
HAL Id: hal-00198681
https://hal.science/hal-00198681

Submitted on 17 Dec 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

LusSy: A toolbox for the analysis of systems-on-a-chip
at the transactional level

Matthieu Moy, Florence Maraninchi, Laurent Maillet-Contoz

To cite this version:
Matthieu Moy, Florence Maraninchi, Laurent Maillet-Contoz. LusSy: A toolbox for the analysis of
systems-on-a-chip at the transactional level. International Conference on Application of Concurrency
to System Design (ACSD), Jun 2005, Saint-Malo, France. pp.26 - 35, �10.1109/ACSD.2005.23�. �hal-
00198681�

https://hal.science/hal-00198681
https://hal.archives-ouvertes.fr

LusSy: A Toolbox for the Analysis of Systems-on-a-Chip
at the Transactional Level

M. Moy
STMicroelectronics, Verimag

Matthieu.Moy@imag.fr

F. Maraninchi
Verimag, Centréequation - 2, avenue de

Vignate, 38610 GÌERES — France
Florence.Maraninchi@imag.fr

L. Maillet-Contoz
STMicroelectronics, HPC,
System Platform Group.

850 rue Jean Monnet, 38920 CROLLES — France
Laurent.Maillet-Contoz@st.com

Abstract

We describe a toolbox for the analysis of Systems-on-a-
chip described in SystemC at the transactional level. The
tools are able to extract information from SystemC code,
and to build a set of parallel automata that capture the
semantics of a SystemC design, including the transaction-
level specific constructs. As far as we know, this provides
the first executable formal semantics of SystemC. Being im-
plemented as a traditional compiler front-end, it is able to
deal with general SystemC designs. The intermediate rep-
resentation is now connected to existing formal verification
tools via appropriate encodings. The toolbox is open and
other tools will be used in the future.

1 Introduction
Quality and productivity constraints in the development

tools for the design of “systems-on-a-chip” are increasing
quickly. Reliability becomes a real issue, as the complexity
of designs grows. Verification is known to be the main step
of chip design, in terms of manpower.

The Register Transfer Level (RTL) used to be the entry
point of the design flow, but the simulation environments
for such models do not scale up well. Developing and de-
bugging embedded software for these low level models be-
fore getting the physical chip from the factory is no longer
possible with a reasonable cost. A new abstraction level,
theTransaction Level Model (TLM), is emerging. It uses a
component-based approach, in which hardware blocks are
modules communicating with so-calledtransactions. This
level of abstraction is quite far from the cycle-accurate RTL.

ports
Synchronous

ports
TLM

instruction bus

data bus

ouput port input portmaster port slave port

DMA

Memory

Receiver Transmitter
Asynchronous

Universal
Processor1

Timer
Interrupt
controller

Figure 1. An Example TLM design

The TLM models are used for early development of the em-
bedded software, because the high level of abstraction al-
lows a fast simulation (around 1000 times faster than pure
RTL models, and still much faster than cosimulation).

Just to get the flavor of what a TLM model is, observe
Figure 1. It shows a simplified view of the typical architec-
ture of a system-on-a-chip, namely the ARM’s PrimeXsys
wireless platform. The architecture is made of components
and several kinds of connections. The main master module
is a processor. High level communication is done through
the data and instructions buses, and interrupts are managed
through synchronous signals. Atransactionfrom A to B
is the encapsulation of a potentially complex data structure,
being transmitted according to a complex protocol that may
involve several low-level information transfers in both di-
rections in RTL, but modeled by simple function calls in

TLM. This kind of design is mainlyasynchronous, in the
sense that designers do not rely on a global time scale: a
component is developed without knowing whether the other
components will have the same clock, and that is why syn-
chronization between them involves general protocols.

As TLM models appear first in the design flow, they
becomede factoreference models for systems-on-a-chip
(SoCs). This raises several problems: 1) What does it mean
to validate properties at the TLM level? (including the prob-
lem that SystemC or similar languages do not have a formal
semantics; by validation we mean either simulation or for-
mal verification). 2) Since automatic synthesis from TLM
to RTL does not exist (and will not exist soon), how can we
comparea TLM reference design and a RTL design that is
supposed to implement it, and is partly written by hand? 3)
How can we express and validate non-functional properties
of SoCs at the TLM level?

These questions are key points for the wide adoption of
TLM models in the industry, and are being addressed by a
joint project between Verimag and the SPG team of STMi-
croelectronics. In this paper, we report on the work done for
addressing the first item: how to give a formal semantics to
SystemC and then express and verify properties of a TLM
design written in SystemC [14]? We comment on the other
points in the conclusion.

Related work
SystemC designs beingcircuit designs, we could think

of using one of the verification tools (model-checkers, SAT-
solvers, etc.) developed for hardware verification, for
instance SMV [13]. However, these tools are tailored
for the RTL, exhibiting a clear notion of logical time,
while we need to deal with heterogeneous designs. Het-
erogeneity comes from several places: determinism and
non-determinism, synchronous and asynchronous systems,
hardware and software components. Moreover, these tools
cannot take general SystemC as input.

As far as we know, all the work on verification tech-
niques and tools for SystemC designs are limited to the
subset of SystemC that allows to write RTL designs. It can-
not be used for real TLM designs (See [5] for instance).
[15] treats the SpecC language (similar to SystemC). A date
of execution is associated with each instruction of the pro-
gram, which can then be considered as a dependency graph,
on which synchronization properties can be proved. The
approach is very limited: since only one date can be asso-
ciated with an instruction, this does not allow to consider
general loops.

