in the mean square sense by static
output feedback, if there exists a control ϕs such that
the closed loop system (3) is IESS.
The following proposition gives a necessary and suffi-
cient condition for IESS of the system (3).
Proposition 1. System (3) is IESS if and only if there
exists symmetric positive-definite matrices Pijk, i ∈ Z,
j ∈ S and k ∈ R such that:

Ā′
ijkPijk + PijkĀijk +

v∑

l=1

W
′
lijPijkWlij +

∑

h∈Z

πihPhjk

+
∑

l∈S

νjlPilk +
∑

v∈R

λij
kvPijv = ijkג < 0 (5)

where: Āijk = Ai + BjKkC2

Proof. Due to page limit, the proof of this proposition
is not detailed here. It is based on classical tools from
stochastic stability analysis [15]. ¥

Proposition 2. If system (3) is IESS, for every w =
{wt; t ≥ 0} ∈ L2[0,∞), we have that x = {xt; t ≥ 0} ∈
L2((Ω,F , P ), [0,∞)), i.e., E

{∫ ∞

0
xT

t xtdt
}

< ∞, for any
initial conditions.
The proof of proposition 2 is omitted. It follows the same
arguments as for the proof of proposition 5.1 in [1].

3.2 Matrix Ellipsoids

Through this paper, a particular set of matrices is used.
In the literature, these sets are referred to as matrix el-
lipsoids of R(m×p).
Definition 3. [20] Given three matrices X ∈ Sq, Y ∈
Rq×r and Z ∈ Sr, the {X, Y, Z}-ellipsoid of Rr×q is the
set of matrices K satisfying the following matrix inequal-
ities:

Z > 0;
[

I K′

]


 X Y

⋆ Z







 I

K



 ≤ 0 (6)

By definition,K0 = −Z−1Y′ is the center of the ellipsoid
and R = K′

0ZK0 − X is the radius. Inequality (6) can
also be written as

Z > 0; (K −K0)
′
Z(K −K0) ≤ R (7)

This definition shows that matrix ellipsoids are special
cases of matrix sets defined by quadratic matrix inequal-
ity. Some properties of these sets are:

i) A matrix ellipsoid is a convex set;
ii) {X, Y, Z}-ellipsoid is nonempty iff the radius (R ≥ 0)

is positive semi definite. This property can also be
expressed as

X ≤ YZ
−1

Y
′ (8)

4 Stochastic Stabilization

In this section, we shall address the problem of finding
all static compensators (ϕs), as defined in section 2, such
that the closed loop system (ϕcl) becomes IESS. To this
end, we use proposition 1 and the idea of synthesizing el-
lipsoidal sets of controllers [20] to get the following nec-
essary and sufficient conditions for the IESS of the sys-
tem (3).
Proposition 3. System (1) is internally exponentially
stabilisable in the mean square sense by static output-
feedback if and only if there exists matrices Pijk =
P ′

ijk > 0, Xk ∈ Sq, Yk ∈ Rq×r and Zk = Z′
k > 0 that

simultaneously satisfy the following LMI constraints



 I 0

Ai Bj




′ 

 Θijk Pijk

Pijk 0







 I 0

Ai Bj



 <



 C2 0

0 I




′ 

 Xk Yk

⋆ Zk







 C2 0

0 I



 (9)

and the nonlinear inequalities constraints
Xk ≤ YkZ

−1

k Y
′
k (10)

∀i ∈ Z, j ∈ S and k ∈ R, where

Θijk =

v∑

l=1

W
′
lijPijkWlij +

∑

h∈Z

πihPhjk +
∑

l∈S

νjlPilk

+
∑

v∈R

λij
kvPijv

3



Let {Pijk, Xk, Yk, Zk} be a solution, then the nonempty
{Xk, Yk, Zk}-ellipsoids are sets of stabilizing gains.
Proof.
Sufficiency. Assume that (9)-(10) are satisfied for some
{Pijk, Xk, Yk, Zk}matrices. Due to the properties of ma-
trix ellipsoids, the {Xk, Yk, Zk}-ellipsoids are nonempty.
Take any element Kk. The LMI (9) implies that for all(

x′
t u′

t

)
6= 0



 xt

Aixt + Bjut




′ 

 Θijk Pijk

Pijk 0







 xt

Aixt + Bjut



 <



 C2xt

ut




′ 

 Xk Yk

⋆ Zk







 C2xt

ut



 (11)

