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Elongation and burst of axisymmetric viscoelastic droplets: a numerical study

J. Beaucourt, T. Biben, and C. Verdier
Laboratoire de Spectrométrie Physique, CNRS - Université Joseph Fourier (Grenoble I),
B.P. 87, Saint-Martin d’Héres, 38402 Cedezx, France

The dynamics of elongation and burst of an isolated viscoelastic drop are investigated numerically
in the special case of a viscosity ratio A=1. We show that the burst threshold is not affected by
viscoelasticity itself, whereas the stationary drop morphology does. A cusp at the tips of the drop
can even be observed when elastic effects are large. The burst dynamics is very sensitive to the
presence of viscoelasticity: at low elasticity burst is slowed down while for large elasticity levels it
becomes even faster than the Newtonian situation.

The pioneering works of Taylor [1] opened the way to a wide series of studies of elongation and breakup of Newtonian
droplets. These original contributions lead to an analytical expression for the deformation of an isolated Newtonian
droplet in a Newtonian matrix, in the limit of small deformations. Those results have been progressively refined
and extended [2, 3]. Up to day, a general overview of the dynamical behavior of such droplets in a large variety
of flows can be sketched. This system is entirely characterized by two dimensionless numbers, the capillary number
Ca which compares the applied stress to the resistance of the drop due to surface tension effects, and the viscosity
ratio between the internal and external fluids A. Depending on the value of these parameters, several behaviors can
be observed, and we refer the interested reader to the reviews on these questions by Rallison [4] and Stone [5] and
references therein. Due do its fundamental importance in the description of the rheological properties of multiphase
flows, several studies have been devoted to the presence of interfaces in dilute suspensions, first by Oldroyd [6, 7]
and then by Palierne who extended these studies to the viscoelastic case [8]. Although these important studies are
limited to small deformations due to the highly non linear and free boundary nature of the problem, their predictions
have been successfully compared to experimental results in the case of uniaxial elongational flows [9]. The case of
viscoelastic droplets is more complicated since viscoelasticity implies retarded effects due to energy storage. This
energy storage is characterized by at least an extra parameter, a relaxation time, but the actual situation is much
more complicated. Several models indeed exist, which can contain as much as eight independent parameters [10]. This
feature reflects the complexity of the experimental situation where the precise chemical structure of the polymers in
presence can strongly affect their viscoelastic response. For the sake of simplicity we shall restrict here the discussion
to an Oldroyd-B fluid, for which viscoelasticity is accounted for by two extra parameters: a relaxation time describing
the elastic storage and a viscosity.

Only a few numerical attempts have been made so far to investigate the droplet dynamics in an elongation flow.
Maffettone and Greco used an asymptotic expansion for small capillary numbers to determine the droplet shape and
stability curves [11]; they showed that elasticity has little or no effect on the critical capillary number. Ramaswamy
and Leal [12] solved the complete free boundary problem in the steady regime using the Chilcott-Rallison (CR) model.
They showed that the effect of viscoelasticity is rather complicated, because of the combined effects of viscoelastic
stresses at the tips and the viscous forces due to the change in the flow within the droplet.

In this paper, we focus on the dynamical behavior of an isolated droplet containing a dilute suspension of polymers,
the drop being subjected to a hyperbolic flow. This is the natural extension of a previously published work on
the elongation and breakup of a Newtonian drop in an extensional flow [13], which allowed us to validate a phase
field description of the interface. Classical numerical methods (Finite Element Method (FEM) or Boundary Element
Method (BEM)) have been used for this problem in the case of pure elongation [14, 15], but to our knowledge these
methods have never been applied to the breakup situation itself.

The first section is devoted to the governing equations and the relevant parameters, we also briefly describe the
phase field approach we shall use (the appendix is devoted to the more technical aspects of the numerical scheme). The
phase field approach has already been used for the description of other physical mechanisms, from the original works
by Collins & Levine [16] for the simulation of diffusion-limited crystal growth, extended to the problem of dendritic
growth by Kobayashi [17], and latter by Karma & Rappel [18] to stress-induced instabilities in solids by Kassner &
Misbah [19]. In fluid mechanics, Hele-Shaw instabilities [20, 21], Marangoni convection [22], vesicles dynamics [23] or
polymer blends [24] are examples of applications of this method. The next two sections are devoted to the study of
the elongation process when the applied constraint is increased: while the steady states are the subject of section II,
we consider the burst itself in section ITI, when the applied elongation rate is too high for the drop to resist. Although
the local viscoelastic stress can hardly be measured experimentally, the numerical approach allows to monitor its
localization quite easily, and is thus a useful complement to experimental observations. We shall focus our analysis
on this particular point and discuss the observed behaviors.



FIG. 1: Sketch of the system. The initial radius of the drop is denoted by R and the long (resp. small) axis by L (resp. B).
The polymers inside the drop are modeled by spherical beads connected by springs (Rouse model).

I. MODEL

We consider a three dimensional axisymmetric viscoelastic droplet of initial radius R suspended in a viscous medium
with viscosity 7,,,, and submitted to a hyperbolic flow:

v; = (—%/2r,0,%z) (1)

(in cylindrical coordinates (r, ¢, z), r and ¢ are the radial and azimuthal coordinates respectively and z is along the
extension axis), with 4 the extension rate.

