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SUMMARY

The methodology of eXtended Finite Element Method is applied to the measurement of displacements

through digital image correlation. An algorithm, initially based on a finite element decomposition

of displacement fields, is extended to benefit from discontinuity and singular enrichments over a

suited subset of elements. This allows one to measure irregular displacements encountered, say, in

cracked solids, as demonstrated both on artificial examples and experimental case studies. Moreover,

an optimization strategy for the support of the discontinuity enables one to adjust the crack path

configuration to reduce the residual mismatch, and hence to be tailored automatically to a wavy or

irregular crack path. Copyright c© 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Digital image correlation is now a quite well established tool for measuring displacement

fields [22]. This technique is all the more interesting when the displacement field is

heterogeneous, for example when discontinuities exist in the specimen [11]. Another appealing

feature is that the conservation of the optical flow, which is the underlying identification

principle, may be discretized over the entire area of the image by using finite element

shape functions [3]. Consequently, the discretization scheme used during measurements and

simulations may be the same. This property unifies the measurement-identification-simulation

loop thereby reducing errors induced by intermediate projection steps. However, because of the

very nature of the measurement procedure (i.e., an ill-posed problem in the Hadamard sense),

a finite element discretization does not possess the well-known convergence properties it shows

as a partial differential equation solving technique. The standard displacement uncertainty

decreases when the element size increases. Being less flexible to follow the actual displacement

field, it is also less prone to noise. The amount of data to constrain the nodal unknowns

of the displacement field increases with the element size. Therefore, measurements involve

intrinsically a compromise between spatial resolution (i.e., element size) and displacement

uncertainty [3].

To illustrate quantitatively this phenomenon, let us consider the analysis of the three

different situations shown schematically in Figure 1. First, a rigid body translation of 0.5 pixel

along both directions is artificially applied to a given picture. A cubic spline algorithm is used to
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X-DIC WITH CRACK SHAPE OPTIMIZATION 3

interpolate the gray level value in the “transformed” picture. The analysis of the displacement

is performed using a finite element Q4 basis for elements whose size is ℓ× ℓ pixels. The quality

of the determination, here called “uncertainty,” is evaluated through the standard deviation

of the difference between the known and measured displacement fields. Figure 2 illustrates the

compromise mentioned earlier, namely, the larger the element size, the smaller the standard

displacement uncertainty. The very abrupt decrease in uncertainty with the element size is a

result of the reduction in noise sensitivity with the number of pixels. Second, a discontinuous

translation (i.e., the left part of the picture is fixed, and the right part is translated by 0.5 pixel

along both directions) is applied. The displacement uncertainty now increases with the element

size. Note however that the overall level is still less than 5 × 10−2 pixel for elements of size

64 pixels. Third, the displacement field corresponding to a mixed mode I and II crack with a

stress intensity factor such that the maximum displacement jump is 1 pixel in each direction

is created. In this last case, the uncertainty level is of the order of 0.1 pixel for elements of size

64 pixels. The reason for such a degradation of the uncertainty as the element size increases

in the two last cases is due to the fact that the searched displacement field is continuous

by hypothesis, and thus cannot accurately describe the displacement jump. The larger the

elements, the wider the region that suffers from this approximation. In contrast, a uniform

displacement (first case) lies inside the chosen displacement space, and thus only the noise

reduction effect is felt. In order to prove this point, Figure 2 also shows the unavoidable

contribution to the uncertainty due to the nodal projection of the imposed discontinuous

displacement onto the basis of chosen functions (Q4 shape functions). For discontinuous

translations, the uncertainty induced by the correlation is greater than that given by nodal

projection. However, the dominant effect is the latter, i.e., it is mainly related to the kinematic
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4 J. RÉTHORÉ, F. HILD, S. ROUX

hypothesis made at the measurement stage. For the crack tip field, it is to be mentioned that

a nodal projection is not the best choice to minimize the error made on the displacement

map (not only on the nodal values). Using an appropriate projection algorithm (least-squares

for example), the incompressible contribution of the Q4 shape function should be less than

what is obtained by correlation. These results show that, even though reasonable displacement

uncertainties are observed, suited procedures may yield better results.

Confronted to a similar situation, various remedies have been proposed within the framework

of finite element simulations. Among those, the eXtended Finite Element Method (X-FEM)

is able to reveal heterogeneous displacement fields with arbitrary discontinuities without

remeshing [4, 12, 2]. Enriched functions are added to the initial finite element shape functions

exploiting their partition of unity property [1]. X-FEM usually allows one to use coarser meshes

for the same accuracy in the numerical solution. This property is all the more interesting

in the context of digital image correlation for which coarser mesh usually means lower

measurement uncertainties. Therefore, the use of an enriched interpolation shall bring less

error, less uncertainty, and hopefully a better spatial resolution at the same time. This paper

is concerned by the extension “à la X-FEM” of a recent Q4 correlation technique [3].

The paper is organized as follows. First, general principles of image correlation are recalled.