Now, since SystemC is mainly a C++ library, one could
think that we have to face the same problems as those ad-
dressed by general-purpose software model-checking tools.
This is not the case. Verifying SystemC designs is, on the
one handsimpler, because we do not have to deal with

general dynamic data structures and general algorithmics;
on the other handharder, because we have to take paral-
lelism into account, and to know about the scheduler speci-
fication. General software model-checking techniques con-
centrate on dynamic data structures and general algorithms.
They provide sophisticated tools like invariant extraction,
loop unrolling, etc., but are not directly usable to exploit
the particularities of the SystemC constructs provided as a
C++ library. Using these tools for SystemC would need to
include the non-deterministic scheduler specification in the
tool. Moreover, they usually do not take parallelism into
account. For instance, CBMC [3, 4] can apply bounded
model-checking techniques on pure C models, but does not
deal with parallelism, or with infinite loops. SLAM [1] uses
clever abstractions and refinement techniques, but also fo-
cuses on sequential programs. VeriSoft [6] can handle par-
allel processes written in any language. They are executed
as black boxes, communicating via calls to operating sys-
tem primitives. These calls are intercepted to build a model
of their parallel behaviour. We cannot exploit such a black-
box approach, because we need to extract the transaction-
level specific constructs of SystemC, and aim at treating ad-
dresses in a specific way (see below).

The closest related work is to be found in Java model-
checking, since they take a scheduler specification into ac-
count. The first version of the Java Path Finder model-
checker [8] used an approach similar to ours, translating
Java into the intermediate representation Promela, and us-
ing the model checker SPIN to prove the properties. Ver-
sion 2 [9] checks the byte-code directly, using a dedi-
cated JVM with backtracking capabilities, and lots of other
model-checking techniques. However, the techniques dedi-
cated to Java are not directly applicable, neither to SystemC
and its scheduler, nor to the modeling of synchronous and
asynchronous mechanisms.

Approach and Contributions
We advocate an approach able to exploit all the par-

ticularities of a TLM design written in general SystemC.
The idea is not to express the TLM concepts manually in
yet-another-formalism that can be exploited by verification
tools, but to be able to take real SystemC designs into ac-
count. We describe a method implemented in a new dedi-
cated tool called LUSSY: based on compiler front-end tech-
niques, it is able to extract architecture and synchroniza-
tion information from a TLM design written in SystemC
with very few abstractions, by exploiting carefully the con-
structs provided by the library. It builds its own intermedi-
ate representation calledHPIOM (for Heterogeneous Paral-
lel Input/Output Machines) made of communicating paral-
lel machines, able to represent both deterministic and non-
deterministic components, synchronous and asynchronous
communication protocols, Boolean and numerical data. For

the moment LUSSY connects this intermediate represen-
tation to the symbolic model-checker LESAR [7] and to
the abstract-interpretation tool NBAC [10]. Both tools pro-
vide conservative automatic verification results for safety
properties, and may perform their own abstractions on the
HPIOM representation, when needed. The current state of
the LUSSY implementation is being applied to case-studies
provided by STMicroelectronics; it accepts a large subset of
SystemC.

Translating SystemC intoHPIOM is a way of giving a
formal semantics to SystemC. The faithfulness of the trans-
lation relies on the executability ofHPIOM. TheHPIOM ob-
tained may be tested against the official SystemC execu-
tion engine (we currently use the LUSTREback-end to exe-
cuteHPIOM—It allows either user-friendly debugging or ef-
ficient compilation). LUSSY is an open tool, allowing other
tools (SAT solvers, model-checkers, ...) to be experimented
on HPIOM obtained from SystemC. Finally, studying verifi-
cation methods and tools for TLM designs written in Sys-
temC gives hints on how TLM models should be written to
allow easier use of verification tools. This helps in defining
libraries at the appropriate level of abstraction, and general
guidelines for designers.

The contributions of this paper are: 1) an executable for-
mal semantics for TLM models written in full SystemC,
with an operational translation tool; 2) a way of expressing
safety properties directly in SystemC; 3) a working connec-
tion to verification tools.

Syntactically speaking, LUSSY accepts a very large sub-
set of SystemC, being based on a full C++ front-end; the
only limitation is that the use of templates is restricted to
a fixed set of parameter types, for which expansion can be
performed. The other restrictions are of semantic nature:
the SystemC code is accepted by LUSSY, but the semantics
is made abstract because the target formalism is less expres-
sive than a general-purpose language. This occurs for all
pieces of code that deal with dynamic data structures. We
introduce a specific translation foraddresses, to help identi-
fying the influence of these data on the control. Finally, we
deliberately introduce non-determinism in the translation,
to reflect the non-determinism of the SystemC specification
(choice of the scheduler, uninitialized variables, etc.).

Section 2 explains the TLM level, shows how TLM de-
signs can be written in SystemC, where we need verifica-
tion, and how a dedicated approach can benefit from the
particularities of SystemC TLM designs. We define the in-
termediate representationHPIOM in section 3, and the se-
mantics of SystemC inHPIOM in section 4. We present the
tool LUSSY in section 5, and its use on a simple example in
section 6. Section 7 is the conclusion.