The drop itself is a polymer solution in a viscous solvent with viscosity 7s;. The polymer contribution to the global
stress is described here by an Oldroyd-B equation, which contains only two parameters: a relaxation time 7 which can
be interpreted as the typical time scale for the polymers to relax, and a viscosity 1,. This kind of model thus includes
the basic ingredients of energy storage and retarded effects related to viscoelasticity. It must be noted that nonlinear
effects such as a power law relation between the polymer viscosity and the local shear rate are not accounted for by
this model, although they can have practical importance at large shear rates [10]. The Oldroyd-B equation is indeed
known to describe correctly the dynamical behavior of dilute polymeric solutions (for example the so called “Boger
fluids” made of dilute polyisobutylene in polybutene (PIB/PB) for shear rates between 0.1 and 10 s~! [25]). Typical
properties of the Oldroyd-B model are a constant shear viscosity and a non-zero first normal stress difference in shear
flows. In elongation, it predicts strain hardening above a critical extension rate (297 = 1). This constitutive equation
relates implicitly the polymer stress tensor to the applied deformations due to the local flow in the following way:

T 0?1,J +0, = 1,(Vv + VvT). (2)

Here, 7 is the typical relaxation time of the polymers, 7, is the zero-shear rate viscosity of this phase, v is the
local velocity field and 7 denotes the transposition of the tensor. The total viscosity of the drop will then be given

v
by 7,,; + 1p. The superscript — denotes the upper convective time derivative, and is given explicitly by:

op= 010, +v.Vo, — Vv .o, — ,.Vv. (3)

This macroscopic equation can be derived from more microscopical considerations [26] by considering a model of
beads connected by a thermal spring, a crude model for a polymer in a solvent. The polymers are thus assumed to
be monodisperse and to have a single relaxation time. The coupling between the “polymers” and the surrounding
viscous fluid is described by a drag force proportional to the relative velocity of the beads and the fluid. This approach
allows to relate the macroscopic coefficients 7 and 7, to the polymer properties such as the radius of gyration R, the



polymer concentration v and the thermal energy kg7T'. The resulting dependence for 7 and n, is 7 Rr‘;ns,i /(kgT)
and 7, o 7,;vR3 [26]. The Newtonian limit corresponds either to 7 = 0 or to 7, = 0. For a given temperature
and solvent viscosity the latter condition corresponds to a vanishing volume fraction of polymers I/RS = 0 while the
former is associated with a cancelation of the radius of gyration R, = 0 only (and the corresponding polymers reduce
to classical molecules). These two conditions are thus of different physical origin and the polymer concentration can
formally be canceled by dilution at a fixed value of the radius of gyration (i.e at fixed relaxation time). The relaxation
time alone is thus not a direct characterization of the viscoelasticity of the polymer solution. Another way to cancel
the relaxation time is to increase temperature: in that case, the Brownian forces dominate the viscous drag and the
polymers decouple from the surrounding fluid.

The interfacial energy between the drop and the suspended medium is called ¥. This parameter is affected by
the possible adsorption of polymers at the interface, resulting in a Marangoni effect which could have profound
consequences on the drop behavior such as tip streaming [5]. This coupling is not included in our study. Including
the mass density p of the fluids (we consider here neutrally buoyant droplets, so the density inside and outside are
the same), we can construct 5 dimensionless parameters which describe the system entirely:

Re =23 . the Reynolds number

: the capillary number

De = WTER : the Deborah number (4)
As = 77_0 : the solvent/solvent viscosity ratio
Ap = WZ—PC : the polymer /solvent viscosity ratio

These parameters can be estimated for Boger fluids using typical values as discussed in [25]. We shall first estimate
the Reynolds number that compares inertial to viscous stresses. If we consider a 100 ym drop suspended in a medium
with viscosity 75, ~ 1Pa.s (like glycerol), the mass density of both fluids being of the order of p ~ 10%kg.m™3, the
Reynolds number can be estimated to Re ~ 107°% for a shear rate ¥ ~ 1s7!. Inertia can thus be neglected and we
shall use the Stokes approximation in the following. Ca compares the resistance of the drop (due to surface tension
effects) to the applied stress: a large capillary number corresponds to a highly deformable drop. This is the first key
control parameter of this study. With a typical £ ~ 1073 N.m~! we get Ca ~ 0.1. The second essential parameter is
the Deborah number characterizing the elastic effects in the internal fluid: the larger De, the higher the viscoelastic
effects. Using a typical value 7 ~ 1s, the Deborah number is De ~ 10. Finally, the two viscosity ratios will be chosen
such that A = A\, + X, =1 and A; = A, = 0.5 in the following, essentially to reduce the parameter space dimension. Of
course these dimensionless parameters can be combined to form alternative parameters, like the Weissenberg number
74 which can be used instead of the Deborah number. While the Deborah number compares the relaxation time of
the polymers to the capillary time, and thus characterizes the viscoelasticity of the droplet intrinsically (whatever the
applied flow), the Weissenberg number, on the contrary, compares the viscoelastic time to the applied deformation
rate. Our preference for the Deborah number is based on the type of experiment we wish to model: we apply an
increasing elongation rate to a given drop, which corresponds to a fixed Deborah number and an increasing capillary
number.