Then, the computational details of the Q4 as well as the eXtended Q4-algorithms are

presented. The performance of the approach is illustrated with an uncertainty analysis and

an experimental case study. Since real cracks are usually not straight, an algorithm is then

proposed to determine the crack geometry. It is based on a two-scale multi-field minimization

of the correlation error due to non-matching between the real crack path and the assumed one

used in the correlation algorithm. Artificial and experimental examples validate the proposed
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X-DIC WITH CRACK SHAPE OPTIMIZATION 5

technique.

2. PRINCIPLES OF IMAGE CORRELATION

Two digital (gray level) images corresponding respectively to a reference, f(x), and a deformed,

g(x), state are related by the “passive” advection of the local texture in the displacement field

u

g(x) = f(x + u(x)) (1)

This equation corresponds to the local form of the so-called optical flow conservation principle.

From the knowledge of f and g, the problem consists in estimating the displacement u as

accurately as possible.

2.1. General framework

The measurement of the displacement is an ill-posed problem. The displacement is only

measurable along the direction of the intensity gradient. Consequently, additional hypotheses

have to be proposed to solve the problem. It is simplified by considering incrementally

linearized tangent problems. Equation (1) is rewritten by assuming that the reference image

is differentiable to yield the local square residual

Φ2(x) = [u(x).∇f(x) + f(x) − g(x)]2 (2)

To estimate u, the quadratic residual Φ2 is integrated over the studied domain Ω

η2 =

∫∫

Ω

[u(x).∇f(x) + f(x) − g(x)]
2
dx (3)

and subsequently minimized. The displacement field is decomposed over a set of functions

Ψn(x) to regularize the measurement problem. Each component of the displacement field is

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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6 J. RÉTHORÉ, F. HILD, S. ROUX

treated in a similar manner, and thus only scalar shape functions ψn(x) are introduced

u(x) =
∑

α,n

aαnψn(x)eα (4)

where eα are elementary unit vectors along each space dimension α and aαn the corresponding

amplitudes. The objective function is thus expressed as

η2 =

∫∫

Ω

[

∑

α,n

aαnψn(x)∇f(x).eα + f(x) − g(x)

]2

dx (5)

and hence its minimization leads to a linear system

∑

β,m

aβm

∫∫

Ω

[ψm(x)ψn(x)∂αf(x)∂βf(x)]dx =

=

∫∫

[g(x) − f(x)]ψn(x)∂αf(x)dx (6)

that is written in a compact form as

Ma = b (7)

where ∂αf = ∇f.eα denotes the directional derivative, the matrix M and the vector b are

directly read from Eq. (6)

Mαnβm =

∫∫

Ω

[ψm(x)ψn(x)∂αf(x)∂βf(x)]dx (8)

and

bαn =

∫∫

Ω

[g(x) − f(x)]ψn(x)∂αf(x)dx (9)

The present development is similar to a Rayleigh-Ritz procedure frequently used in elastic

analyzes. The only difference corresponds to the fact that the variational formulation is

associated with a weak form of the (linearized) conservation of optical flow and not the principle

of virtual work. However, the linearization in this case is problematic because the irregular

texture of the images may lead to multiple local minima of the residual. A hierarchical multi-

scale approach is used to achieve convergence to the global minimum of the residual [10, 3].

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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X-DIC WITH CRACK SHAPE OPTIMIZATION 7

This procedure is similar to a Full Approximation Scheme multi-grid algorithm with only one

step down from the coarsest grid to the finest one. Three grid levels are usually considered in

the presented applications.

2.2. Q4-Digital Image Correlation

A large variety of functions Ψ may be considered. Among them, finite element shape

functions [3] are particularly attractive because of the natural interface they provide between

the measurement of the displacement field and a numerical modeling of it based on a

constitutive equation. Whatever the strategy chosen for the identification of the constitutive

parameters, choosing an identical kinematic description suppresses spurious numerical noise

at the comparison step. Moreover, since the image is naturally partitioned into pixels, it is

appropriate to choose a square or rectangular shape for each element. This leads us to the

choice of Q4-finite elements as the simplest basis. Each element is mapped onto the square

[−1, 1]2, where the four basic (i.e., P1) functions are 1/4 (1±x)(1± y) in a local (x, y) frame.

The displacement decomposition (4) is therefore particularized to account for the previous

shape functions of a finite element discretization. Each component of the displacement field

is treated in a similar way, and thus only scalar shape functions Nn(x) are introduced to

interpolate the displacement u
e(x) in an element Ωe

u
e(x) =

ne
∑

n=1

∑

α

aαnNn(x)eα (10)

where ne is the number of nodes (here ne = 4), and aαn the unknown nodal displacements.

The objective function is recast as

η2 =
∑

e

∫∫

Ωe

[

∑

α,n

aαnNn(x)∇f(x).eα + f(x) − g(x)

]2

dx (11)
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8 J. RÉTHORÉ, F. HILD, S. ROUX

and hence its minimization leads to a linear system (6) in which the matrix M is obtained

from the assembly of the elementary matrices M
e whose components read

Me
αnβm =

∫∫

Ωe

[Nm(x)Nn(x)∂αf(x)∂βf(x)]dx (12)

In practice, a symmetrization is performed by using ∂α
f+g

2
∂β

f+g
2

instead of ∂αf∂βf . The

vector b corresponds to the assembly of the elementary vectors b
e such that

be
αn =

∫∫

Ωe

[g(x) − f(x)]Nn(x)∂αf(x)dx (13)

The same symmetrization, i.e., substituting ∂α(f + g)/2 to ∂αf , is considered. Thus it is

straightforward to compute for each element e the elementary contributions M
e and b

e.