2 The TLM level and SystemC

2.1 SystemC constructs and TLM TAC support
A TLM design written in SystemC is based on anarchi-

tecture, i.e. a set of components and connections between
them (see Figure 1). Each component has typed connection
ports, and its behavior is given by a set of communicating
processesthat can be programmed in full C++. SystemC
provides a scheduler, and several synchronization mecha-
nisms: The low-levelevents, the synchronoussignalsthat
trigger an event when their value changes, and higher level,
user-defined mechanisms based on abstract communication
channels. The architecture may be hierarchical, but this has
no influence on the semantics of the model.

A SystemC design that does not use the high level syn-
chronization mechanisms cannot really be considered as a
TLM design. Using these high level synchronization mech-
anisms requires that the abstract classes provided by Sys-
temC be implemented. The SPG team of STMicroelectron-
ics proposed the TAC implementation (“Transaction Accu-
rate Communication Channel”) as a support for TLM de-
sign in SystemC. This proposal is intended to become a
standard, and has been donated to OSCI (the “Open Sys-
temC Initiative”, gathering major actors of the domain).
The TAC channels provide transaction serialization (with
the tac_seq component), channel locking, and even an
arbitration policy (in thetac_arbiter). In the example
of Figure 1, both the data bus and the instruction bus are
described using TAC channels.

2.2 Execution and verification
Static and dynamic aspects:the architecture is built by

executing the so-calledelaboration phaseof the SystemC
program, which performs dynamic object allocations, for
all components and connections. Then the set of compo-
nents is known for all the execution time. The scheduler
starts running the processes of the components, according
to the algorithm of Figure 2. Initially, allprocessesare eli-
gible. Processes are ran one by one, non-preemptively, and
explicitly suspend themselves when reaching a waiting in-
struction. There are two kinds of waiting instructions: a
process may wait for some time to elapse, or for an event
to occur. While running, it may send events, or write on
signals. These actions are stored in the data structureF, un-
til the end of the so-calledevaluation phase; then they are
taken into account one by one: an event awakes the pro-
cesses that were waiting for it; a signal write is stored in
V for the next reads. When there is no more eligible pro-
cess at the end of an update phase, the scheduler lets time
elapse, awaking the processes that have the earliest dead-
line. (Note that this algorithm gives only the simpler cases.
Uninitialized processes, instantaneous notification for ex-
ample would add particular cases.)

As far as verification is concerned, the architecture being
static is a crucial point: the set of processes is known once
and for all, and the topology of the connections does not
change. When we want to prove properties about the be-
haviors of SystemC designs, we have to deal with: a fixed
set of processes, a fixed architecture, a fixed set of signals
and events exchanged, and the scheduler.

Synchronization code vs. complex algorithms:a typ-
ical TLM design exhibits a clear distinction between the
potentially complex algorithmics of some components, and
the code dedicated to synchronization. For instance, a pro-
cessor may be included in the design, with SystemC code
describing the interpreter of its machine language. In this
case, the code intented to be run on the processor is pro-
vided separately.

In this paper, we will focus onsafety functional synchro-
nization propertiesof TLM models (safetyas opposed to
liveness[11] andfunctionalas opposed toperformance). If
a processor is present in the design, this means treating it in
a very abstract way. The program it runs might be checked
by other techniques (software model-checking or theorem-
proving); the processor component may then be replaced
by very simple SystemC describing how it is connected to
the other components, and abstracting all its behaviour. The
properties that can be checked on such an abstracted TLM
design cannot depend on the details of the algorithms run
by the processor, but this is good design practise, anyway.

2.3 Expressing properties

Generic propertiesdo not require the use of a specifi-
cation language. In LUSSY we can express and check the
following:
— Check that a global dead-lock never occurs. We consider
that a global dead-lock occurs when SystemC scheduler en-
ters the “time elapse” phase while no process is waiting for
time. In the example of figure 1, this might happen if the
processor is waiting for an interrupt, if the other processes
are waiting for transactions to process.
— Check that a process never finishes. This should always
be the case except for test benches.
— Check that a synchronous signal is never written on twice
during the sameδ-cycle. This is a dangerous situation since
the final value on the signal will depend on the order of exe-
cution, which is most probably dependent on the scheduling
policy. In the example, if one process of the interrupt con-
troller raises the interrupt signal while another cancels it,
there is a data race.

In order to specify and prove user-defined properties of
SystemC designs, we need a specification formalism. The
idea in LUSSY is that the user should not have to learn a
timed logic language. The property should be written in
the same language as the implementation. We may check
that some portions of code are mutually exclusive. This is

slightly intrusive in the source code since the beginnings
and ends of the critical sections have to be specified. Finally
the most general safety properties are expressed by asser-
tions in the source code:ASSERT(condition) . Techni-
cally, theASSERTmacro is defined by:
#define ASSERT(X)

if(!(X)){is_this_reachable();}
so the problem of assertion verification is reduced to the
problem of code reachability.
__
E: the set of eligible processes
S: a set of tuples (P, e) of sleeping processes

waiting for events
T: a set of tuples (P, t) of processes

associated with time events
F: a set of event or signal consequences:

(EV, e) or (SIG, s, v)
V: a set of tuples (s, v) for signal values
E := { all processes }
loop until the end of simulation

// one execution of the following loop body is a δ-cycle
while E 6= ∅

// the so-called evaluation phase:
while E 6= ∅

P := one element in E ; E := E − { P }
run P, while filling F and reading signal values in V,

until it stops:
if P emits an event e: F := F ∪ { (EV, e) }
if P writes a value v on a signal s:

F := F − { (s, ...) } ∪ { (s, v) }
if P stopped on a wait-time (t)

T := T ∪ { (P, t) }
if P stopped on a wait-event

S := S ∪ { (P, e) }
end
// the so-called update phase:
For each element f in F

if f = (EV, e) then
for each (P, e) in S :

E := E ∪ { P }; S := S − { (P, e) }
if f = (SIG, s, v) then

V := V − { (s, ...) } ∪ { (s, v) }
endend

// let time elapse:
min = minimum value of the ti’s in the set T = { (Pi, ti) }
for each element x=(Pk, min) in T

T := T - { x } ; E := E ∪ { Pk }
end

end loop
__

Figure 2. The SystemC scheduler algorithm.