In order to use dimensionless equations, we rescaled the time variable by the typical relaxation time of the drop
tarop = Ms,oR/X and the length by its initial radius R. The governing equations are thus given by:

V.(op+05:) — VP, =0 inside

(5)
V.0s50— VPyu =0 outside

0,,; and 0, , are the Newtonian contributions to the stress, respectively inside and outside the drop. They are simply
related to the local deformation rate in the fluid by a linear relation o,; = Ay (Vv + VvT) (and 0,, = Vv + Vv’
for the outer fluid). The appropriate dimensionless boundary conditions at the drop interface OV are given by:

Vinlay + = Voutlgy X
Vin|gy -0 = Vout|gy -0t (6)
fl.(O'&o _PoutI3)-|(-)V = . (O'p+Us,i _PinIS)-ﬁlav - (Kq +H2)fl

with k1 and k2 the two main local curvatures of the drop (positive for a sphere) [27] and I3 the 3 dimensional
unit tensor. The first equation describes the continuity of the tangential velocity field across the interface (no slip



condition), the second one expresses the absence of flow across the interface, and the last one describes the continuity of
the total stress. The tangential stress is continuous, but the normal stress presents a jump equal to the local curvature
of the interface (surface tension is absorbed in the scaling), according to the Laplace law. The local incompressibility
of the fluid writes:

Vwv=0 (7)

As mentioned previously, the polymers will be described with the Oldroyd-B equation (2). In dimensionless units
we have:

De avp +0, = A(Vv + VvT). (8)

This set of equations is highly singular due to the free boundary nature of the problem and to the possible topological
changes in the drop shape. Recently, a phase field approach has been developed to model the deformation and breakup
of a Newtonian drop [13]. The method has been shown to be quantitative in that limit. We refer the interested reader
to the appendix for further details concerning the numerical implementation of the method in the case of viscoelastic
droplets. The main advantage of the method is the simplicity of its numerical implementation. The boundary
conditions at the interfaces are accounted for without any complicated front tracking procedures. Basically, the
method is based on a regularization of the interfacial profile, which is described by a Ginzburg-Landau like order
parameter field 6. As a result, all the singularities associated with the interfaces are removed in this description,
and we simply end up with diffusion-like problems in the whole space. Obviously, such a regularization procedure
introduces an extra length scale, the interfacial width, which produces a natural cutoff at small scales. This cutoff
is chosen in practice to match the lattice spacing of the resolution mesh. It is thus not an important restriction. To
study small scale effects, such as self-similarity laws during the breakup [28-31], or filament formations [32, 33], more
precise numerical schemes are however preferable.

We use the prescription that 8 < 0 inside the drop and § > 0 outside. In practice we set § = £1 far away from
the interface, and force its variation across the interface to be of the tanh-like form. Although this kind of profile can
easily be generated initially [39], a pure advection of this profile, consistent with the boundary conditions (6), does
not preserve the tanh shape. A restoring term thus has to be added to advection to enforce the tanh-profile across
the interface:

00 1

5 TVVO=x {6(1 - 6%) + € (A0 — 2[0]|VH)) } 9)
with ¢[f] the local mean curvature of the field and I" a relaxation time. While the left-hand-side corresponds to

advection, the right-hand-side is the restoring term. This contribution is made of two parts. The first one comes from

the functional minimization of a Ginzburg-Landau like free energy F:

oF

5=

with 7 = [ {(1 — 6%)?/4 4+ €*V6?/2} dr. This term enforces a tanh-like profile for the field 6 at the interface, with

a sharp variation zone centered on 0 (which will define the interface locus) and of width ey/2. In order to make the
numerical scheme insensitive to € up to first order [20, 21], a corrective term —2e2¢c[f]|V6|/T is added into equation
(9) that prevents non-physical drifts to occur. Finally, I' is chosen such that the relaxation toward this profile is faster
than any other physical process in the system. In that case, the interface can be considered to be purely advected by

the flow.
The curvature field can be constructed from the normal vector field, i.e. normal to the iso-surfaces of §: i = %.

0(1 — 62) + A0 (10)

The mean curvature is defined by c[f] = V.ii/2 (¢ = +1 for a unit sphere). Finally, we can construct a regularized
Dirac function centered on the interface:

Jo(r) = |V2i|. (11)

The factor 1/2 ensures the normalization of this function across the interface. The Stokes equations (5) is rewritten
as:
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FIG. 2: Comparison between our numerical computation, the linear analysis of Taylor and the small deformation theory of
Barthés-Biesel and Acrivos [3]. Here De = 0 and A = 1 (no viscosity contrast).

V. (a’s’ilga —}—05,01;0 —}—ap) — VP — ([8]Ve = 0. (12)

The boundary conditions (6) are automatically satisfied thanks to the continuity of all the fields involved. The
momentum equation is solved using a relaxation method, introducing an auxiliary Reynolds number Re,, of typical
order 10~2 in our case, which is compatible with the Stokes approximation. Finally, the dynamical equations to be
solved are given by:

(00 = —v.VO+ L{6(1—02) + & (A0 — 20[6]|VE))}
Re,ov = V. (5o, + Flo,,+0,) — VP —[f]VO
< o (13)
Delzt o, = —ap+ X350 (Vv + VT
(. V. =0

with the appropriate applied elongation flow (1). Note that in the € — 0 limit, # becomes an indicator function (—1
inside the drop and +1 outside), the constitutive equation thus reduces to o,=0 outside the drop, as expected since
there is no polymer there.

II. STEADY SHAPES

As a routine test of the method, we have set the relaxation time to 0 (De = 0, Newtonian drop) and have plotted
the stationary elongation D = (L — B)/(L+ B) as a function of Ca, when a steady state exists. In that limit, Taylor’s
result for small deformations [1] should be recovered:

3 (19A+16
p=2(A+I6) 14
2(16)\+16>Ca (14)

where the prefactor 3/2 accounts for the 3D elongational flow considered [4]. We can see in Fig.2 that it is indeed
the case in the limit of vanishing Ca. The order Ca? theory of Barthes-Biesel and Acrivos [3] is plotted also and is
seen to compare very well with our numerical findings. Viscoelastic effects are obtained by increasing the Deborah
number progressively. Fig.3 shows the drop deformation as a function of C'a for various Deborah numbers. The drop
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FIG. 3: Influence of viscoelasticity. The Deborah number has been varied between 0 (Newtonian) and 10. The shapes
corresponding to De = 0 and 10 are indicated for Ca = 0.1125
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FIG. 4: Drop stationary shapes for Ca = 0.1125 and increasing Deborah numbers. The tip flattens and its curvature can even
be inverted for De > 7.5. All the shapes correspond to the same volume 47 /3

deformation is reduced by the presence of polymers and above a critical value of Ca (typically between 0.11 and 0.12
for all the considered values of the Deborah number), the stationary state disappears (the burst transition) and the
drop breaks, as will be discussed in the next section. The shapes corresponding to Ca = 0.1125 have been indicated in
Fig.3 for De = 0 and 10 showing that although the deformation (as defined by D) is weaker for viscoelastic droplets,
the overall shape is strongly affected by viscoelasticity. These features have been already observed in the numerical
studies by Hooper & al. [14, 15], with approximatively the same order of magnitude, and by Ramaswamy and Leal
[12], using the CR model. In Fig.4 we present the steady shape of the drop for various Deborah numbers, a curvature
inversion takes place along the elongation axis in the case of the viscoelastic drop. Since L corresponds to the half
length of the drop along the axis, as depicted in Fig.4, the deformation ” D” is underestimated for De = 10 giving
the particular shape of the deformation curve presented in Fig.3. A plot of the mean curvature of the drop at its
end, along the elongation axis, clearly illustrates this effect in Fig.5. We observe that all the curves (for different
De) collapse and tend towards the value +1 for a vanishing C'a, as expected since the drop shape remains essentially
spherical in that limit, with L ~ B ~ 1. For small values of De, this curvature increases with C'a showing the growing
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FIG. 5: Mean curvature at the tip

effect of the applied elongation. But above a certain value of De, between 3 and 5, this behavior is reversed and the
curvature decreases with C'a. For De > 7.5, it even becomes negative, and the rapidly decreasing slope is in favor of
a cusp formation.

Tt is interesting to discuss in more details the results obtained with the CR model [12]. This model is indeed a
modified version of the Oldroyd-B model that suppresses some pathologies associated to it. The Oldroyd-B model is
known to present some inconsistencies in hyperbolic flows for homogeneous unbounded systems, and it can be shown
that the elongational viscosity diverges when 47 (that would correspond to CaDe here) reaches 1/2. This divergence
is essentially due to the linearity of the springs considered in the Oldroyd-B model that does not prevent a ”polymer”
dumbell to extend infinitely at a finite elongation rate. The CR model introduces a nonlinearity associated to the
spring constant, which is assumed to diverge as 1/[1— (x/L)?] with z the actual length of the spring and L the polymer
length (FENE dumbells). The Oldroyd-B model is recovered when L? — +oco. To compare our results with [12] we
considered their maximum value L? = 600, for which Deborah numbers as large as De = 10 and even De = 20, with
our definition, have been probed with C'a = 0.1. Although the comparison is difficult since the polymer concentration
is an order of magnitude lower in [12] than in our study, the observed behavior is similar, and a cancelation of the
curvature at the tip can even be observed. Unfortunately, their numerical scheme could not provide solutions for
non-convex shapes and they could thus not observe the cusp formation. Although we use the Oldroyd-B model, the
similarity of our results and the data obtained in [12] shows that we remain in a region where the two models are
comparable (i.e below the singularity). We are comforted further in this belief by the stability of the relaxation
dynamics. All the presented shapes correspond to stable solutions, and the pathology of the Oldroyd-B model is
not observed for the Deborah numbers we considered, even when 47 > 1/2. We are indeed never in a situation
corresponding to a steady unbounded elongational flow inside the droplet for which the pathology develops. The
initial state corresponding to a pure elongational flow is unsteady, and the polymers are at rest, corresponding to a
Newtonian regime. In the steady regime we can expect elongational flows to exist in the vicinity of the stagnation
points, but we shall see that these points correspond to a very weak local elongation rate. We thus expect the cusp
to be a physical effect.

To understand the cusp formation, various quantities can be measured among which the local viscoelastic stress
and the local elongation rate provide complementary informations. The viscoelastic stress is located in regions where
polymers are elongated, this elongation however applies important constraints to the flow resulting in a reduction of its
intensity. This screening of the flow can become important in regions where polymers spend a long time, for example
in the vicinity of a stagnation point like the tip of the drop [12]. On the contrary, the local elongation rate is large in
regions of the flow where polymers spend a short time. A plot of these quantities is shown in Fig.6. Before discussing
this figure, it is worth to introduce more precisely the various quantities presented. The flow lines are plotted in the
first column of Fig.6, they correspond to the isocontours of the streamfunction ¢ defined by v = V x (¢e,) where ey is
the azimuthal normal vector. The next column corresponds to the local elongation rate. Thanks to the axisymmetry
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FIG. 6: Streamlines, local elongation rate and viscoelastic stress for increasing values of De and for Ca = 0.1125 (only a quarter
of the drop is plotted).

of the system (no velocity along the orthoradial direction, no dependence of the velocity components with the angular
variable), the rate-of-deformation tensor can be written in the following way:

25 0 Gt

2E = Vv + Vv! = 0 24 0 (15)
dv, dv,. dv,
or oz 0 ZW

The eigenvalues of this tensor represent the local deformation (elongations and contractions) of a fluid element. The
sum of these three eigenvalues can be checked to be everywhere equal to 0, as expected from the incompressibility
constraint (7). The local elongation rate can be estimated by computing the root mean square of the eigenvalues:
Vtr{E.ET}; as a comparison, it would be equal to 1/3/2% for a purely uniaxial elongation flow. This quantity is
plotted in the second column of Fig.6. The third column represents the viscoelastic stress as given by the trace of o,,.
This quantity is directly related to the mean elongation of the polymers < r? > through the relation [10]:

<r?> De
——— =1+ —t . 16
< r2 >eq + 3)\1) T(UP) ( )

Here, < r? >, is the mean equilibrium end-to-end distance of the polymers, which is non zero due to thermal forces.