Definition 3 implies that for all nonzero trajectories

x′
tגijkxt < y′

t

[
I K′

k

]


 Xk Yk

⋆ Zk







 I

Kk



 yt ≤ 0 (12)

Then, the closed-loop exponential stochastic stability
follows from proposition 1 for the quadratic stochastic
Lyapunov function ϑ(ξt, ηt, ψt) = x′

tP(ξt, ηt, ψt)xt.
Necessity. Assume Kk are stabilizing static output
feedback gains and ϑ(ξt, ηt, ψt) = x′

tP(ξt, ηt, ψt)xt is a
stochastic Lyapunov function. Then from proposition
1, we have

[
KkC2 −I

]


 xt

ut



 = 0 ⇒



 xt

ut




′ 

 I 0

Ai Bj




′ 

 Θijk Pijk

Pijk 0







 I 0

Ai Bj







 xt

ut



 < 0

(13)

Based on the Finsler Lemma [23], there exist scalars
τijk such that



 I 0

Ai Bj




′ 

 Θijk Pijk

Pijk 0







 I 0

Ai Bj



 <

τijk

[
KkC2 −I

]′ [
KkC2 −I

]
≤ εk

[
KkC2 −I

]′ [
KkC2 −I

]

(14)

where εk = max
i,j

(τijk). The inequality (9) is obtained

with Xk = εkK
′
kKk, Yk = −εkK

′
k, Zk = εkI. (14) im-

plies 0 < Zk. Hence the proof is complete. ¥

Mode-Independent Stabilization of MJLS: Con-
sider the following continuous-time MJLS:






dxt = A(φt)xtdt + B(φt)utdt + E(φt)wtdt

+
v∑

l=1

Wl(φt)xtd̟lt

yt = C2(φt)xt + D2(φt)wt

zt = C1(φt)xt + D1(φt)ut

(15)

{φt, t ≥ 0} is a continuous-time homogeneous Markov
process with finite state-space Ξ = {1, . . . , σ} and tran-
sition rate matrix Λ = [λij , i ∈ Ξ, j ∈ Ξ]. The set Ξ com-
prises the operation modes of system (15) and for each
possible value of θt = i, i ∈ Ξ, we denote the matrices
associated with the "i-th mode" by: Mi = M(θt = i).
Most of the developed results in the field of MJLS con-
trol are obtained under the restrictive assumption of con-
trol with complete state observation (Markov and sys-
tem states). However, the access to the system mode
and system state vector may not be possible in some cir-
cumstances, which limits the use of such controllers. The
design of mode-independent output feedback controller
is of great interest in this case. The mode-independent
controller used in the rest of the paper is assumed to be
of the form: ut = Kyt.
We will design the mode-independent static output feed-
back controller using mode-dependent Lyapunov func-
tion approach. This leads to less conservative results
when using mode-independent Lyapunov functions.
Proposition 4. System (15) is internally exponentially
stabilisable in the mean square sense by static output-
feedback if and only if there exists matrices Pi = P ′

i > 0,
X ∈ Sq, Y ∈ Rq×r and Z = Z′ > 0 that simultaneously
satisfy the following LMI constraints



 I 0

Ai Bi




′ 

 Θi Pi

Pi 0







 I 0

Ai Bi



 <



 C2i 0

0 I




′ 

 X Y

⋆ Z







 C2i 0

0 I



 (16)

and the nonlinear inequality constraint

X ≤ YZ
−1

Y
′ (17)

∀i ∈ Ξ, where Θi =
∑v

l=1 W′
liPiWli +

∑
v∈Ξ

λivPv. Let

{Pi, X, Y, Z} be a solution, then the nonempty {X, Y, Z}-
ellipsoid is a set of stabilizing gains.

