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Abstract — In this paper, we compare four different methods of dealing with the
unknown linkage phase of sire markers which occurs in the detection of quantitative
trait loci (QTL) in a half-sib family structure when no information is available on
grandparents. The methods are compared by considering a Gaussian approximation of
the progeny likelihood instead of the mixture likelihood. In the first simulation study,
the properties of the Gaussian model and of the mixture model were investigated,
using the simplest method for sire gamete reconstruction. Both models lead to
comparable results as regards the test power but the mean square error of sib QTL
effect estimates was larger for the Gaussian likelihood than for the mixture likelihood,
especially for maps with widely spaced markers. The second simulation study revealed
that the simplest method for sire marker genotype estimation was as powerful as
complicated methods and that the method including all the possible sire marker
genotypes was never the most powerful. (© Inra/Elsevier, Paris

half-sib family / QTL detection / unknown linkage phase / Gaussian approxi-
mation / log-likelihood ratio test

Résumé — Modéles alternatifs pour la détection de QTL dans les populations
animales. II. Approximations de la vraisemblance et estimations du génotype
des males aux marqueurs. Dans ce papier, nous comparons quatre méthodes,
qui permettent de résoudre le probléme relatif 4 la phase inconnue des maéles
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aux marqueurs dans des familles de demi-germains, lorsque aucune information
sur les grands-parents n’est disponible. Ces méthodes sont comparées, en utilisant
Papproximation gaussienne de la vraisemblance a P'intérieur de chaque descendance a
la place de la vraisemblance du mélange de distribution. Dans la premiere étude par
simulation, les propriétés respectives du modele gaussien et du modeéle de mélange
sont étudiées pour la méthode la plus simple de reconstruction des gametes des males.
Les deux modeles conduisent & des tests comparables au regard de leur puissance
mais l'erreur quadratique moyenne d’estimation de l'effet de substitution du QTL
intra-famille est plus grande pour le modéle gaussien que pour le modéle de mélange,
en particulier pour les cartes génétiques trés peu denses. La deuxiéme étude par
simulation montre que la plus simple méthode d’estimation du génotype des males
aux marqueurs est aussi puissante que les méthodes plus sophistiquées et que la
méthode qui consiste & prendre en compte dans la vraisemblance tous les génotypes
possibles d'un male aux marqueurs n’est jamais la plus puissante. © Inra/Elsevier,
Paris

famille de demi-fréres / détection de QTL / phase de linkage inconnue /
approximation gaussienne / test du rapport de vraisemblance

1. INTRODUCTION

The present paper deals with the detection of one QTL in half-sib families
when no information is available on grandparents.

A general form of the likelihood of detecting QTL in simple pedigree
structures such as half-sib or full-sib families when marker information is
available on progeny, parents and grandparents was presented by Elsen et al. [2].
This likelihood is a two-level mixture distribution with different possible sire
marker genotypes given marker information, and different possible progeny
QTL genotypes given sire marker genotype and offspring marker information.
This paper describes simulations carried out to compare simplified likelihoods.

As an alternative to the mixture approach, we suggest simplifying the
likelihood by considering only one sire marker genotype. Three solutions were
explored: the first one, close to the Knott et al. proposal [7], is the likelihood of
quantitative phenotypes conditional on the most probable sire marker genotype
given marker information, while in the others, the sire marker genotype is
treated as a fixed effect, estimating the likelihood of the quantitative trait
observation conditionally or jointly with the sire marker genotype.

These comparisons were performed on a simplified form of the likelihood with
regard to the mixture of the progeny QTL genotypes. This simplified likelihood
is the one used in interval mapping by linear regression [5, 8] but instead of
least squares tests as in the above papers, maximum log-likelihood ratio tests
were used. The properties of this simplification are described in the first part
of the paper, using the likelihood of the quantitative phenotypes conditional
on the most probable sire marker genotype given marker information.
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2. COMPARISON OF LIKELIHOOD
AND SIMPLIFIED LIKELIHOOD

Most hypotheses and notations are given in Elsen et al. [2]. Notations related
to this paper are summarized in table I

Table 1. Notations for half-sib family observations.