The latter is assembled to form the global “rigidity” matrix M and “force” vector b, as

in standard finite element problems. The only difference is that the “rigidity” matrix and the

“force” vector contain picture gradients in addition to the shape functions, and the “force”

vector includes also picture differences. The matrix M is symmetric, positive and sparse.

These properties are exploited to solve the linear system efficiently. Last, the domain integrals

involved in the expression of M
e and b

e require imperatively a pixel summation. The classical

quadrature formulas (e.g., Gauss points) is not used because of the very irregular nature of

the image texture. This last property is crucial to obtain an accurate displacement evaluation.

Furthermore, sub-pixel interpolation is used to increase the resolution of the algorithm. The

gradient of the image functions is obtained by performing Fourier transforms. The very use of a

Taylor expansion requires that the displacement be small when compared with the correlation

length of the texture. For a fine texture and large initial displacements, this requirement

appears as inappropriate for convergence to a meaningful solution. Thus one may devise a

generalization to arbitrarily expand the correlation length of the texture. This is achieved

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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X-DIC WITH CRACK SHAPE OPTIMIZATION 9

through a coarse-graining step. The interested reader may refer to Reference [3] for additional

details concerning the above mentioned features.

2.3. Extended algorithm: X-Q4-DIC

As mentioned in the Introduction Section, the above-described discretization scheme is not

suited to potentially discontinuous displacement fields. Furthermore, the real discontinuity

of the displacement field (as what is observed from one face of a crack to the other one) is

smoothed by the Q4P1 shape functions. This may bias the post-processing of the measured

displacement to determine stress intensity factors [18, 13]. It is proposed here to circumvent

this difficulty in the spirit of X-FEM. The partition of unity property of finite element shape

functions over the patch covered by the set of nodes N

∑

n∈N

Nn(x) = 1 (14)

is exploited to enrich the kinematic discretization basis. The enriched discretization reads

u(x) =
∑

n∈N

∑

α

aαnNn(x)eα +
∑

n∈Nenr

∑

α

dαnNn(x)ϕ(x)eα (15)

where ϕ is the enrichment function and Nenr is a sub-set of N wherein nodes hold enriched

degrees of freedom dαn. The enrichment function is chosen arbitrarily to capture a specific

singularity of the solution to the minimization problem. Let us now focus on a displacement

field in the vicinity of a crack tip. The two components of the displacement have a discontinuity

across the crack faces and an asymptotic behavior with super- and sub-singular terms around

the crack tip [14]. In the original X-FEM, five enriched functions are used, namely, one which

is discontinuous across the crack faces, and four singular functions. The approximation of the

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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10 J. RÉTHORÉ, F. HILD, S. ROUX

displacement is

u(x) =
∑

n∈N

∑

α

aαnNn(x)eα +
∑

n∈Ncut

∑

α

dαnNn(x)H(x)eα +
∑

n∈Ntip

∑

α

4
∑

j=1

cαnjNn(x)Cj(x)eα

(16)

Four functions (only one is discontinuous across the crack faces) are used

[Cj ] =

[√
r sin

(

θ

2

)

,
√

r cos

(

θ

2

)

,
√

r sin

(

θ

2

)

sin(θ),
√

r cos

(

θ

2

)

sin(θ)

]

(17)

Enriched degrees of freedom associated with these functions are added to the sub-set of

nodes Ntip whose support contains the crack tip (Figure 3). The support of a node is that

of its finite element shape function i.e., the set of elements having the considered node

within their connectivity. Concerning the discontinuous function, the symmetrized Heaviside

function was originally used in X-FEM but the standard Heaviside function H can also be

used [24, 23, 25, 17, 5]. We choose the alternative function proposed by Zi and Belytschko [26].

Each node whose support is completely cut by the crack surface (Figure 3) holds an additional

degree of freedom for each component of the displacement associated with the function He

He(x) = H(x) −H(xe) (18)

In this definition, the vector xe gives the location of node e. Consequently, the enrichment

function He equals 0 over the area of the support of e (i.e., elements that have e within their

connectivity) on the same side of the crack as e. The major advantage of this function is that

it avoids so-called blending elements (elements in which the enrichment is not supported by a

partition of unity, i.e., elements some nodes of which are not enriched). Furthermore, enriched

terms of the matrix are only to be computed for the elements cut by the crack.

As mentioned in Section 2.2, Gauss quadrature is not used because of the image texture. The

numerical integration is performed pixel-wise and any subdividing or special quadrature for

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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X-DIC WITH CRACK SHAPE OPTIMIZATION 11

the enriched elements are not needed. However, when a discontinuous kinematics is allowed for

an element, the elementary matrix is to be computed over two different areas of the deformed

image. Moreover, the extended interpolation scheme is introduced at the finest scale of the

multi-scale algorithm. At the larger scale, the Q4 interpolation is assumed herein to be rich

enough to capture the low spatial frequency content of the solution. Since the discontinuity is

a very short wavelength phenomenon, the enriched functions are used only at the true scale

(i.e., the finest one).