2.4 Didactic example of a TLM design

To illustrate the transformation from SystemC toHPIOM,
let us introduce a minimal example (see figure 3). For clar-
ity, we only show the body of the processes, and the meth-

ods called to process transactions in the slave modules. The
system contains two master modules and two slave mod-
ules. They are connected through atac seq channel. The
program containsassertionsfor the properties we want to
verify.

}
 == false);

int x = 4321;
int address = 0;
tlm_status s;
while(true) {
 s = port.write(address, &x);
 ASSERT(!s.is_no_response());
 ASSERT(!s.is_error());
}

status_master

int x;
int address = 8;
tlm_status s;
while(true) {

out_bool.write(false);
 s = port.write(addr, &x);
}

tac_seq

if(data == 4322) {
 set_access_error();

status_slave

signal_master

 ASSERT(in_bool.read()

signal_slave

signal
boolean

Figure 3. An example transactional system

The target port of the modulestatus_slave (resp.
signal_slave) is mapped at the address 0 (resp. 8): It
will receive the transactions initiated bystatus_master
(resp. signal_master). The call to the method
write on an initiator port searches for a slave mod-
ule mapped at the corresponding address, and calls the
WriteAccess method on it. If no module is mapped
at the address written on, then nothing happens, and the
status returned verifiesstatus.is_no_response() .
If a module is mapped at this address, the status re-
turned verifiesstatus.is_ok() unless the method
set_access_error() has been called during the
WriteAccess call.

In this example, the behavior highly depends on the
value of variables representing addresses (the action trig-
gered by the write will be totally different depending on the
address on which we write), and may also depend on data
(because of theif statement) (but there is no complex al-
gorithmics).

3 HPIOM: Heterogeneous Parallel In-
put/Output Machines

A basic automatonA is a reactive machine made of a set
of control points, a set of labeled transitions between con-
trol points, and a set of variablesV . A stateof such an
automaton is made of a control point and a valuation of the
variables. Automata communicate through messages. Tran-
sition labels are made of:
— a guard, which is a Boolean expression made of elemen-
tary tests on the variables ofV (eg: [x < 3]) and tests on
the presence of a message (eg:?message).

— a list of messages emitted, denoted by! message,
— a set of parallel assignments denoted byv := e where
v ∈ V ande is an expression onV .

The messages that appear in the conditions of the transi-
tions (resp. the list of emitted messages) are calledinputs
(resp.outputs). Such an automaton reacts to a sequence of
inputs by emitting a sequence of outputs, and modifying its
internal state. If there is a transition fromcp1 to cp2 labeled
by g1/e1a1 (a guard, a set of emitted messages, a set of
assignments) in the automaton, then from a state(cp1, v1),
provided the conditiong1 is satisfied by the valuationv1, the
automaton can reach a state(cp2, v2) wherev2 is obtained
from v1 by executinga1, emitting the messages ine1.

All the basic automata arereactive: from any state, with
any input configuration, the transition of the automata is de-
fined. However, in the concrete syntax, we usually omit
self-loops. All the automata are alsodeterministic: from
any state, for any input configuration, there is a most one
possible transition.

The automata are composed in parallel using thesyn-
chronous product: a step of the global system involves ex-
actly one step in each of the parallel automata, and is ob-
tained by performing the conjunction of the guards, the
union of the emitted messages, and the union of the assign-
ment sets (provided they do not intersect). This product
does not perform any synchronization between the paral-
lel components. When two automata have to communicate,
they share a messagex which is an input on one side, and an
output on the other side. In their product,x is both an input
and an output. Then an encapsulation operator is used to
force synchronization throughx , and hide it. It expresses
the semantics of the synchronous broadcast of signals in
all synchronous languages, on which the reader can find
more details in [12]. The intuitive behavior is the following:
when one of the parallel components (or several at the same
time) sends a messagex , all the other components that are
in the scope of the encapsulation operator forx take the cor-
responding transition (since they are reactive, this transition
always exists). This reaction issynchronous, meaning that
there is only one transition in the resulting automaton. The
synchronous broadcast used here is known to raise so-called
“causality” problems [2]. TheHPIOM models obtained with
our translation scheme are free of this kind of problems.

As usual in this kind of formalism, non-determinism is
modeled by additional inputs calledoracles. For instance, a
non-deterministic situation that would imply two transitions
(cp, g/e1a1, cp1) and(cp, g/e2a2, cp2) is in fact written as
(cp, g∧?i/e1a1, cp1) and(cp, g∧¬?i/e2a2, cp2) wherei is
an additional input message. This mechanism is used when-
ever a SystemC design exhibits non-determinism: The ini-
tial values of uninitialized signals, the choice of a process
to run by the scheduler, etc.