5 The Control Problem

5.1 H∞ Control

Let us consider the system (1) with

zt = z∞t = C∞1xt + D∞1(ηt)u(yt, ψt, t)

z∞t stands for the controlled output related to H∞

performance.
In this section, we deal with the design of controllers
that stochastically stabilize the closed-loop system and
guarantee the disturbance rejection, with a certain level
γ∞ > 0. Mathematically, we are concerned with the
characterization of compensators ϕs that stochastically
stabilize the system (3) and guarantee the following for
all w ∈ L2[0,∞):

‖ z∞ ‖E2
= E

{∫
∞

0

z′
∞tz∞tdt

}
1/2

< γ∞ ‖ w ‖2 (18)

4



where γ∞ > 0 is a prescribed level of disturbance
attenuation to be achieved. To this end, we need the
auxiliary result given by the following proposition.
Proposition 5. If there exists symmetric positive-
definite matrices P∞ijk, i ∈ Z, j ∈ S and k ∈ R such
that 

 ijk∞ג C̄′
1jkD̄1ijk + P∞ijkĒijk

⋆ D̄′
1ijkD̄1ijk − γ2

∞I



 < 0 (19)

where ijk∞ג is obtained from ijkג by replacing Pijk by
P∞ijk, then the system (3) is stochastically stable and
satisfies (18).
Proof. It follows the same arguments as for the proof
of proposition 5.2 in [1]. ¥

Using the previous proposition, the following H∞ con-
trol result can be stated.
Proposition 6. If there exists matrices P∞ijk =
P ′
∞ijk > 0, Xk ∈ Sq, Yk ∈ Rq×r and Zk = Z′

k > 0 that
simultaneously satisfy the following LMI constraints

M
′
1ij



 Θijk P∞ijk

P∞ijk 0



 M1ij < M
′
2j



 −I 0

0 γ2

∞I



 M2j

+ M
′
3ij



 Xk Yk

⋆ Zk



 M3ij (20)

and the nonlinear constraints (10), where M1ij =[
I 0 0

Ai Eij Bj

]
, M2j =

[
C∞1 0 D∞1j

0 I 0

]
, M3ij =

[
C2 D2ij 0

0 0 I

]
, then the {Xk, Yk, Zk}-ellipsoids are sets

of stabilizing gains such that (18) is verified.
Proof. The proof of this proposition is based on propo-
sition 5 and uses the same arguments as for the proof of
proposition 3. ¥

The mode-independent static output feedback H∞ con-
trol result is summarized by the following proposition.
Proposition 7. If there exists matricesP∞i = P ′

∞i > 0,
X ∈ Sq, Y ∈ Rq×r and Z = Z′ > 0 that simultaneously
satisfy the following LMI constraints

M
′
1i



 Θi P∞i

P∞i 0



 M1i < M
′
2i



 −I 0

0 γ2

∞I



 M2i

+ M
′
3i



 X Y

⋆ Z



 M3i (21)

and the nonlinear inequality constraint (17), where

M1i =

[
I 0 0

Ai Ei Bi

]
, M2i =

[
C∞1i 0 D∞1i

0 I 0

]
, M3i =

[
C2i D2i 0

0 0 I

]
, then the {X, Y, Z}-ellipsoid is a set of

stabilizing gains such that (18) is satisfied.

5.2 H2 Control

Consider the system (1) with
zt = z2t = C21xt + D21(ηt)u(yt, ψt, t)

and D2(ξt, ηt) = 0. z2t stands for the controlled output
related to H2 performance.
Before introducing the H2 control result, let us consider
the following definition.
Definition 4. We define the H2-norm of the IESS sys-
tem (ϕcl) as