In order to evaluate the influence of the singular enrichment(
√

r functions), a strategy with

only discontinuous enrichment is also tested. If the singular enrichment is not considered,

the element containing the crack tip does not hold any discontinuity because the support of

its nodes is not completely cut by the crack. Hence, as an alternative to what is described

above, a strategy including only discontinuous enrichments for the nodes whose support is

at least partially cut by the crack (in contrast to completely cut for the first strategy) is

implemented. Consequently, in the element containing the tip, the nodes located behind the

tip hold a discontinuous enrichment. Hence, the displacement field is discontinuous inside the

tip element but the discontinuity vanishes on its edge in front of the tip. Figure 3 describes

the two enrichment strategies.

3. UNCERTAINTY ANALYSIS

In this section, an uncertainty analysis is carried out. This study aims at evaluating the

performance of the eXtended Digital Image Correlation (X-DIC) technique. As a preliminary

test, it has been checked that the enrichment does not perturb the estimation of a uniform rigid

body translation. Similar values for the displacement uncertainty, e.g., of the order of 10−3 pixel

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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12 J. RÉTHORÉ, F. HILD, S. ROUX

for a 32-pixel element size, are obtained with or without enrichment. The two enrichment

strategies enable the DIC algorithm to capture a priori different types of displacement fields:

3.1. Discontinuous rigid body translation

First, a piecewise discontinuous rigid body translation is artificially imposed to a reference

image. The image is 512 × 512 pixels with an 8-bit digitization. An artificial discontinuity

is considered in the middle of the image, see Figure 1. Only half of the image is artificially

translated in the range [0, 1] pixel by 0.1-pixel increments in the horizontal as well as in the

vertical direction. The region of interest for the correlation extends over the entire image.

A patch of a number of elements depending upon their size is centered on the image.

Consequently, the elements are not positioned so that the discontinuity cut them into two

equal parts i.e., the relative position between the discontinuity and the elements varies with

the element size. For each value of the artificial displacement and for each element size between

8 and 64 pixels, the uncertainty σu is estimated as

σu = 〈‖u − up‖2〉1/2 (19)

where up is the prescribed displacement field, and 〈...〉 refers to spatial averaging. Then, σu is

plotted as a function of the element size as an averaged value of the uncertainty obtained for

the values of the prescribed displacements.

Figure 4 shows the results obtained with Q4 elements, and Q4 elements enriched with

the discontinuous function He. By using a standard interpolation scheme, a divergence of

the displacement uncertainty with the element size is observed. As the elements become

larger, the solution is smeared out over a larger zone that induces larger uncertainties for the

displacement estimate. If discontinuous functions are added to the interpolation, a decreasing

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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X-DIC WITH CRACK SHAPE OPTIMIZATION 13

trend is observed with an uncertainty as low as 2 × 10−3 pixel for 64-pixel elements. Figure 5

shows the uncertainty obtained on the displacement jump along the discontinuity itself. The

uncertainty decreases as the element size increases. The performance of the proposed approach

is illustrated here with an uncertainty level as low as 10−3 pixel for 64-pixel elements.

3.2. Crack displacement field

Second, an elastic mixed mode crack displacement field is artificially prescribed to the reference

image. The artificial crack is vertical, it starts in the middle of the bottom side of the image

and the crack tip is located at the center. The same procedure as above is used and the center

of the element containing the crack tip is not enforced to coincide with it. The amplitude

of the artificial displacement is chosen so that, at the left edge of the image, mode I and II

displacement jumps have the same value in the [0, 1]-pixel range. This case is considered as

particularly difficult since all the involved displacements are sub-pixel.

Figure 6 enables one to compare the results obtained by DIC with standard Q4 elements,

with those obtained with a discontinuous enrichment and those obtained with discontinuous

and singular enrichments. As expected from Figure 2, a poor performance is observed with

a Q4 interpolation, whereas any enrichment strategy restores uncertainties of the order of

10−2 pixel. In this case, the
√

r-dominant zone extends over the entire image, the singular

enrichment does not improve the displacement uncertainty compared to the strategy with

discontinuous enrichment only. When the element size increases, the linear interpolation of the

non-enriched elements is not able to capture the
√

r behavior of the prescribed displacement.

Consequently, the uncertainty increases.

The crack opening displacements obtained using the two enrichment strategies are plotted

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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14 J. RÉTHORÉ, F. HILD, S. ROUX

in Figure 8 for 16-pixel elements and in Figure 9 for 32-pixel elements. In the elements where

the discontinuous enrichment is used in both strategies the results are very close. In the element

containing the crack tip, the singular functions yield an exact kinematic location of the tip i.e.,

the crack opening displacement vanishes at the tip. On the contrary, when only discontinuous

functions are used, the tip position is on the edge of the element, which leads to a less accurate

determination of the crack opening displacement in the element containing the tip (Figure 9).