4 Semantics of SystemC intoHPIOM

4.1 Principles
The translation intoHPIOM does not perform more ab-

stractions than those implied by the expressivity ofHPIOM

compared to that of SystemC (see section 4.2). Since most
interesting properties are undecidable onHPIOM, further ab-
stractions will have to be made, but we let them to specific
verification tools connected toHPIOM.

On the other hand, we could translate SystemC processes
taking the scheduler and the synchronization primitives into
account, but not the TLM constructs, which would then be
treated as ordinary C++ code. This would lead us to lose
interesting information about the structure and behavior of
the design. We have chosen to take TLM constructs into
account during the translation, which means giving a direct
HPIOM semantics to TLM constructs.

Of course, since SystemC has no formal semantics, a
formal proof of the equivalence between a SystemC source
file and the correspondingHPIOM representation built by
LUSSY is impossible.HPIOM being executable means exe-
cutions can be compared, but it is also of great importance
to give a semantics to SystemC intoHPIOM in a simple,
well structured and clearly decomposed manner, which we
describe here. This leaves room for optimizations.

The main idea is the following: 1) each process in Sys-
temC will be associated with one automaton inHPIOM; 2)
the completeHPIOM description of a SystemC design will
be made of all these “process” automata, plus specific au-
tomata for SystemC and TLM constructs.

The automata representing the body of the processes
are extracted from the information obtained with the C++
front-end. Each process gives an automaton representing its
control structure. For the SystemC library structures, the
method is different: we never parse the SystemC library
source code itself. We describeHPIOM patterns, based on
the SystemC library specifications: there is an automaton
pattern for the scheduler, one for each signal, etc. To gener-
ate instances of these patterns, we need to extract additional
information from the SystemC design: for the scheduler we
need the number of processes in the system, for channels
we need the number of connected modules, etc.

4.2 Expressivity ofHPIOM and abstractions

HPIOM may be used to encode any statically bounded-
memory program. In SystemC, static bounds are guaran-
teed if: 1) the program does not perform dynamic memory
allocation; 2) there are no calls to recursive functions.

The semantics of SystemC intoHPIOM abstracts memory
allocation primitives and recursive function calls into new
input messages with unknown value. We also do that for
not yet implemented constructs of SystemC, to get a work-
ing connection to verification tools before full SystemC has

been taken into account by the front-end. These abstrac-
tions are clearly conservative for safety properties: the set
of behaviours a SystemC code may exhibit when consider-
ing two complex expressions, is a superset of the set of be-
haviours it can exhibit when considering the detail of these
expressions.

Another abstraction (which is optional) is related to the
way addresses are dealt with. In SystemC, addresses are
simply int values. If nothing special is done in the trans-
lation, addresses become ordinary variables inHPIOM, and
any property related to addresses has to be transmitted to a
verification tool able to deal withint s. However, in the
SystemC source code, it is possible to distinguish adresses
from other int s. For addresses, we propose an encod-
ing based upon the existence ofaddress maps. Indeed, in
SystemC, the significant values of the address variables are
given by the address maps used to describe the connection
between components. Such a map is a partition ofN into
a finite number ofrangesR1, ..., Rn. With eachRi, we
associate a Boolean variablebi. An address variablex is
then encoded by a valuation of the vectorb1 ... bn. A con-
stant valuek ∈ Ri is encoded intobi = 1, bj 6=i = 0. As
soon as we manipulate addresses, we may lose information,
resulting in encodings where∃i 6= j . bi = bj = 1, mean-
ing the value ofx is in rangeRi or in rangeRj . This is
conservative for safety properties. It simplifies the proofs a
lot, and has proved to be sufficient on the examples we tried
(the computation time for the proof fell down from several
hours to less than a second on the example platform).

The last abstraction (which is also optional) is related
to asynchrony. SystemC is intended to model and simulate
asynchronouscomponents. Although it provides a construct
wait (t) wheret is an amount of time, guidelines spec-
ify that this quantitative timet should not be used to en-
force synchronization (i.e., the designer should not assume
that two processes that perform the samewait (t) will
synchronize whent has elapsed). The “time-elapse” phase
of the scheduler algorithm (Figure 2) awakes the processes
in the order specified by thewait parameters. In our trans-
lation, they are woken-up non-deterministically (encoding
non-determinism with oracles). This means that theHPIOM

model has more behaviours than what the SystemC inter-
preter may exhibit. This conservative abstraction enforces
the guideline: if a safety property can be proved on the
HPIOM model, then it is true that thewait statements have
not been used to enforce synchronization.

4.3 Semantics of process code intoHPIOM

Compiling imperative code into automata is a well
known problem and there is no semantic difficulty here.
However, the abstract syntax tree for a C++ contains a lot
of particular cases, and a lot of them have to be taken into
account if we want to apply our tool to real-world SystemC

designs. Hence this part of the translation represents a sig-
nificant part of the work. Thewhile loop is given in figure
4 as an example.

Abstractions: the translation of C++ code has to per-
form some abstractions due to the absence of dynamic struc-
tures in HPIOM. For instance, we cannot translate C++
code performing memory allocations. Non-recursive func-
tion calls can be inlined (at the syntax tree level), but other
have to be abstracted away.