‖ ϕcl ‖
2

2=

m∑

d=1

∑

i,j,k

µijk ‖ zd,i,j,k ‖2

E2

where zd,i,j,k is the controlled output of the system with
initial conditions ξ0 = i, η0 = j, ψ0 = k, disturbed by
wt = edδt. ed is a m-dimensional unitary vector with its
dth entry as 1 and other entries as 0′s. δt is an impulse
function and µijk is the initial probability distribution
for ξ0 = i, η0 = j, ψ0 = k.
From the definition above and using the same arguments
as in [6,26,27], we can state the following proposition.
Proposition 8. Assume that (ϕcl) is IESS then

i) ‖ ϕcl ‖2
2=

∑
i,j,k µijktr(E′

ijPoijkEij), where Po =

{Po111, . . . ,Poszr} denotes the observability Gram-
mian, i.e., Poijk are the unique positive semi definite
solutions of the following equations:

oijkג + C
′

21C21 = 0 (22)

ii) ‖ ϕcl ‖2
2<

∑
i,j,k µijktr(E′

ijP2ijkEij), where P2ijk is
a positive definite solution of the following matrix in-
equality

2ijkג + C
′

21C21 < 0 (23)

iii) If there exists positive definite matrices P2ijk and ma-
trices Kk such that

∑

i,j,k

µijktr(E′
ijP2ijkEij) < γ2

2 (24)

2ijkג + C
′

21C21 < 0

Then Kk are stabilizing gains such that ‖ ϕcl ‖2< γ2.

Using the same framework as for the stochastic stabiliza-
tion and the H∞ control problematic, similar H2 control
results are obtained and summarized as follows:
Proposition 9. If there exists matrices P2ijk = P ′

2ijk >

0, Xk ∈ Sq, Yk ∈ Rq×r and Zk = Z′
k > 0 that simulta-

neously satisfy the constraints (10), (24) and

N
′
1ij



 Θijk P2ijk

P2ijk 0



 N1ij < −N
′
2jN2j + N

′
3



 Xk Yk

⋆ Zk



 N3

(25)

N1ij =

[
I 0

Ai Bj

]
, N2j =

[
C21 D21j

]
, N3 =

[
C2 0

0 I

]
, then the {Xk, Yk, Zk}-ellipsoids are sets of

5



stabilizing gains such that ‖ ϕcl ‖2< γ2.
We conclude this section by giving, as in the previous
sections, results relating to mode-independent H2 con-
trol of MJLS.
Proposition 10. If there exist matrices P2i = P ′

2i > 0,
X ∈ Sq, Y ∈ Rq×r and Z = Z′ > 0 that simultaneously
satisfy the constraints (17),

∑
i µitr(E

′
iP2iEi) < γ2

2 and

N
′
1i



 Θi P2i

P2i 0



 N1i < −N
′
2iN2i + N

′
3i



 X Y

⋆ Z



 N3i (26)

N1i =

[
I 0

Ai Bi

]
, N2i =

[
C21i D21i

]
, N3i =

[
C2i 0

0 I

]
, then the {X, Y, Z}-ellipsoid is a set of stabi-

lizing gains such that ‖ ϕcl ‖2< γ2.

5.3 H2/H∞ Synthesis

TheH2/H∞ synthesis problem consists in finding a com-
mon controller that stochastically stabilizes the system
and ensures the different performance levels. This can
be stated as follows:

For two given levels on the H∞ and H2 norms, γ∞ and
γ2 respectively, find stabilizing static output feedback
gains Kk such that

‖ z∞ ‖E2
< γ∞ ‖ w ‖2

‖ ϕcl ‖2< γ2

Corollary 1. If there exists matrices P∞ijk, P2ijk, Xk ∈
Sq, Yk ∈ Rq×r and Zk ∈ Sr that simultaneously sat-
isfy the constraints (10), (20) and (24)-(25), then the
{Xk, Yk, Zk}-ellipsoids are sets of stabilizing gains such
that the performances levels are satisfied.