This difference decreases when the element size decreases. Furthermore, the level of uncertainty

obtained on the crack opening displacement is shown in Figure 7. First, for the two enrichment

strategies the uncertainty decreases. Lower values are obtained with the singular enrichment

that captures the
√

r-behavior more accurately. Then, the same behavior as for the uncertainty

on the entire displacement map is observed.

These two uncertainty analyses illustrate the gain that is achieved when using enriched

kinematics as compared to the performance obtained with a Q4 algorithm. Looking for

crack tip fields with a
√

r-dominance, an optimal element size seems to exist. The extended

interpolation improves the solution only inside the element wherein it is active. Because the

Q4 interpolation remains valid over the rest of the elements, using larger elements means a

decreasing uncertainty for the enriched element but a poorer performance over the rest of the

mesh. As a limit case when the entire image is covered by one element, a fully integrated

approach is probably more favorable [18]. However, the present technique is more flexible and

applies to a larger number of applications, for example with two or more cracks. Furthermore,

if the strategy with only a discontinuous enrichment is used, the limitations of Linear Elastic

Fracture Mechanics may be investigated experimentally and numerically through applications

where the elasto-plastic region extends over a large zone. In this case, the crack opening

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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X-DIC WITH CRACK SHAPE OPTIMIZATION 15

is piecewise linear and the displacement interpolation wherein the elements surrounding the

crack tip remains standard, namely no specific behavior in r1/n is prescribed, where n is the

hardening exponent.

3.3. Application to a Silicon Carbide sandwiched beam

The performances of the proposed approach are now evaluated on an experimental case. The

application discussed herein is based upon a Silicon Carbide sandwiched beam test (Figure 10-

a). This type of experimental set-up allows one to initiate a crack without complete failure

of the central beam. However, the arrest conditions are strongly dependent upon the friction

between the beams, their flexural stiffness, and the notch geometry [7]. Therefore, numerical

tools may prove useless to evaluate stress intensity factors.

The region of interest covers the entire image whose size is 1008 × 1016 pixels (8-bit

digitization). The mesh and the crack geometry are shown in Figure 10-b. Figure 11 shows

the displacement fields obtained with the three interpolation schemes. First, Q4 elements,

then enriched Q4 interpolation using the two different strategies. The first analysis using

Q4 elements allows one to locate the crack path. Then, the enrichments are positioned on

the mesh that consists of 32-pixel elements. The displacement discontinuity is better described

with the enriched elements even if the error maps Φ remain similar (Figure 12). In this case, the

maximum displacement jump is less than 0.5 pixel and the error that perturbs the standard

Q4 estimate of the displacement reduces to the crack path itself. The average value of the

residual error is around 2.95 gray level for the three discretization schemes but the maximum

value of the residual error, which is 60 gray level for the Q4 interpolation decreases to 57 if any

of the enrichment strategies is used. However, X-DIC enables one to measure a displacement

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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16 J. RÉTHORÉ, F. HILD, S. ROUX

field with an explicit discontinuity and an asymptotic
√

r-dependence.

The use of extended digital correlation enables one to measure discontinuous as well as

asymptotic crack displacement fields. The preliminary uncertainty analysis on artificially

deformed pictures illustrates the benefit of the proposed approach. By means of the enriched

interpolation, it is possible to use, for the same level of accuracy, larger elements without

increasing the measurement uncertainty. Furthermore, the analysis of an experimental case

is presented, where the shape of the crack surface, which can be observed on the error map,

is straight. This is however not a general result as demonstrated by Figure 17-c where a

description of the crack faces by a straight line is not accurate. The next section aims at

relaxing this hypothesis.

4. CRACK SHAPE OPTIMIZATION

As illustrated by Figure 17, the crack shape in samples may not be perfectly straight and a

piecewise straight description of the crack geometry is inaccurate. Furthermore, as the above

introduced enrichment functions depend upon the crack geometry, it must be described in an

appropriate way. For instance, He calls for the “above-bellow” information and the singular

functions rely on the distance to the crack tip and angle with respect to a local crack tip

co-ordinate system.

Level sets are used in a number of cases in combination with X-FEM [20, 21, 9]. This

technique offers several advantages. Among them, an implicit description of the crack topology

by contours of a level set function and a local curved co-ordinate system directly derived

from the gradient of the level set. Consequently, enrichment functions are easily evaluated as

level set functions. Moreover, efficient numerical techniques for moving level sets have been
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developed [19]. Then, the quantification of the gap between an initial, say straight, crack

path and the real one, through moving level sets, will allow for the optimization of the crack

geometry.

4.1. Crack description by level sets

Parameterizing the crack geometry requires the description of the crack surface, a crack path

in 2D, as well as the positioning of the crack tip on this surface, respectively tip on this path.