[x < 3]

[x >= 3]

x := x + 1

while (x < 3) {
x := x + 1;

}

Figure 4. Control flow for a while loop

4.4 Semantics of the synchronization primitives
and the scheduler

Expressing the semantics of the scheduler by some syn-
chronizations between theHPIOM automata may be done in
several ways. The global communication scheme is shown
in figure 5 and will be detailed below. The semantics of the
SystemC scheduling policy is modeled by one automaton
for the scheduler, plus two per process. The fist one rep-
resents its control structure (as explained above), and the
other one represents its state in the scheduler (figure 6): The
process may be either running, ready to run (eligible), or
sleeping (blocked in a wait statement for aSCTHREAD,
or execution over for anSCMETHOD.). The synchroniza-
tion between the two is such that the first automaton (rep-
resenting the control structure) may change state only if the
second one is in state “running”.

wait

wait

control structure

of the process

state of

the process

scheduler

update

elect

wait

event
wakeup

wait state of

the process

of the process

control structure
elect

notify

Figure 5. Global view of the communication
between the automata in HPIOM

The scheduler itself is represented by an additional au-
tomaton (figure 7). It starts in a state “selectingprocess”.
At that moment, all the processes are eligible. The Sys-
temC official definition lets the choice between the eligible
processes unspecified. In our model, the scheduler chooses
one process non-deterministically: when we prove a prop-
erty of a SystemC design including this non-deterministic

Sleeping1

Eligible Running

?wait 2

?elect

?wait 1

[c1] !wakeup

[c2] !wakeup

Sleeping2

Synchronizations:
elect: received from the scheduler when the process is cho-
sen,
wakeup: sent to the control structure,
wait 2: received from the control structure when await
statement is reached,
c1 andc2 correspond to the conditions the process is wait-
ing for in the corresponding “sleeping” state.

Figure 6. State of a SystemC process

scheduler, we prove it for any possible implementation. The
election corresponds to the transitions emittingelect_n
on figure 7. Then the scheduler runs the elected process:
in the automaton representing the state of the process, this
means taking the transition from “eligible” to “run”. When
the process has finished its execution (go to “sleep” state),
the scheduler selects another one, and so on until there is
no more process eligible. Then, the scheduler goes to the
update phase.

! update updatedelta

[¬
W
n

(eligiblen)]

selectingprocess

?waitn

processrunning

!electn
[

W
n

(eligiblen)]

time elapse

Synchronizations:
elect n: sent to the corresponding process state automaton
and control structure
wait n: received from the corresponding process state au-
tomaton
update: sent to all processes that may have an action to ex-
ecute during the update phase

Figure 7. Pattern of the SystemC scheduler.

The low-level synchronization primitive in SystemC is
called ansc_event . C++ objects of typesc_event ,
like other SystemC objects, are instantiated only during the
elaboration phase. During the simulation, the operations
available for ansc_event are:
— notify() : the event is triggered immediately,
— notify(SC ZEROTIME) : the event will be triggered

at the end of theδ-cycle,
— notify(time) : the event is scheduled to be triggered
at some date in the future.

We also build one HPIOM automaton for each
sc_event , according to the pattern of figure 8. It has one
initial state plus one state for each kind of delayed noti-
fication. The immediate notification is modeled by a sin-
gle transition. In any case, the transition going back to the
initial state is the transition triggering the event. It emits
a message that will move processes waiting for that event
from the “sleeping” state to the “eligible” state.

?time_elapse

idle

delta

timed

!trigger
?notify_inst

?update
!trigger

!trigger

?notify_zero

?notify_time

Synchronizations:
notify ... messages are received
from the control structure when a
notify statement is encountered,
trigger goes to the process state au-
tomaton, and will make the condi-
tion to the “eligible” state true,
update andtime elapseboth come
from the scheduler.

Figure 8. Pattern for an sc event

4.5 Direct semantics of TLM constructs
As mentioned previously, although TLM constructs are

library components whose code could be translated using
the above translation schemes, we advocate a translation
in which these constructs are given a direct semantics in
HPIOM. This allows to exploit the information they give on
the structure of the design. In this section, we sketch the
HPIOM encoding of the TAC Channel.

A TAC channel is a bus that may be connected to several
mastermodules able to initiate transactions through it, and
to severalslavemodules receiving these transactions. Tech-
nically, in the SystemC TAC code, initiating a transaction on
a TAC, with some address, results in a function being called
in the slave corresponding to the address. The TAC may be
idle if no transaction is initiated; it may also deal with sev-
eral transactions “at the same time” (meaning: in the same
execution of the main loop of the scheduler algorithm, Fig-
ure 2). In this case, atac seq will treat them in arrival
order, atac arbiter will use an arbitration policy. The
principles of the encoding intoHPIOM are the following.

Wait for the channel to be available First, for each mas-
ter port, we create a “waiting” automaton synchronized with
the master and with the TAC: it simulates the master process
waiting for the TAC to be available (Figure 9). If the TAC
is not available when a transaction is initiated by a master,
the master should let other processes run. It will become
eligible again when the TAC selects its transaction.

Select transaction and resolve the addressThe TAC it-
self is modeled by the complex automaton of Figure 10.

execinit

waiting

Synchronizations:

from the channel when it is

available.

communication with the

scheduler to wait until

the transaction processing is

over.

channel_is_free is present.

− return_status is received when

− wait and elect are

− channel_is_free is received

access=
addr=
data=

? returnstatus

! wait ...

? elect

! launcharbitration

? channelis free
! port rdy

t rec

Synchronizations:
channel is free is received from the channel when it is
available.
wait andelectare communication with the scheduler to wait
until channel is free is present.
return status is received when the transaction processing
is over.

