Tracking of Cells in a Sequence of Images Using a Low-Dimension Image Representation

Abstract : We propose a new image analysis method to segment and track cells in a growing colony. By using an intermediate low-dimension image representation yielded by a reliable over-segmentation process, we combine the advantages of two-steps methods (possibility to check intermediate results) and the power of simultaneous segmentation and tracking algorithms, which are able to use temporal redundancy to resolve segmentation ambiguities. We improve and measure the tracking performances with a notion of decision risk derived from cell motion priors. Our algorithm permits to extract the complete lineage of a growing colony during up to seven generations without requiring user interaction.
Type de document :
Communication dans un congrès
5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2008, Paris, France. pp.995 - 998, 2008, <10.1109/ISBI.2008.4541166>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00198779
Contributeur : Lionel Moisan <>
Soumis le : lundi 17 décembre 2007 - 19:38:49
Dernière modification le : mardi 11 octobre 2016 - 11:59:09
Document(s) archivé(s) le : lundi 12 avril 2010 - 08:14:55

Fichier

celltracking07.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Maël Primet, Alice Demarez, François Taddei, Ariel Lindner, Lionel Moisan. Tracking of Cells in a Sequence of Images Using a Low-Dimension Image Representation. 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2008, Paris, France. pp.995 - 998, 2008, <10.1109/ISBI.2008.4541166>. <hal-00198779>

Partager

Métriques

Consultations de
la notice

132

Téléchargements du document

120