Hence, the crack surface is implicitly defined as the 0-contour of a first level set ψc. Then the

crack tip is defined as the intersection between the crack surface (ψc = 0) and the 0-contour

of a front level ψf (see Figure 13):

ψc = 0 on the crack, (ψc = 0, ψf = 0) is the crack tip (20)

The signed distance is used as level set. Therefore, the norm of the gradient of both level sets

is 1

|∇ψc| = 1 |∇ψf | = 1 (21)

Furthermore, if ∇ψf is orthogonal to ∇ψc

∇ψc.∇ψf = 0 (22)

then (ψf , ψc) are used as a local co-ordinate system. The enrichment functions are now

evaluated with two level sets. The Heaviside function H is

H(x) =
1

2
(sign(ψc) + 1) (23)

For the singular function, the distance to the crack tip and the angle θ are obtained from the

following formulas

r =
√

ψ2
c + ψ2

f θ = tan−1

(

ψc

ψf

)

(24)
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4.2. Level set propagation

Let ψ be a level set. The total derivative of ψ with respect to a virtual time t at points following

the initial 0-contour is

∂ψ

∂t
+ V.∇ψ = 0 (25)

where V is the velocity of the contour. Because the normal to the contour is given by the

gradient of ψ, this equation is recast as

∂ψ

∂t
+ F |∇ψ| = 0 (26)

where F is the normal velocity of the considered contour. For numerical purposes, the time

integration is performed by using an Euler scheme. The level set function is discretized in space

by finite differences on the regular pixel grid of the image (not using the nodes of the finite

element mesh). However, special care should be taken in order to deal with discontinuous

derivatives. A Godunov scheme [8] is used to compute F |∇ψ| in Equation (26), which is

rewritten as

ψn+1 = ψn − ∆t∇G (27)

where ∆t is the time step whose critical value is ∆x/max(|F |), ∆x the grid step, and ∇G the

Godunov numerical elaboration of F |∇ψ|

∇G = max(F, 0)∇+ + min(F, 0)∇− (28)
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where ∇+ and ∇− depend upon the finite difference gradient of ψ, Dx+, Dx− and Dy+, Dy−

Dx− =
ψx − ψx−∆x

∆x
Dx+ =

ψx+∆x − ψx

∆x
(29)

Dy− =
ψy − ψy−∆y

∆y
Dy+ =

ψy+∆y − ψy

∆y
(30)

∇+ =
[

max[P (Dx−)2, N(Dx+)2] + max[P (Dy−)2, N(Dy+)2]
]1/2

(31)

∇− =
[

max[N(Dx−)2, P (Dx+)2] + max[N(Dy−)2, P (Dy+)2]
]1/2

(32)

where P (z) and N(z) denote respectively the positive and negative parts of a real number z.

After propagating the level set, a re-initialization step to the signed distance is performed.

This is achieved by solving the following equation until steady state is reached

∂ψ

∂t
+ sign(ψ)(|∇ψ| − 1) = 0 (33)

Numerically, the Godunov scheme is adapted in the following way

∇Ginit = max(sign(ψ), 0)(∇+ − 1) + min(sign(ψ), 0)(∇− − 1) (34)

This re-initialization step does not change the 0-contour if the re-initialization velocity

(sign(ψ)) is equal to 0 on it. This is achieved by adopting an appropriate definition of the sign

function, sign(0) ≡ 0.

4.3. Objective function for shape optimization

Moving the crack surface, i.e., propagating the level set ψc, requires a normal velocity F . A mis-

positioning of the crack surface induces higher values of the error Φ as illustrated in Figure 14.

This error map will be used in order to propagate the level set, so as to resolve at best the crack

meandering. To illustrate the proposed procedure, two test cases are first presented. In both

cases, a discontinuous horizontal translation is artificially imposed to the part of the image

that is located on the right of curved boundary. Two examples of the latter are considered,
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first a sinusoidal curve, and second a Gaussian one. The image is 512 × 512 pixels with an

8-bit digitization. The amplitude of the sinusoid is 5 pixels and its period is 128 pixels. The

prescribed displacement is 0.5 pixel. The Gaussian curve has a 10 pixel amplitude, and extends

over 60 pixels. Figure 14 shows the error map obtained with a discontinuous enrichment along

a straight line. The area surrounded by the real discontinuity line and the straight one exhibits

higher error levels. The use of Φ as an error indicator is straightforward in the co-ordinate

system (ψf , ψc). The initial discontinuity line is then to be moved by ∆ so that

∆(ψf ) = ψc(xmax(ψf )) (35)

where xmax(ψf ) gives the location of the pixel on a ψf -contour where the error is maximum

Φ(ψf , ψc(xmax)) = max
ψc

Φ(ψf , ψc) (36)

Then, the velocity F is set to ∆ and the propagation of the “crack” level set is performed

over a virtual time of 1. This procedure is included within the iterative determination of the

displacement field. Since the local indicator Φ is based on the global residual, the solution

now results from a minimization of Φ with respect to the displacement field and the crack

geometry. Figure 15 illustrates the results obtained by using this procedure. The zone of higher

error now reduces to the crack path itself and the optimized discontinuity is close to the real

one. With shape optimization, the mean positioning error is 1.59 pixel for the sinusoidal

discontinuity and 1.35 pixel for the Gaussian discontinuity. Furthermore, the positioning

uncertainty is 1.43 pixel for the sinusoidal discontinuity and 0.93 pixel for the Gaussian

discontinuity. The comparison between the displacement field measured using the optimized

geometry and the one measured assuming a straight discontinuity is shown in Figure 16. With

a straight discontinuity, the displacement cannot describe the real shape of the discontinuity
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and a mean error of 1.6 gray levels within the elements cut by the sinusoidal discontinuity is

observed. By using the optimization of the crack shape, the error reduces to 1.1 gray levels

and the displacement describes the imposed motion more accurately. The uncertainty in the

displacement jump determination is 0.028 pixel for the sinusoidal discontinuity and 0.015 pixel

for the Gaussian discontinuity. These results are to be compared with the uncertainty level for

a known discontinuity (see Figure 5), which is about 0.003 pixel for the same element size (i.e.,