Several interesting features can be observed in Fig.6. First, the flow lines which occupy all the drop volume in the
Newtonian situation tend to concentrate in the vicinity of the interface when the Deborah number increases. The flow



is clockwise and the maximum value of the streamfunction ¢, indicated on the graph, corresponds to the intensity of
the rotational flow. This intensity reaches a maximum for De ~ 1 and decreases at larger values indicating a strong
viscoelastic screening of the flow. Note that ¢ is defined such that ¢ = 0 along the contour of the drop (we checked
that ¢ = 0 corresponds to the isocontour § = 0 of the phase field, confirming the stationarity of the shape). From
the deformation tensor, the local elongation rate can be computed as explained above and its localization illustrates
quite well this phenomenon while increasing De. At low Deborah number the elongation rate is maximal at the tip
of the drop. This can be easily understood since the capillary constraints are maximal at the tip and the counterflow
induced by these constraints is thus very large in this region. This effect is amplified by the axial geometry since the
flow has to converge towards the axis before going back to the central part of the drop. When the Deborah number
is increased, the elongation rate at the tip decreases and the flow is displaced to the neighboring region, closer to the
interface as also observed in [12] with the CR model. To understand this feature, it is interesting to consider the case
of a single polymer placed in a Newtonian drop. For a Newtonian drop, the tip corresponds to the region where the
elongation rate is maximum. A polymer present in the drop should follow the flow lines and rotate clockwise for the
quarter of the drop considered in Fig.6. If the polymer follows a streamline close to the interface of the drop it should
suffer an increasing elongation rate before reaching the tip. While arriving close to the tip the polymer thus presents
an elongation that should be relaxed on its way back to the central part of the drop, in the axial region of the drop.
Not surprisingly, the viscoelastic stress plotted in the third column is essentially localized around the tip, where the
polymers are expected to present the largest deformations. On its way to the tip, the polymer stores elastic energy
while flowing in the vicinity of the interface where the elongation rate is large (after Fig.6), resulting in the screening
of the flow. Since the response of the polymer is delayed by a time 7, the screening becomes efficient mostly in the
axial region of the drop explaining the strong damping of the flow there. The flow thus tends to escape from the axial
region, amplifying the effect. Thanks to the localization of the viscoelastic stress at the tip, the capillary constraints
are reduced since the polymers support part of the stress applied by the external elongation flow. The local curvature
of the interface is thus reduced at the tip when viscoelastic effects are increased. Amazingly, at large value of the
Deborah number (De ~ 10), the energy storage in the polymer solution seems to be so large that the curvature of the
tip can even become negative. This kind of morphology has indeed already been observed in a similar system [34]:
a macroscopic drop (of typical radius 1 cm, Newtonian or viscoelastic) is falling in a viscous fluid, and a stationary
state is reached after a short time depending on the density difference between the drop and the suspending fluid.
Locally, at the rear side of the drop, the flow is fully similar to the one produced by the elongation (axisymmetry
of the system and recirculations caused by the absence of normal velocities across the interface). In the case of the
falling drop, a cusp appears at the rear of the viscoelastic drop, whereas the Newtonian remains nearly spherical.
In this configuration, a stable torus can even appear, but in our situation, the drop looses its stability before any
structure of this kind can be observed.

III. BURST

We consider here the burst transition that occurs when the applied stress overcomes the resistance of the drop
(mainly due to surface tension and viscoelasticity). The burst threshold is defined as the critical capillary number
above which no steady shape can be defined. Above this threshold, the drop elongates until it breaks into smaller
fragments. Although the burst threshold depends on the viscosity ratio A, we shall not consider the dependence as
a function of this parameter here, but restrict the discussion to A = 1. The main control parameter is thus the
Deborah number De. As mentioned in the paper of Buckmaster & Flaherty [35] devoted to the study of bursting of
two dimensional Newtonian droplets, a good criterion for the loss of stability is the cancelation of the curvature of
the drop at its mid-section. In three dimensions, the corresponding parameter should be the Gaussian curvature G
which is defined as the product of the two local main curvatures k1 and k2 (G=1 for a sphere). Indeed, when the
drop is locally cylindrical in its central region, the Gaussian curvature vanishes. This quantity is known to play an
important role in surface topology, thanks to the Gauss-Bonnet theorem: the topological genus of a surface is equal
to the integral of the Gaussian curvature over the whole surface, divided by 27. We show in Fig.7 the local Gaussian
curvature in the mid-section of the drop in the steady state for different values of De and Ca. Interestingly these
curves are essentially insensitive to De, and can be fitted with a simple parabolic law (the continuous line of Fig.7),

_ Ca
Ca.

where Ca, corresponds to the cancelation of G, and should correspond to the 3D burst threshold after [35]. The
critical capillary number Ca, derived from this procedure is around 0.13 (close to 0.116, as determined below). The
Gaussian curvature thus appears as a good parameter for the characterization of the transition. A more precise
determination of the burst threshold can be achieved by using a dichotomic process on Ca, up to a relative precision

G=4/1 (17)
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FIG. 7: Gaussian curvature in the mid-section of the drop. The black curve is a parabolic fit of the whole set of data.