Notation Signification

tfori=1,...,n sire

igforj=1,...,n; progeny (one progeny per mate)

lforli=1,...,L marker locus

msl1 msl2 marker alleles for sire ¢ at locus [

mpij, mpij marker alleles for descendant ¢j at locus !

ms; = {msél,ms?}l:l,,_”L L x 2 matrix of marker phenotypes for sire ¢

mp;; = {mpﬁ}, mpg}l:l’m, L L x 2 matrix of marker phenotypes for progeny ij

M; Marker information for sire 4 family

YDij trait data for descendant ¢j

hs} chromosome transmitted by the grand sire
to the sire ¢

hs? chromosome transmitted by the grand dam
to the sire 1

hs; = {hsil, hs?} L x 2 matrix of marker genotypes for sire ¢

T QTL position

dizj =1lor2 sire allele received by progeny ij at location z

p&l or u¥? means of trait distribution at location x

o(ypij; pfq, az) normal penetrance function, conditional to the ¢
(¢ = 1 or 2) chromosome segment transmitted
by the sire

Let hs, u®!, u*? denote the vectors of sire marker genotypes hs; and of
phenotypic means of trait distribution p®!, u¥?. Let Ap be the likelihood under
the null hypothesis that no QTL is segregating in the pedigree

n ng

Ao = [ [] o(upisi mir02)

i=1j=1
where p; is the phenotypic mean of sire 7 offspring. Let u be the vector of u;.

2.1. Test statistics
The general form of the likelihood presented by Elsen et al. [2] is

= H AP =T] D plhsi/Mi) A"

i=1 hs;

_HZp hs;/M;) HZp 5 = a/hsi, M) f(ypi; /di; = q)

i=1 hs; j=1g=1
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That leads to the maximum log-likelihood ratio test

T=2( sup 2210g(2p(hsi/Mi)Am’hsi)—sul'_;log(Ao))

1,22
T,uT,uT0,08 i q hs; w,og

Full maximum likelihood for this type of likelihood requires a lot of compu-
tation because the number of possible sire marker genotypes hs;, in the first
summation, grows exponentially with the number of informative markers per
sire. Table II presents for T' and the other tests proposed in this paper, the
CPU time needed for one simulation. Although our program could certainly be
optimized, these results show that computing 7' test is possible for one data
set but cannot reasonably be considered for simulations; simulations that are
generally needed to obtain significant thresholds.

Table II. CPU time (in seconds) for one simulation for all the log-likelihood ratio
tests.

Number of Number of T T! T2 T3 Tt T8

descendants markers

50 11 800 280 4.5 6 6 11.5
20 3 675 165 1 2 2.5 10

For T and T! a mixture of distributions in progeny is used. For T27 T3, T* and TP
a Gaussian distribution in progeny is used.

A natural way of dealing with this difficulty is to work in two steps: in the
first step a probable marker genotype for each sire is estimated and in the
second step the part of the likelihood corresponding only to these probable
marker genotypes is maximized.

A possible estimate for the sire marker genotypes, very close to the sire
gamete reconstruction proposed by Knott et al. [7] may be based on

hs; = argmaxy,, p(hs;/M;)

Let hs be the vector of estimated sire marker genotypes. For the second step,
the likelihood is reduced to

N n N n n; 2 -
AThS = HAf’hSi = H H Zp(dfj = q/hsi, M) f(ypij/di; = @)
i=1

i=1j=1g=1

In order to simplify the maximization step, the mixture of distributions in
progeny can be approximated by a normal distribution with expectation equal
to the expectation of the mixture. Then a linear model is obtained at each

position z along the chromosome. Let A®"s denote this simplified likelihood
equal to

n i

~ noo 2 e
Amhe = HAz’hsi = H T1 6(wpis; > p(d5; = a/hsi, Mi)ui?, 02)
i=1 a=1

i=1j=1
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A simulation study was carried out to compare the power of QTL detection,
using maximum log-likelihood ratio tests, 7' and T? where