32 pixels). This result shows that most of the uncertainties are related to a good positioning

of the discontinuity profile. The same type of conclusion was reached when studying a cracked

ceramic for which the uncertainties related to identified values of the stress intensity factor are

mainly caused by the uncertainty associated with the positioning of the crack tip [18].

4.4. Application to a CCT specimen

The sample has a CCT geometry (Figure 17-a) and is subjected to cyclic tension with a load

ratio R = 0.4. In the present analysis, only the stage corresponding to the maximum load level

is considered after about 300,000 cycles for which the crack size 2a = 14.5 mm. Pictures are

taken by using a long distance microscope and a CCD camera (resolution: 1024× 1280 pixels,

dynamic range: 12 bits) so that the physical size of one pixel is 2.08 µm. At this magnification,

the raw surface is observed (Figure 17b). The studied material is an XC48 (or C45) steel [14].

The normal displacement map obtained with 32-pixel Q4 elements is shown in Figure 18a.

Since the crack geometry is not straight, the Q4 interpolation does not give accurate results

with this element size. Furthermore, the crack path is again smeared out by the continuous

interpolation. Figure 18 also shows the displacement field obtained with a discontinuous

interpolation and a straight crack (b) and the optimized crack (c). Furthermore, Figure 19
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shows the residual maps in gray levels. The first map is obtained with standard Q4 elements

and a quite large error zone appears in the neighborhood of the crack. The value of the error

is reduced by using discontinuous interpolation functions and a straight crack. The region of

maximum error finally reduces to the crack path itself when the crack geometry optimization is

used in combination with the extended interpolation. This is illustrated in Figure 20 where the

initial and optimized crack fronts are superimposed onto the error maps. The improvement due

to the crack geometry optimization is 3% in the elements cut by the crack when compared to

the error obtained with the straight crack. When a standard interpolation is used, the average

value of the residual error is 932 gray level whereas it decreases to 914 for a discontinuous

enrichment associated with a straight crack and down to 911 for the optimized crack geometry.

Note that the gray level scale has been limited to the range [0;5000] (hence saturating the

largest values) in order to make the differences more readable. The actual dynamic range is

65536 gray levels. Figure 21 shows a comparison between the displacement jump obtained with

a straight discontinuity and the optimized one. Fluctuations are observed with the optimized

crack geometry when the crack shape is tortuous. However, the crack shape optimization

enables for a better (i.e., less erratic) prediction of the displacement jump as the discontinuity

introduced in the description of the kinematics better describes the actual one.

5. CONCLUSION

When using image correlation algorithms, the measurement uncertainty decreases when the

element size increases. Therefore, it is difficult, if not impossible, to measure accurately

displacement discontinuities when the element size increases. In this context, extended

interpolation schemes, such as those proposed in X-FEM, are appealing since they allow
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for the description of discontinuities in the displacement field even when a coarse mesh is

used. This paper presents an extended finite element formulation suitable for digital image

correlation. Discontinuous as well as singular enrichment functions are introduced in the

interpolation exploiting the partition of unity property of finite element shape functions.

Artificial test cases as well as experimental studies show the advantages of the method for

cracked specimens. In one of the experimental cases where the crack path was not straight,

a crack shape optimization algorithm based on a two-scale multi-field minimization of the

correlation residual was presented.

The proposed technique, which offers the ability of describing the displacement jump as

well as the crack faces geometry, is more flexible than the “integrated approach” previously

proposed to analyze cracked surfaces [18]. However, contrary to the latter approach, the stress

intensity factors are not a direct output of the analysis and the values obtained by using least-

squares [11, 18, 14] or (optimized) interaction integrals [16] may turn out to be sensitive to the

enrichment used. This question constitutes the next step of the present work. Furthermore,

the proposed approach unifies the interpolations used for experimental measurements and

numerical simulations of cracked solids.