6 Computational Issues and Examples

6.1 A Cone Complementary Algorithm (CCL)

In this section, an iterative algorithm is proposed to solve
the different synthesis conditions. It is based on a cone
complementary technique [12]. The proposed CCL algo-
rithm is based on the following lemma which is obtained
using the same arguments as in [20].
Lemma 1. The H2/H∞ control problem is feasible if
and only if zero is the global optimum of the optimisa-
tion problem





min tr(TS)

s.t. (20), (24), (25)

Xk ≤ X̂k Sk =

[
X̂k Yk

⋆ Zk

]
≥ 0

T1k ≥ I Tk =

[
T1k T2k

⋆ T3k

]
≥ 0

(27)

where S = diag{S1, . . . ,Sr}, T = diag{T1, . . . , Tr}.
CCL algorithm. For two given levels γ∞, γ2

i) Find a feasible solutionXk0, Yk0, Zk0, X̂k0,P2ijk0,
P∞ijk0, T0, S0. If there is no solution, STOP, the
algorithm failed. h = 0;

ii) set Vh = Sh, Wh = Th, and find Xk(h+1), Yk(h+1),

Zk(h+1), X̂k(h+1), P2ijk(h+1), P∞ijk(h+1), Th+1, Sh+1,
solutions of the LMI problem






min tr(VhT + WhS)

s.t. (20), (24), (25)

Xk ≤ X̂k Sk =

[
X̂k Yk

⋆ Zk

]
≥ 0

T1k ≥ I Tk =

[
T1k T2k

⋆ T3k

]
≥ 0

(28)

iii) if tr(Th−1Sh−1 − ThSh < ε), then STOP, the
algorithm failed (slow progress).

iv) if Xk ≤ YkZ
−1
k Y′

k, STOP, matrix ellipsoids are
found. Otherwise, set h = h+1 and go to step ii).

6.2 Numerical Example

We applied the proposed mode-independent output
feedback H2/H∞ control to a VTOL helicopter model
adapted from [8]. The dynamics can be written as:






dxt = A(φt)xtdt + B(φt)utdt + Ewtdt + W1xtd̟t

yt = C2xt

z∞t = C∞1xt + D∞1ut

z2t = C21xt + D21ut

where φt indicates the airspeed. The different parame-
ters are given in [8]. The behavior of φt is modelled as a
Markov chain with three different states, corresponding
to airspeeds of 135 (nominal value), 60, 170 Knots. The
transition matrix is given by:

Ξ =





−0.0907 0.0671 0.0236

0.0671 −0.0671 0

0.0236 0 −0.0236





The central controller corresponding to γ∞ = γ2 = 1
(center of the ellipsoid) is given by

K′
0 =

[
0.5143 −0.4358

]

The state trajectories of the closed loop system result-
ing from the obtained controller are shown in Figure 1.
Figure 2 represents the evolution of the controlled out-
puts z∞t. It can be seen that the closed-loop system is
stochastically stable and that the disturbance attenua-
tion is achieved.
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Fig. 1. States of the closed loop system: single sample path
simulation
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path simulation

7 Conclusion

In this paper, the static output feedback H2/H∞ control
of continuous time reconfigurable systems with Marko-
vian processes and state-dependent noise was consid-
ered. We have proposed a synthesis method of reconfig-
urable controllers that take explicitly into account the in-
herent imperfections of the FDI process. Another prob-
lematic related to MJLS control was also addressed. This
problematic concerns the mode-independent static out-
put feedback H2/H∞ control of MJLS with multiplica-
tive noise. The numerical resolution of the obtained re-
sults was done using a cone complementary algorithm
and its running was illustrated on a numerical example.

References

[1] S. Aberkane, J.C. Ponsart, and D. Sauter. Output feedback
H∞ control of a class of stochastic hybrid systems with wiener
process via convex analysis. Int. J. Innovative Computing,

Information and Control, 2:123–126, 2006.

[2] E. K. Boukas. Exponential stabilizability of stochastic
systems with markovian jumping parameters. Automatica,
35:1437–1441, 1999.

[3] E. K. Boukas. Stochastic Switching Systems: Analysis and

Design. Birkhauser, Boston, 2001.

[4] E. K. Boukas. Static output feedback control for stochastic
hybrid systems: Lmi approach. Automatica, 42:183–188,
2006.

[5] E. K. Boukas and N. F. Al-Muthairi. H∞ constant gain state
feedback of stochastic hybrid systems with wienner process.
Mathematical Problems in Engineering, 4:333–345, 2004.