0.12 LR | LR | o o

0.118

0.116
)

o] L -
O]

0.114

0.112| b

S Y R | R R )
De

FIG. 8: Breakup threshold as a function of the Deborah number.

of 1073, The results are presented in Fig.8. We found a critical capillary number Ca. ~ 0.116: up to this precision, no
difference can be made between the different drops: viscoelasticity doesn’t seem to play any major role in that process,
as expected from Fig.7, in agreement with [11]. This result can be understood by remembering that the viscoelastic
effects are mainly located at the tip of the drop in the steady state, where elongation and contraction of the polymers
are the most important, whereas the burst criterion is determined by the central part where elastic effects are weak.
On the contrary, the burst dynamics (and thus the breakup) is affected by the presence of polymers, as can be seen
in Fig.9, where we have plotted the Gaussian curvature in the mid-section as a function of time for different values
of De. The Gaussian curvature is initially equal to unity, as expected from the spherical initial configuration (with
R=1), and it decreases as time elapses. The curvature vanishes when the drop flattens in the middle, goes through a
minimum and tends toward zero, which corresponds to the Gaussian curvature of a cylinder. Another criterion for the
burst is the relative elongation L/R of the drop (see Fig.10). We see that this quantity increases very rapidly during
the burst, with the presence of an inflexion point. These two points (first cancelation of G and dzsté B =0) will be used
to quantify and compare the breakup velocity. We show in Fig.11 the value of these two breakup times for different
Deborah numbers. Clearly, the general evolution of these two parameters is similar: at low De the burst mechanism
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is slowed down due to the presence of polymers, since the two curves are initially growing with De. Above a certain
value of De, typically between 3 and 5, the dynamics is suddenly accelerated, and becomes even faster than in the
Newtonian case. This range of De was already mentioned in the previous section as the region where a cusp appears
at the edges of the stationary shapes. As an illustration, the burst dynamics is presented in Fig.12 for a Newtonian
drop (De = 0) and for De = 10, corresponding to the most viscoelastic situation considered here. The burst sequence
is sampled every 10 t4,,p in this figure, so that the successive shapes presented by the Newtonian and the viscoelastic
drops can be compared at equal time. We clearly observe a faster dynamics when De = 10. The streamlines in the
vicinity of the drop, the local strain rate and the viscoelastic stress are shown in Fig.13. The instantaneous streamlines
can cross the interface since we consider unsteady flows, and we chose to present the streamlines going inside the drop
only. We can observe that until ¢ ~ 40 ¢4,,p a rotational counterflow is present inside the drop (the closed streamlines)
while above t = 50 t4,,, the flow is essentially dominated by the imposed elongation. This feature illustrates that
at the beginning, the drop resists quite efficiently against the elongational process, as shown in Fig.10 where we can
see that the deformation is slowed down until ¢ ~ 40 t4,p. At later times, the deformation is accelerated again
since the counterflow becomes too weak to compensate the applied elongation. We can further observe that between
t = 50 tarop and t = 60 tarop a curvature inversion takes place at the tip (see Fig.14), reminiscent of the counterflow
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FIG. 12: Comparison of the burst dynamics for De = 10 (top sequence) and for a Newtonian drop (bottom). The configurations
are sampled every 10 t4,0p (Ca=0.12). Time is mentioned in units of t4.0p for t = 0, 60 and 70. We clearly observe a faster
dynamics when De = 10.

and the growth of the viscoelastic stress located at the tip (last column of Fig.13). The curvature inversion disappears
at later stages as confirmed by the sudden reduction of the viscoelastic stress at the tip. Above ¢t = 60 ¢4,,p We can see
in the second column of Fig.13 that quite a large strain rate is applied to the center of the drop now, which strongly
differs from the steady situation, and from the first stage of the burst (below the inflexion point in Fig.10). Although
we were not able to follow the dynamics above t = 75 t4,0p, due to the extremely fast response, we can conjecture
that this very large elongation rate in the central part of the drop should result in an accumulation of viscoelastic
stress in this region. This building of the viscoelastic stress in the center of the drop is already visible in the last
column of Fig.13 for ¢t = 70 t4,0p. The presence of this stress should strongly alter the breakup sequence, and might
even result in the production of a thin filament. Unfortunately, we could not reach the breakup itself for this kind of
applied flow, but there are strong indications that breakup is unlikely to occur in an Oldroyd-B fluid [38].
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The streamlines are presented in the first column at different reduced

times, the strong line corresponds to the instantaneous shape of the drop. The maximum value of the streamfunction is
indicated at each time. The second column corresponds to the local deformation rate while the last column shows the location

of the viscoelastic stress.
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IV. CONCLUSION

The dynamical behavior of an isolated viscoelastic drop in a hyperbolic flow has been investigated using a phase field
approach of the free boundary problem. We have shown that the method allows for the determination of the stationary
shapes as well as the burst mechanisms. In the first case, we have shown that viscoelasticity induces morphological
changes at the ends of the drop, along the main axis of elongation. A simple phenomenological mechanism involving
a competition between the applied deformation, capillary effects and viscoelasticity has been proposed in order to
explain the cusp formation.

We have shown that the viscoelastic stress is mainly located at the ends of the drop in the stationary regime, and
in the vicinity of the interface. This region corresponds to important recirculation processes. The burst transition
corresponds to the loss of stability of the steady shape, and seems to be controlled by the central region of the drop.
Indeed, the burst corresponds to the cancelation of the Gaussian curvature at the mid-section of the drop. Since the
central region of the drop corresponds to weak elastic constraints, the breakup threshold is found to be insensitive to
elasticity (for Deborah numbers between 0 and 10), in agreement with previous results [11].