Figure 9. Wait for channel availability

wait_loop

wait_loop

wait_loop

fifo

channel_is_free

pop_req

ch_start

start

init

[no answer]

ready
! pop_req

! channel_is_free
? ch_start

! channel_is_free

? port_rdy
! start_slave

? answer
acked

! really_start
exec

desync

? return_status
! wait(time)

! return_status

? elect

TAC slave

Figure 10. Pattern for a tac seq

It loops in the initial state until it receives a transaction.
When transactions are ready to be executed, values iden-
tifying them are entered in a FIFO (we encode finite FIFOs
into HPIOM). The automaton of the channel processes them
one by one and goes to state “ready”. A message is sent to
all the automata modeling slaves, and those whose address
map matches answer. If the channel gets no answer, then it
returns immediately, with a statusis_no_response . In
the example above (figure 3), the first process elected will
send the first transaction which will be processed immedi-
ately, and the next one will be queued until the transaction
is processed.

Execute the corresponding method in the slave module
When the transaction has been selected and the slave iden-
tified, the body of the corresponding method in the slave
module is executed and the status is returned (state “exec”
on figure 10). (The scheme is a bit simplified here, since the
channel has to communicate with several instances of slave
modules.)

Simulate a wait to allow other processes to execute
If a slave module answered, then the automaton of Fig-
ure 10 simulates await statement on a time duration (state

“desync”). This is included in the protocol to allow other
processes to execute (which is necessary because the sched-
uler is not preemptive). In the example, this means that the
second transaction will be processed before the control flow
of the first one comes back to the master module.

5 The tool LusSy

The tool LUSSY has an internal structure similar to the
one of a compiler (figure 11). The front-end (called Pinapa)
extracts information from the system, a second pass com-
piles it into an intermediate representation calledHPIOM,
taking the semantics of SystemC into account, and a code
generator gives a textual representation for it, which can be
used as input by other tools. Our SystemC front-end com-
bines a traditional compiler front-end with a runtime infor-
mation extractor. We use the front-end of the GCC compiler
to get the abstract syntax tree of the body of the processes.
But then we need to extract information from the runtime
system, right after the execution of the so-called “elabora-
tion phase” of SystemC, that builds the components and the
connections between them (typically, which signal a port is
connected to). We also need to link this information to the
abstract tree.

The HPIOM representation can easily be converted into
several formats usable by external tools. We now have
a LUSTRE back-end that allows us to use LESAR and
NBAC, and two visualization back-ends (one to view the
connections between automata and one to view the au-
tomata themselves) using thedot format of the graphviz
(www.graphviz.org) package.

LusSy

Automaton in
nbac format

Automaton in
Lustre format

Automaton in
Dot format

TRUE/

FALSE

Analyzer

lus2nbac

nbac

library
SystemC GCC

front-end

HPIOM

SystemC netlist
+

Syntax Tree

SystemC source

Execution

Lustre generator

backends
Visualization

lesar

Pinapa: SystemC parser

Figure 11. Tool chain

6 Applying LUSSY to the example

Let us come back to the example from section 2.4. In the
modulesignal_master , we write a value on the chan-
nel at the address 8 after writing the valuefalse on a sig-
nal. The modulesignal_slave , mapped at this address,
will receive the transaction, and check that the value of the
signal isfalse . This may seem trivially true, but it is not:
the semantics ofsc_signal says that the value is actually
taken into account only at the nextδ-cycle. As there is no

wait statement between thewrite and theread state-
ments, the value read is the previous value. During the first
iteration of the loop, the value read is the initial value of the
signal. In practice, with the current implementation of the
SystemC library, the value is initialized tofalse , but it is
clear from the SystemC specifications that the initial value
is unspecified. So the bug does not appear during simula-
tion, but NBAC can not prove the property. The diagnosis
provided when the proof fails gives the condition on the ini-
tial value of the signal (true), that causes the bug. If we
explicitly initialize the signal tofalse , then, the property
becomes provable, and if we explicitly initialize it totrue ,
then, the property is false and the assertion is actually vio-
lated during execution. Now, we have identified the bug, we
can fix it by adding a wait statement:
while (true) {

out_bool.write(false);

wait(SC_ZERO_TIME);

status = master_port.write(address, x);

}

Then, the assertion is verified, and NBAC is able to prove
the correctness of the assertions. Now, look at the module
status_master . It just writes on the channel, and tests
the status returned. If we write, at a mapped address, a value
not equal to 4322, then the property is true, and provable
by NBAC (but not by LESAR, since the property is data-
dependent). If we change either the address written to, or
the address map to make it write on an unmapped address,
then, the first assertion becomes false. If we write the data
4322, then the slave sets the error flag, the second assertion
becomes false, and the proof fails.

On this example, we have the complete verification flow.
The prover has been able to prove true properties with no
manual intervention in less than one second. The model
contains 28 automata in parallel, with a sum of 104 states,
196 transitions, 10 numerical variables and 50 Boolean vari-
ables. This seems quite a lot in comparison to the size of the
source, but the global state-space is not as large as it seems
to be, because the system is made of a lot of tightly synchro-
nized small automata. Moreover, we use symbolic tools, for
which the number of variables is the key point, and not the
number of global states. Optimizations have to address the
number of variables first.

7 Conclusion
We have presented our approach and tools for the anal-

ysis of SystemC transactional models. Starting from the
source code of a SystemC design, we parse it using GCC’s
C++ front-end and the SystemC library itself, then trans-
form it into a set of automata, and finally dump it in the
Lustre language. The implementation is operational and
the faithfullness of the translation has been validated on ba-
sic examples, by comparing the executions of the generated

Lustre with the executions of the “official” systemC imple-
mentation.

