Large Deviations Analysis for Distributed Algorithms in an Ergodic Markovian Environment

Abstract : We provide a large deviations analysis of deadlock phenomena occurring in distributed systems sharing common resources. In our model transition probabilities of resource allocation and deallocation are time and space dependent. The process is driven by an ergodic Markov chain and is reflected on the boundary of the d-dimensional cube. In the large resource limit, we prove Freidlin-Wentzell estimates, we study the asymptotic of the deadlock time and we show that the quasi-potential is a viscosity solution of a Hamilton-Jacobi equation with a Neumann boundary condition. We give a complete analysis of the colliding 2-stacks problem and show an example where the system has a stable attractor which is a limit cycle.
Type de document :
Article dans une revue
Applied Mathematics and Optimization, Springer Verlag (Germany), 2009, 60 (3), pp.341--396. 〈10.1007/s00245-009-9079-8〉
Liste complète des métadonnées

Littérature citée [30 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00198408
Contributeur : Francois Delarue <>
Soumis le : lundi 17 décembre 2007 - 11:36:53
Dernière modification le : lundi 29 mai 2017 - 14:23:49
Document(s) archivé(s) le : lundi 12 avril 2010 - 08:08:37

Fichiers

CDSdec07.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Francis Comets, François Delarue, René Schott. Large Deviations Analysis for Distributed Algorithms in an Ergodic Markovian Environment. Applied Mathematics and Optimization, Springer Verlag (Germany), 2009, 60 (3), pp.341--396. 〈10.1007/s00245-009-9079-8〉. 〈hal-00198408〉

Partager

Métriques

Consultations de
la notice

555

Téléchargements du document

242