[6] O. L. V. Costa, J. B. R. do Val, and J. C. Geromel.
Continuous-time state-feedback H2-control of Markovian
jump linear systems via convex analysis. Automatica, 35:259–
268, 1999.

[7] O. L. V. Costa, E. O. A. Filho, E. K. Boukas, and R. P.
Marques. Constrained quadratic state feedback control of
discrete-time markovian jump linear systems. Automatica,
35:617–626, 1999.

[8] D. P. de Farias, J. C. Geromel, J. B. R. do Val, and
O. L. V. Costa. Output feedback control of Markov jump
linear systems in continuous-time. IEEE Transactions on

Automatic Control, 45:944–949, 2000.

[9] C. E. de Souza and M. D. Fragoso. H∞ control for
linear systems with Markovian jumping parameters. Control

Theory and Advanced Technology, 9:457–466, 1993.

[10] J. B. R. do Val, J. C. Geromel, and A. P. C. Gonçalves. The
H2 control for jump linear systems: cluster observations of
the Markov state. Automatica, 38:343–349, 2002.

[11] L. El-Ghaoui and M. Ait-Rami. Robust state-space
stabilization of jump linear systems via lmis. International

Journal of Robust and Nonlinear Control, 6:1015–1022, 1996.

[12] L. El Ghaoui, F. Oustry, and M. AitRami. A cone
complementary linearization algorithm for static output-
feedback and related problems. IEEE Transactions on

Automatic Control, 42:1171–1176, 1997.

[13] Y. Ji and H. J. Chizeck. Controllability, stabilizability, and
continuous-time Markovian jump linear quadratic control.
IEEE Transactions on Automatic Control, 35:777–788, 1990.

[14] Y. Ji and H. J. Chizeck. Jump linear quadratic Gaussian
control in continuous time. IEEE Transactions on Automatic

Control, 37:1884–1892, 1992.

[15] H. J. Kushner. Stochastic Stability and Control. Academic
Press, New York, 1967.

[16] M. Mahmoud, J. Jiang, and Y. Zhang. Stochastic stability
analysis of active fault-tolerant control systems in the
presence of noise. IEEE Transactions on Automatic Control,
46:1810–1815, 2001.

[17] M. Mahmoud, J. Jiang, and Y. Zhang. Active Fault

Tolerant Control Systems: Stochastic Analysis and Synthesis.
Springer, 2003.

[18] M. Mariton. Detection delays, false alrm rates and the
reconfiguration of control systems. International Journal of

Control, 42:459–465, 1989.

[19] M. Mariton. Jump Linear Systems in Automatic Control.
Marcel Dekker, New York, 1990.

[20] D. Peaucelle and D. Arzelier. Ellipsoidal sets for resilient
and robust static output-feedback. IEEE Transaction on

Automatic Control, 50:899–904, 2005.

[21] P. Shi and E. K. Boukas. H∞-control for Markovian jumping
linear systems with parametric uncertainty. Journal of

Optimization Theory and Applications, 95:75–99, 1997.

[22] P. Shi, E. K. Boukas, S. K. Nguang, and X. Guo.
Robust disturbance attenuation for discrete-time active fault
tolerant control systems with uncertainties. Optimal Control

Applications and Methods, 24:85–101, 2003.

[23] R. E. Skelton, T. Iwasaki, and K. Grigoriadis. A Unified

Algebraic Approach to Linear Control Design. Taylor and
Francis, 1998.

[24] R. Srichander and B. K. Walker. Stochastic stability
analysis for continuous-time fault tolerant control systems.
International Journal of Control, 57:433–452, 1993.

7



[25] V. L. Syrmos, C. T. Abdallah, P. Dorato, and K. Grigoriadis.
Static output feedback: A survey. Automatica, 33:125–137,
1997.

[26] T. Morozan V. Dragan and A. Stoica. H2 optimal control for
linear stochastic systems. Automatica, 40:1103–1113, 2004.

[27] T. Morozan V. Dragan and A. Stoica. Mathematical Methods

in Robust Control of Linear Stochastic Systems. Springer,
2006.

8