Finally, we have investigated the burst mechanism itself by considering a drop with Ca > Ca, (Ca=0.12) and we
have shown that a good parameter to quantify the breakup velocity is either the time when the Gaussian curvature

vanishes or when the second time derivative of % vanishes. The Gaussian curvature is to our opinion a better
parameter since it can be measured on a single snapshot, while the inflexion point requires the measurement of the
full elongation curve. These two parameters revealed that the breakup is first slowed down by viscoelasticity at low
values of De (typically less than 3), and then suddenly accelerated. Once again, we proposed a simple explanation of
this behavior by considering the location of the viscoelastic stress inside the drop. During the burst, the viscoelastic
stress becomes important in the middle of the drop that should result in the formation of a thin filament.

Nevertheless, some important points still remain to be investigated. First of all, we know that the breakup threshold
for Newtonian drops is affected by the viscosity ratio. The influence of this parameter in the viscoelastic case still
needs to be considered. Some experimental studies [37] suggest that the threshold is only slightly affected when the
viscosity ratio is larger than 1, but is considerably reduced when this parameter becomes small and that pointed
unstable droplets are obtained. We are currently working in this direction. Secondly, the possible adsorption of
polymers at the interface is expected to modify the dynamics of the drop and for example to induce ejection of
microscopic droplets at its pointed edges [5]. This effect could be accounted for in principle in our model, and special
attention should be paid to the precise modeling of Marangoni effects.

APPENDIX: NUMERICAL IMPLEMENTATION OF THE PHASE FIELD METHOD

We describe here the numerical scheme used to solve the phase field equations. Once the velocity field v, the phase
field § and the viscoelastic stress tensor o, are known at time ¢ , a basic step consists in estimating their new values
at time ¢ + dt . We will establish the expressions for vi*4t, g+ and ol from equations (13), and we shall explain
how the various quantities involved in these expressions are computed, with special attention to the axisymmetrical
nature of the system.

1. The velocity field

The Stokes equation (12) is solved using a relaxation method:

Re,dyv = V. (#a + 1;—00 + a,,) — VP — ][] V6. (A1)

Re,, is a numerical Reynolds number which controls the relaxation velocity. In practice, this parameter is of order
1072 in order to stay in the Stokes regime. Equation (A.1) can be rewritten:

Ren0,v = \[0]Av — VP — c[§]V0 + V.o, + AL[0]VE. (Vv + VvT). (A.2)
with \;[0] = To)\ + 18 nd AL[0] = dXs[6]/df. We have used the incompressibility constraint (7) to eliminate the
term V.(VvT) = V (V. ) . Thanks to the axisymmetric geometry of the system, the resolution can be performed



in 2D. In cylindrical coordinates the rate-of-deformation tensor is given by:

dv, dv, dv,.
. 2%5; 0 S+ %
D=Vv+Vv' = 0 2% 0 (A.3)
v, Bvr Ovx
ar T % 0 25,

so the contribution V6. (Vv + VvT) appearing in (A.2) reduces to

00 dv, | 80 (Ov, . Bu.
(e ()
V. (Vv +Vvh) = 0 (A.4)
89 (dvy | Ovs 09 dv,
or (B2 + 57) + 250 55

The Laplace operator for a vector field is given by:
2 2
T+ G+ 5 ()
Av = 0 (A.5)

v, o v, | 10v.
or2 + 022 + r Or

where we have explicitly assumed an axisymmetrical geometry. This expression only differs from a 2D Laplacian by
the extra 1/r contribution. Equation (A.2) can thus be rewritten as:

Rendyv = A[0]A2pv — VP 4+ F (A.6)
with:
D (o
F = —[0]V0 + V.o, + N, [0]V. (Vv + VvT) + A, [4] ( oy g ) ) (A7)
T or
and
vy 4 O%vn
Aspv = ( & o > . (A.8)
87‘22 + W;

The computation of F is straightforward once o, is known (see paragraph3 below). The main difficulty concerns
the computation of the curvature field, defined as ¢[f] = V./i/2 with i = V8/|V6|. Although V6 corresponds exactly
to the 2D expression in the (r,z) space, the divergence itself is slightly modified and is written as:

Vv =Vapv+ “7 (A.9)

with Vap.v = % + %L; the usual two dimensional divergence.

In all these expressions, the % contributions require a special care at r=0. The divergence is indeed artificially
introduced by the coordinate system and the physical quantities entering in the problem have a regular behavior on
the axis. A simple extrapolation scheme can thus be used to estimate these quantities at r=0. We used the third

order extrapolation scheme:

£(0) = %(18 F(dr) — 9f(2dr) + 2 (3dr)) (A.10)

with dr the mesh size in the radial direction. Written in this way, the system can be treated as purely two dimensional.