Last, there are other situations where the (strong) discontinuity kinematics introduced

herein is significant. Among them, the analysis of friction between different parts in an

assembly is made possible with a very good spatial resolution [15]. Another situation concerns

weak discontinuities involved in localized phenomena (e.g., Piobert-Lüders [6] or Portevin-Le

Châtelier bands [3]). The same type of procedure may be applied with a suitable enriched

kinematics.
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-a- -b- -c-

Figure 1. Various artificial motions applied to a test image. -a-Rigid body translation. -b-Piecewise

rigid body translation. -c-Mixed mode asymptotic crack tip field.
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Figure 2. Displacement uncertainty for a Q4-algorithm when a rigid body translation, a piecewise

translation or an asymptotic crack tip field are artificially prescribed to the reference picture of Figure 1

(resolution: 512 × 512 pixels, dynamic range: 8 bits).
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Discontinuous + singular enrichments Discontinuous enrichments

Figure 3. Typical enrichment configuration: circles denote nodes with discontinuous additional degrees

of freedom and squares nodes with singular additional degrees of freedom.
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Figure 4. Displacement uncertainty for a discontinuous translation obtained with standard Q4 finite

elements and Q4 elements enriched with a discontinuous function.
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Figure 5. Displacement jump uncertainty for a discontinuous translation obtained with Q4 elements

enriched with a discontinuous function.
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Figure 6. Displacement uncertainty for a crack tip field obtained with Q4 finite elements, Q4 elements

enriched with a discontinuous function and Q4 elements enriched with a discontinuous function and

tip functions.
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Figure 7. Displacement jump uncertainty for a crack tip field obtained Q4 elements enriched with a

discontinuous function and Q4 elements enriched with a discontinuous function and tip functions.
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Figure 8. Displacement jump for 16-pixel elements using a discontinuous function and using

discontinuous and tip functions. On the boundary of the image the enriched degrees of freedom are

less constrained then in the interior, then boundary effects are observed. The larger the elements the

more constrained are the enriched degrees of freedom and the less are the boundary effects
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Figure 9. Displacement jump for 32-pixel elements using a discontinuous function and using

discontinuous and tip functions. Here, because of a larger element size the boundary effect is less

important.
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Figure 10. Geometry of the sandwiched beam set-up (a). The brittle sample (N) is put in between two

steel beams (A and B). A three-point bend test is performed. A first stable crack is initiated. Initial

(b) and cracked (c) SiC sample face with a 32-pixel elements mesh and the assumed crack geometry.

In the middle of the lower side, the black spot is the mark of the notch, from which a crack propagates.

The image size is 1008 × 1016 pixels with a conversion factor p = 1.85 µm/pixel.
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Figure 11. Normal (left) and tangential (right) displacement map for the SiC specimen for 32-

pixel elements using: no enrichment (a), discontinuous enrichment (b), discontinuous and singular

enrichments (c). The conversion factor is p = 1.85 µm/pixel.
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Figure 12. Error map Φ for the SiC specimen for 32-pixels element using: no enrichment (a),

discontinuous enrichment (b), discontinuous and singular enrichments (c). The analyzed pictures have
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crack surfaceψ =0
c

ψ =0
f

crack tip

Figure 13. Schematic view of the crack description using level sets. ψf is the front level set and ψc

the crack level set. Their intersection defines the crack tip and their normals are orthogonal. The gray

lines depict the finite element mesh used for the displacement discretization and the gray dots the

finite difference grid used for the level set discretization.
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Figure 14. Left: Region of interest and discontinuity support. The gray line is the real discontinuity,

the black line is the crack used for the calculation. Right: error maps Φ for artificial sinusoidal (a) and

Gaussian (b) discontinuities obtained with 32-pixel Q4 elements and discontinuous enrichment.
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Figure 15. Left: Region of interest and discontinuity support. The gray line is the real discontinuity,

the black line is the crack used for the calculation. Right: error maps Φ after crack shape optimization

for artificial sinusoidal (a) and Gaussian (b) discontinuities obtained with 32-pixel Q4 elements and

discontinuous enrichment. Because of the boundary effects on the edges of the image, the shape

optimization is not performed inside the boundary elements. This is the reason why there is still a

zone at the top and at the bottom wherein the error zone remains the same.
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Figure 16. Horizontal displacement map for artificial sinusoidal and Gaussian discontinuities obtained

with 32-pixel Q4 elements and discontinuous enrichment: -a-initial straight discontinuity, -b-optimized

discontinuity profile.
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42 J. RÉTHORÉ, F. HILD, S. ROUX

1
8

0
 m

m

60 mm

14.5 mm

-a-                                                                   -b-                                                       -c-

detail

150 µm

Figure 17. -a-Reference picture of the CCT test (16-bit digitization, 1024 × 1280 pixel resolution).

-b-Picture with an open crack. -c-CCT geometry.
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Figure 18. Normal displacement map for the CCT specimen using: -a- 32-pixel elements with a

standard Q4 interpolation, -b- 32-pixel elements with discontinuous enrichment, -c- same as top but

using crack shape detection. The conversion factor is p = 2.08 µm/pixel.
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Figure 19. Error map Φ in gray levels for the CCT specimen: -a-Q4 elements, -b-Q4 elements with

discontinuous enrichment, -c-Q4 elements with discontinuous enrichment and crack shape detection.

The dynamic range of the analyzed pictures is 16 bits.
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-a-

-b-

Figure 20. Straight (-a-) and optimized (-b-) crack path for the CCT specimen plotted on the error

maps. The red line is the 0-contour of the crack level set (ψc) the error scale is the same as in Figure 19

and the size of the zone is 868 × 124 pixel.
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Figure 21. Crack opening displacement for 32-pixel elements using a discontinuous function and using

discontinuous and tip functions obtained with the straight and the optimized cracks.
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