T'=2( sup log(A“”’ﬁ;) — sup log(Ao))

1 2 2 2
ENCENBSR yog

T?=2( sup log([N\z"/‘;) — sup log(Ag))

2 2
z,pu=t u>2,02 p,02

2.2. Simulation results

Sire designs with 20 sire families of 50 or 20 descendants per sire were
simulated. The linkage group comprised three or eleven equally spaced markers,
each with two alleles segregating at equal frequency in the population. Polygenic
heritability was fixed at 0.2 and residual variability at 1. The power studies were
based on a QTL with two alleles at equal frequency, located either at 5 or 35 cM
from one end of the linkage group with additive effect equal either to 0.5 or to
1 and no dominance.

2.2.2, Threshold and power

The null distributions of the test statistics were estimated simulating data
sets with polygenic effects corresponding to the heritability value used in the
simulation model. Significant thresholds for T and T2 are shown in table III.
The largest difference between the test powers, shown in table IV, was observed
for a 20 half-sib progeny design, an 11 marker map and a QTL located at 35 cM
with an additive effect equal to 1. In this situation, a gain of about 10 % was
obtained with the mixture likelihood as compared to the Gaussian likelihood.
However, other cases did not show large differences and either the first or the
second test may be the most powerful depending on the case studied.

In the back-cross design, these tests have been proven to be asymptotically
equivalent when the QTL effect is small [9]. In order to limit computing time
the Gaussian approximation only will be considered in the second part of this
paper and in its companion paper [4]. Methods and simulation results given
with the Gaussian approximation may be extended to include a mixture of
distributions.

2.2.2. Parameter estimates

Despite power results that were quite similar for both methods, it is
worthwhile comparing parameter estimates for the QTL location and sib QTL
effect.

Mean estimates of position and of empirical standard deviation of the
position estimate are shown in table V. Obviously, due to the fact that the
position estimate is constrained in order to belong to the chromosome, its bias
was found to be more important for a QTL located at the beginning of the
chromosome than for a QTL located near the middle of the chromosome, but
both methods gave similar bias. Standard deviations of the position estimates
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Table III. Empirical 5 % significant thresholds for Tl, T2, over 1000 replications.

Number of Number of Tl T2
descendants markers

50 11 39.40 38.22
20 11 43.51 40.14
50 3 40.56 35.94
20 3 45.56 37.49

Table IV. Percentage of replicates significant at the empirical 0.05 significant
threshold for T, T2, over 500 replications.

Number of Number of QTL QTL additive Tt T2
descendants markers position effect

50 11 0.05 0.5 51.6 51.0
50 11 0.35 0.5 59.0 62.8
50 11 0.05 1.0 98.2 97.4
50 11 0.35 1.0 99.4 99.4
20 11 0.05 0.5 14.2 16.2
20 11 0.35 0.5 16.4 18.0
20 11 0.05 1.0 56.0 57.6
20 11 0.35 1.0 75.6 68.8
50 3 0.05 0.5 24.8 25.4
50 3 0.35 0.5 20.2 21.0
50 3 0.05 1.0 78.8 74.6
50 3 0.35 1.0 72.4 70.6
20 3 0.05 0.5 8.8 11.2
20 3 0.35 0.5 9.6 9.6
20 3 0.05 1.0 27.2 27.8
20 3 0.35 1.0 26.0 25.8

were slightly larger for a Gaussian likelihood than for a mixture likelihood for
the more widely spaced marker map but they were comparable for the other
map studied.

Mean square errors of the within half-sib QTL substitution effect are shown
in table VI .