We experimented the connection to two different model-
checkers that do not perform the same amount of abstrac-
tions. The main idea of the approach is to extract as much
information as possible from the SystemC design, and let
the verification tools perform the abstractions they need.

This work has also helped getting a better understand-
ing of the dangerous constructs of SystemC. We identified
several cases of data-race conditions. For example, writ-
ing twice on the same signal during the sameδ-cycle, most
cases of immediate event notification, and unfortunately
the current implementation of the TAC channels lead to
scheduler-dependent behaviors. Global variables or inter-
module function calls are both dangerous and irrelevant to
hardware modeling. These remarks led to the first SystemC
guidelines. For instance the latter leads to a guideline that
requires the use of explicit SystemC or TLM constructs to
model communication, and forbids the use of shared mem-
ory mechanisms.

Further work: We are currently applying the whole
approach to a significant case-study provided by STMicro-
electronics, in order to identify optimizations of the encod-
ing. We will also experiment onHPIOM traditional compiler
techniques like live variable analysis.

LUSSY being open, we can easily move to another
model-checker, by writing a translator fromHPIOM to its in-
put format. We are starting experimentations with SMV and
SAT solvers. One of the easiest to try is the tool by Prover
Technologies. Indeed, Lustre is the basis of the SCADE
environment provided by Esterel Technologies, which is
equipped with a plug-in by Prover Technologies, providing
SAT solving and Presburger arithmetic. Our translation of
HPIOM into Lustre can be directly used in SCADE.

As LUSSY provides a formal semantics of SystemC,
it can be the basis of a toolbox for the development of
systems-on-a-chip at the transactional level, providing tools
for all the questions related to TLM design: verification and
test at the TLM level, comparison of TLM and RTL levels,
analysis of non-functional properties. For instance, the for-
mal semantics can be used as a support for the automatic
generation of test sequences, intended to be run on both the
TLM design and a corresponding RTL design. This refer-
ence semantics is also the necessary starting point for com-
paring executions at different levels of abstraction.

Since HPIOM preserve the potentially complex algo-
rithms of SystemC code, powerful software verification
techniques could be used, (invariant extraction, predicate
abstraction, etc.). We could also consider extendingHPIOM

to manage dynamic data-structures, but this would require
efficient support in the provers. A more promising approach
is the systematic use ofcontractsfor some of the compo-
nents. We already mentioned the case of processor compo-

nents: a processor is an interpreter of the binary code, and
it has to deal with complex data which is the code C to be
executed! C should be abstracted (the values exchanged be-
ing replaced by unknown values encoded by inputs) but we
need some assumptions about the behavior of the processor
concerning the way it synchronizes with other components.
This can be described by a contract.

References

[1] T. Ball and S. K. Rajamani. Boolean programs: A model and
process for software analysis. Technical report, Microsoft
Research, February 2000.

[2] G. Berry. The foundations of Esterel.Proof, Language and
Interaction: Essays in Honour of Robin Milner, 2000. Edi-
tors: G. Plotkin, C. Stirling and M. Tofte.

[3] E. Clarke and D. Kroening. Hardware verification using
ANSI-C programs as a reference. InProceedings of ASP-
DAC 2003, pages 308–311. IEEE Computer Society Press,
January 2003.

[4] E. Clarke, D. Kroening, and F. Lerda. A tool for check-
ing ANSI-C programs. In K. Jensen and A. Podelski, edi-
tors,Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2004), volume 2988 ofLecture Notes in
Computer Science, pages 168–176. Springer, 2004.

[5] R. Drechsler and D. Grosse. Formal verification of LTL for-
mulas for systemc designs.
http://www.informatik.uni-bremen.de/grp/ag-ram/doc/

konf/iscas03 verification systemc.pdf .
[6] P. Godefroid. Model checking for programming languages

using VeriSoft. In ACM, editor,Conference record of POPL
’97, the 24th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages: papers presented at the
symposium, Paris, France, 15–17 January 1997, pages 174–
186, New York, NY, USA, 1997. ACM Press.

[7] N. Halbwachs, F. Lagnier, and C. Ratel. Programming and
verifying critical systems by means of the synchronous data-
flow programming languageLUSTRE. IEEE Transactions on
Software Engineering, Special Issue on the Specification and
Analysis of Real-Time Systems, Sept. 1992.

[8] K. Havelund. Java pathfinder: A translator from java to
promela. Sept. 30 1999.

[9] K. Havelund, S. Park, and W. Visser. Java pathfinder - second
generation of a java model checker. May 27 2000.

[10] B. Jeannet. Dynamic partitioning in linear relation analysis.
application to the verification of reactive systems.Formal
Methods in System Design, 23(1):5–37, July 2003.

[11] L. Lamport. Proving the correctness of multiprocess pro-
grams. IEEE Transactions on Software Engineering, SE-
3(2):125–143, 1977.

[12] F. Maraninchi and Y. Ŕemond. Argos: an automaton-based
synchronous language.Computer Languages, (27):61–92,
2001.

[13] K. L. McMillan. Symbolic Model Checking. PhD thesis,
Boston, 1993.

[14] Open SystemC Initiative.SystemC v2.0.1 Language Refer-
ence Manual, 2003.http://www.systemc.org/ .

[15] T. Sakunkonchak and M. Fujita. Verification of synchroniza-
tion in SpecC description with the use of difference decision
diagrams. InFDL, 2002.