The Aypv term in (A.6) is known to introduce numerical instabilities when the time step is too large. Two
possibilities exist to suppress this problem: reducing the time step or using an implicit scheme. The second solution
is much more powerful since it fully suppresses the instability. However, we cannot use this scheme here in a strict
way due to the non-linearity introduced by the spatial variation of the viscosity field A;[#]. A mixed scheme can be
implemented by subtracting As mezA2pV from both sides of equation (A.6), where As oz is the largest value of the
viscosity in the system. Equation (A.6) is therefore rewritten as:

Ren% - /\s,maa:A2D v = (}‘3[0] - )\s,maz) Aspv — VP +F. (All)

Although we use in practice a fourth order Runge-Kutta method for the temporal integration, it is interesting to
consider a single semi-implicit Euler integration step to emphasize the interest of equation (A.11). The temporal



derivation can be discretized as dv/0t ~ (vit@ — vt)/dt, where dt is the time step, and then equation (A.11) takes
the discrete form:

vitdt _ it

Ren—20

- )\s’mawAzth-i-dt = ()\S[Gt] - /\s,maw) AQDVt - VP =+ Ft. (A12)
The implicit method consists in evaluating the Laplacian term on the left side at time ¢ + dt. The velocity field at
time ¢ + dt is then obtained by inverting:

dt

dt
(]- - /\s,maw—A2D) vitdt = yt + R—en {

2 (As[0] = Xs.maz) Aepv — VP + F}. (A.13)

This inversion can easily be done in the (spatial) Fourier space if Periodic Boundary Conditions (PBC) apply at the
edge of the resolution box. This is not indeed the case in general when the drop is placed in an external flow, like a
hyperbolic elongation for example. Interestingly, if the external applied flow is linear (this is indeed the case for the
applied elongation flow), the only contribution arises in the rate-of-deformation tensor, not in the Laplacian, and can
be evaluated analytically. Setting v = v; 4+ u, where the imposed field v; is time independent and linear in space, and
u is the velocity field induced by the drop, equation (A.13) rewrites:

(1 _ )\s,maw}%Aw> wttt — gt 4 B‘fo {O[6] = Asmas) Aopti— VP + F}. (A.14)

Assuming PBC for the induced field u only, and noticing that the gradient tensor only plays a role in the vicinity
of the interface thanks to the V@ prefactor (see equation (A.7)), this contribution cancels at the boundary of the
resolution box and can then satisfy PBC. This last equation can thus be inverted in the Fourier space to give:

1
1+ Ao, maz k2

dt
|:u§c + g {(As[a] - )‘s,maz‘) A2D11 - VP + F}Z (A15)

t+dt __
u, =

where index “k” denotes a spatial Fourier transformation of the quantity at wave-vector k. The power of the

implicit scheme comes from the property that ‘1 /(1 + )\s,mawR‘i—;kz)| < 1 for all wave-vectors k whatever the value

of dt, which ensures the stability of the iterative scheme in the absence of the term between braces (pure diffusion).
Due to the presence of this extra term, the iterative scheme does not always converge, but instabilities occur at much
larger values of dt.

In this equation, the pressure field P is determined by the incompressibility condition:

Vv =0. (A.16)

A recursive procedure has been implemented in order to determine P. Equation (A.15) is used without the pressure

term to determine an auxiliary velocity field @h™%:

1

ﬁi;‘rdt —
dt 1.
1+ Asmas 2L K2

dt
ul, + T {(As10] = As,maz) Aopu+FHL | (A.17)

The recursive procedure:

P, = P, — dtp {Vu}k
t+dt _ ~t+dt 1 (A.18)

W =0 e (VP
(with dtp an auxiliary time step) is then iterated until the mean value of the absolute value of V.u is less than 107>
in the Fourier space. The final pressure field is then stored and used as the starting point for the next time step.
After some time steps, the number of iterations of procedure (A.18) is reduced to 1 or 2, and the global iteration is
then considerably accelerated. Finally, a backward Fourier transformation and addition of the applied velocity field
leads to the new velocity field v+,



2. The phase field

The phase field equation is given by:

00 1( 6F

with F = [ {(1 —6%)?/4+ €2V6?/2} dr, so that equation (A.19) becomes:

% —v.V+ = {9 —0%) + (A0 —2¢|VH))}. (A.20)

Once again, numerical difficulties due to the Laplacian term can be expected in principle at large time steps, but
thanks to the prefactor €2/T" this contribution remains small enough so that a standard explicit Euler scheme is
sufficient:

t
g+t _ gt o [_vovn 4 % {61 — 6%) + (A0 — 2¢|V6|)) (A.21)

As for the velocity field, this elementary step is included in a fourth order Runge-Kutta method.

3. The constitutive equation

The dimensionless Oldroyd-B equation is given by:

1— 0 1-6
De—; ( gtp +v.Vo, - Vvlio, - a'p.Vv> top=A—— (Vv +VvT). (A.22)
For the sake of simplicity, we shall write De = DeT and )\p =1 0 . This equation is discretized in time like the
previous ones and we use an implicit scheme to compute o, at tlme t + dt:
De Apdt

t+dt _ t i ot T _t t ya T
o =—=——|o,—dtv'Vo, +dt (Vv' .o, —0,.VV)| + =—— (Vv +Vv' ). A.23
p De*'—dtl:p p ( p p ):I D€+dt( ) ( )

Once again, the implicit treatment consists in evaluating o, on the left-hand-side of equation (A.23) at time ¢ + dt,
where ¢t and dt are dimensionless. Using this approach, the case De=0 does not require any special treatment. The
Newtonian case is then simply recovered since we have in this case:

obtdt = X, (Vv + VvT). (A.24)

Moreover, this equation is valid everywhere in space since the case #=1 (outside the drop), and then De=1, is not
singular. This elementary step is then also included in a fourth order Runge-Kutta method.

4. Numerical parameters

The resolution is performed on a rectangular grid of size Nz x Ng, where Nz is the number of grid points in the
axial direction z, and Npg is the number of grid points in the radial direction r. While Ng = 250, Nz varies between
300 and 1000, depending on the drop extension. The unit cell is chosen to be a square (dr = dz = 0.03 R, where R
is the radius of the drop at rest). The phase field interfacial width € is fixed to € = dr = dz and the relaxation time
T introduced in the phase-field equation (A.19) coincides with tgp0p. The time step used for the dynamical solution
is dt = 10 %tgr0p-
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