As the bias of o is small (data not shown), the mean square error is closely
related to

S” Var(ad)/n
i=1

Results for the Gaussian likelihood in the 11 equally spaced marker maps
may be explained by considering the idealized case where the QTL position
is known and located on a marker and for which all sires are heterozygous
for this marker. The variance of &; depends only on the number of informa-
tive descendants per sire. For a marker with two alleles at equal frequency, the
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Table V. Mean estimates of the QTL position (and their empirical standard
deviation) for T, T, over 500 replications.

Number of Number of QTL QTL additive T! T2
descendants markers  position effect

50 11 0.05 0.5 0.206 (0.269) 0.206 (0.257)
50 11 0.35 0.5 0.377 (0.216) 0.390 (0.220)
50 11 0.05 1.0 0.079 (0.116) 0.075 (0.096)
50 11 0.35 1.0 0.348 (0.082) 0.348 (0.083)
20 11 0.05 0.5 0.363 (0.348) 0.354 (0.333)
20 11 0.35 0.5 0.423 (0.304) 0.413 (0.287)
20 11 0.05 1.0 0.155 (0.230) 0.182 (0.253)
20 11 0.35 1.0 0.353 (0.186) 0.352 (0.184)
50 3 0.05 0.5 0.349 (0.330) 0.311 (0.367)
50 3 0.35 0.5 0.480 (0.306) 0.459 (0.366)
50 3 0.05 1.0 0.125 (0.146) 0.137 (0.228)
50 3 0.35 1.0 0.424 (0.224) 0.405 (0.280)
20 3 0.05 0.5 0.431 (0.336) 0.424 (0.401)
20 3 0.35 0.5 0.487 (0.310) 0475 (0.377)
20 3 0.05 1.0 0.286 (0.292) 0.293 (0.360)
20 3 0.35 1.0 0.447 (0.268) 0.445 (0.336)

Table VI. Mean square error of the within half-sib QTL substitution effect for T,
Tz, over 500 replications.

Number of Number of QTL QTL additive Tt T2
descendants markers position effect

50 11 0.05 0.5 0.212 0.233
50 11 0.35 0.5 0.186 0.193
50 11 0.05 1.0 0.234 0.278
50 11 0.35 1.0 0.188 0.208
20 11 0.05 0.5 0.594 0.625
20 11 0.35 0.5 0.564 0.574
20 11 0.05 1.0 0.667 0.768
20 11 0.35 1.0 0.619 0.670
50 3 0.05 0.5 0.523 1.605
50 3 0.35 0.5 0.531 1.337
50 3 0.05 1.0 0.660 1.973
50 3 0.35 1.0 0.672 1.364
20 3 0.05 0.5 1.140 4.076
20 3 0.35 0.5 1.160 3.406
20 3 0.05 1.0 1.424 5.372
20 3 0.35 1.0 1.475 3.835
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number of informative descendants is roughly n;/2 and the variance of (Tg is
then 8/n; times the residual variance. For 50 (respectively 20) descendants per
sire and a residual variance equal to 1, a 0.16 (respectively 0.4) mean square
error is expected in the idealized case. The unknown QTL position, the distance
between the QTL position and heterozygous markers for sire, the unknown sire
marker genotypes and the overestimation of the residual variance when the
additive QTL effect is great [10] explain the increase in the mean square error.

Results for the Gaussian likelihood in the three equally spaced marker maps
may be explained considering a second idealized case where the QTL is known
to be located at the beginning of the chromosome. As only sires heterozygous
at least at one marker are considered, three cases of sires (c1, ¢g, c3) exist with

different variance of a;\? . c1 contains sires that are heterozygous for the first
marker, cp those that are homozygous for the first marker and heterozygous
for the second one, and ¢3 those that are heterozygous only for the last marker.
The proportion of sires in the three classes are about 4/7, 2/7 and 1/7. The

variance of o for sires in the class ¢; is about

802
ni(l—2r.,)?

where 7., denotes the recombination rate between the first marker heterozygous
in the class ¢; and the QTL located at the beginning of the chromosome. With
50 descendants per sire (respectively 20) and a residual variance equal to 1, a
1.7 (respectively 4.2) mean square error is expected. A more favourable location
of the QTL (near the middle of the chromosome) decreases the mean square
error.

The estimation of the within half-sib QTL substitution effect with the
mixture likelihood does not only use the mean difference between informative
descendants carrying allele A at a marker and those carrying allele B, but takes
advantage of information from higher moments of the mixture distribution.
Even if this information becomes negligible when the number of descendants
per sire is large, in a finite population and especially for a widely spaced maker
map, it leads to a significant reduction of the mean square error.

3. OTHER METHODS TO DEAL WITH UNKNOWN SIRE
MARKER GENOTYPES

Errors in sire gamete reconstruction can decrease the power of both methods.
Knott et al. [7] found that in their worst situation only 6 % of informative sires
were incorrectly reconstructed, but they had studied large half-sib families with
100 descendants per sire.

Table VII shows, /fgr one male, the empirical probability of correct recon-

struction based on hs; over 1000 replications. We confirm a 6 % maximum
error in large families but found up to 30 % errors in smaller families, which
led us to study alternative methods.

The rationale of the following alternative methods is that their aim is not
to improve the quality of sire gamete reconstructions but to increase the power
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Table VII. Empirical probability (in %) of correct sire gamete reconstruction over
1 000 replications.

Number of Number of Number of descendants
markers alleles per sire

(distance between markers) per marker 10 20 50 100
3 2 70.7 80.0 91.3 95.5
(50 cM) 4 74.7 87.6 95.5 98.4
5 2 77.0 89.8 96.7 98.7
(25 cM) 4 84.9 94.7 99.2 99.6
11 2 88.2 96.4 99.1 99.8
(10 cM) 4 96.2 99.5 100.0 100.0

of QTL detection. It is not necessary to work in two steps and the hs; marker
genotypes can be treated as nuisance parameters.

3.1. Estimations of sire marker genotypes based on conditional
likelihood of quantitative phenotypes

The first alternative method is to treat the hs; parameters as fixed parame-
ters in the likelihood of quantitative phenotypes given the marker information,
[T, A?"*. The full maximum is obtained after a search on a continuous space
for the QTL location and effect, within sire mean and variance parameters and
on a discrete space for the sire marker genotype parameters. This leads, with
the Gaussian approximation of the mixture in progeny, to estimating the sire
marker genotypes by

= n i, hs;
hs = argmax, (  sup Zlog(Aim’ )
z,u“,u“,cfz i—1

The maximum log-likelihood ratio test then gives

n

T3 =2 sup Zlog(xz’hsi) — sup log(Ag))

z,hs,u®t,u=%,02 7 w02

3.2. Estimations of sire marker genotypes on weighted conditional
likelihood

Estimating the sire marker genotypes by using only the previous likelihood
function means neglecting information contained in p(hs;|M;). Alternatively,
the within sire conditional likelihood could be weighted by p(hs;|M;) giving
the weighted conditional likelihood to be maximized [], p(hs|M;) AT

This leads, with the Gaussian approximation of the mixture in progeny, to
estimating sire marker genotypes by

o~
g

hs = argmax,,( sup > log(p(hsi/M:) K"*)

2
z,u=l,u2, e i=1
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The maximum log-likelihocod ratio test is then equal to

T =2( sup Z log(p(hs;/M;)A®"*) — sup log(Aq))

2
z,hs,p®t,p=2,02 T po2

3.3. No estimation of sire marker genotypes

The last method is based on the likelihood function A® proposed by Elsen
et al. [2], using the Gaussian approximation of the mixture in progeny. The
maximum log-likelihood ratio test is equal to

T°=2( sup Zlog(Zp(hsi/Mi)Kz’hs") — sup log(Ag))

1,22 g2 2
A e hsq H,0g

In practice, the three tests proposed should be slightly modified to take into
account that the sire marker genotype space is growing exponentially with the
number of informative markers per sire. This sire marker genotype space could
be limited to genotypes that satisfy p(hs;|M;) greater than a given value, fixed
in the simulation study to 0.01.

3.4. Simulation results

Significant thresholds and powers for T2, T3, T% and T® are shown in
tables VIII and IX. On the whole the compared tests gave very similar power
for all of the situations studied, suggesting that the simplest method can be
used, to avoid unnecessary computation. This similarity between tests may
be attributed to the high percentage of correct sire gamete reconstruction.
Only when markers were widely spaced and when family size was limited, did
estimating sire marker genotypes on the weighted likelihood given the marker
information lead to a slightly more powerful test.

Table VIII. Empirical 5 % significant thresholds for T2, T3, T* and T® over 5000
replications.

Number of Number of T2 T3 T 5
descendants markers

50 11 38.19 39.17 38.28 36.30
20 11 39.80 46.38 41.22 32.17
50 3 35.44 40.18 36.58 29.21
20 3 37.56 44.73 39.62 28.97

T2: most probable sire marker genotype on marker information. T3: most probable sire
marker genotype on conditional likelihood. T%: most probable sire marker genotype
on weighted conditional likelihood. T3: all sire marker genotypes.
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Table IX. Percentage of replicates significant at the empirical 0.05 significant
threshold for T2, T3, T* and T5, over 1000 replications.

Number of Number of QTL QTL additive T2 T3 T4 T3

descendants markers position effect

50 11 0.05 0.5 49.8 49.0 496 486
50 11 0.35 0.5 60.8 60.0 60.9 58.6
50 11 0.05 1.0 96.6 964 96.7 96.6
50 11 0.35 1.0 98.7 98.7 988 98.6
20 11 0.05 0.5 18.1 16.6 16.6 16.5
20 11 0.35 0.5 19.4 18.7 19.0 179
20 11 0.05 1.0 58.2 53.2 579 544
20 11 0.35 1.0 70.2 674 70.1 67.2
50 3 0.05 0.5 26.1 260 254 24.1
50 3 0.35 0.5 243 244 237 220
50 3 0.05 1.0 782 754 782 779
50 3 0.35 1.0 71.1 69.2 715 70.5
20 3 0.05 0.5 119 119 122 11.8
20 3 0.35 0.5 104 113 119 11.2
20 3 0.05 1.0 29.7 28.7 306 304
20 3 0.35 1.0 259 260 273 257

T2: most probable sire marker genotype on marker information. T3: most probable sire
marker genotype on conditional likelihood. T%: most probable sire marker genotype
on weighted conditional likelihood. T%: all sire marker genotypes.

4. DISCUSSION AND CONCLUSION

When the marker map is known, A* is proportional to the joint likelihood of
quantitative and marker observations considering the hs; as random parameters
with uniform prior distribution, so joint or conditional likelihoods give the
same results in terms of QTL parameter estimates and detection test. The
joint likelihood was first used by Georges et al. [3] to map QTL in dairy cattle
by considering only sire-by-sire analyses. Then Jansen et al. [6] computed the
conditional likelihood and considered pooled sire analysis. As mentioned by
Georges et al. [3], the problem with this likelihood is due to the fact that only
the |u®! — 2| can be estimated when there is no information on grandparents.
Indeed, using the alternative parametrization pf! = p;+0%/2, u¥? = p; —a%/2
it has been proved (in the Appendix) that the sign of & cannot be estimated.
This is not important for an objective of QTL detection but shows the limit of
this method, if an objective is to pursue QTL effect estimation simultaneously.

For all the methods studied, the empirical significance thresholds were
obtained by simulations of sire and progeny marker genotypes and of the
quantitative performances. In practice a permutation test [1] or a Monte-Carlo
simulation taking account of the correct marker structure should be used. This
could lead to slightly different threshold values. However, because very high
correlations between tests were observed, we can guess that the conclusions
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concerning the different tests should not depend on the chosen significance
threshold.

Modelling progeny quantitative observations with mixture distributions is
a more computationally demanding approach than methods using Gaussian
distributions. Previous studies [5, 10] have compared in a single family the
estimates obtained using mixture or Gaussian models. They concluded that the
estimation accuracy is similar in both models, except for the residual variance
when a QTL of large effect is mapped in a widely spaced marker map. Our
study on multiple families showed that the accuracy of within half-sib QTL
substitution effect estimates decreased significantly for the Gaussian model
compared to the mixture model, especially in a more widely spaced marker
map and even if the QTL effect was not large, although the test power and the
accuracy of the QTL position remained comparable.

Our comparison of alternative methods for handling the problem of unknown
sire marker linkage phases showed clearly that a simple method of reconstruct-
ing the sire genotype is almost as powerful as more complex methods, especially
the one that takes into account all the possible sire marker genotypes since the
TS test was never the most powerful test.

REFERENCES

[1] Churchill G.A., Doerge R.W., Empirical threshold values for quantitative trait
mapping, Genetics 138 (1994) 963-971.

[2] Elsen J.M., Mangin B., Goffinet B., Le Roy P., Boichard D., Alternative
models for QTL detection in livestock. 1. General introduction, Genet. Sel. Evol.
(1999) 213-224.

[3] Georges M., Nielsen D., Mackinnon M., Mishra A., Okimoto R., Pasquino
A.T., Sargeant L.S., Sorensen A., Steele M.R., Zhao X., Womack J.E., Hoeschele I,
Mapping quantitative trait loci controlling milk production in dairy cattle by exploit-
ing progeny testing, Genetics 139 (1995) 907-920.

[4] Goffinet B., Le Roy P., Boichard D., Elsen J.M., Mangin B., Alternative
models for QTL detection in livestock. III. Assumption about the model, Genet.
Sel. Evol. (1999) in press.

[5] Haley C.S., Knott S.A., A simple regression method for mapping quantitative
trait loci in lines crosses using flanking markers, Heredity 69 (1992) 315-324.

[6] Jansen R.C., David L.J., Van Arendonk J.A.M., A mixture model approach
to the mapping of quantitative trait loci in complex populations with an application
to multiple cattle families, Genetics 148 (1998) 391-400.

[7] Knott S.A., Elsen J.M., Haley C.S., Methods for multiple-marker mapping of
quantitative trait loci in half-sib populations, Theor. Appl. Genet. 93 (1996) 71-80.

[8] Martinez O., Curnow R.N., Estimating the locations and the sizes of the
effects of quantitative trait loci using flanking markers, Theor. Appl. Genet. 85 (1992)
480-488.

[9] Rebai A., Goffinet B., Mangin B., Comparing power of different methods for
QTL detection, Biometrics 51 (1995) 87-99.

[10] Xu S., A comment on simple regression method for interval mapping, Genet-
ics 141 (1995) 1657-1659.



Alternative models for QTL detection. II. 237

APPENDIX: Proof of the nonestimability of the sign of the within
half-sib QTL substitution effect

The likelihood A% is a functlon of parameters p*l and pf?. Using the
alternative parametrization uf* = y; +0of/2, u¥? = p; — of /2, A"‘ is a function
of af and we denote by Afj’hs" (af) the terms corresponding to descendants

2
Afthi (af) = Zp( 17 = q/h's“ ) (yp’bj/dz] - )

q=1

Consider a genotype hs; = {hs}, hs?} and its symmetrical ks = {hs?, hs}}.
When there is no ancestry information, it is obvious that

p(hs;|M;) = p(hs;|M;)

Using the relation p(df; = q/hsi, M;) =1 —p(dj; = g/hs;, M;) it can easily
be proven that
AG""(af) = A5 (=ad)

7

In A%, terms corresponding to hs; and hs] can be grouped to obtain

ACE

T3 (p(hsi/an) HA“& ) + p(hs;/M;) HA’”’“ (@)
i=1

j=1

HZ pnss/ ) T] A% (o +Hw81 )

j=1

Because A? is a symmetrical function of the of parameters, their sign cannot
be estimated.



