N

N

Modeling breakup and relaxation of Newtonian droplets
using the advected phase field approach
Julien Beaucourt, Thierry Biben, Anne Leyrat, Claude Verdier

» To cite this version:

Julien Beaucourt, Thierry Biben, Anne Leyrat, Claude Verdier. Modeling breakup and relaxation of
Newtonian droplets using the advected phase field approach. Physical Review E: Statistical, Nonlin-
ear, and Soft Matter Physics, 2007, 75, pp.021405. 10.1103/PhysRevE.75.021405 . hal-00197263

HAL Id: hal-00197263
https://hal.science/hal-00197263
Submitted on 14 Dec 2007

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00197263
https://hal.archives-ouvertes.fr

Modeling breakup and relaxation of Newtonian droplets
using the advected phase field approach

J. Beaucourt, T. Biben, A. Leyrat, C. Verdier*
Laboratoire de Spectrométrie Physique, Université Joseph Fourier Grenoble I and CNRS (UMR5588),
140 avenue de la physique, BP87 - 88402 Saint Martin d’Héres cedex, France.

The relaxation and breakup of Newtonian droplets is considered using the advected field approach.
This method allows to follow the deformation of interfaces using an order parameter field [Biben
et al., Europhys. Letters, 63(4), 623 (2003)] based on a Ginzburg-Landau equation. Using this
method, it is possible to follow the breakup of droplets and stability curves can be obtained both in
2D and 3D shear and elongational flows. Finally, relaxation of a droplet is considered, following the
application of an elongational flow. The results are compared with previous experimental data [Ha
and Leal, Phys. Fluids, 13(6), 1568 (2001)], and are found to be in satisfactory agreement. The
method is general enough to be applied to other non-Newtonian fluids, such as Oldroyd-B fluids or

viscoplastic materials.
Introduction

The droplet breakup problem was introduced long ago
by Taylor [1, 2] both experimentally and theoretically.
Using roller devices, he was able to produce two dimen-
sional shear and elongational flows and applied them to
investigate viscous droplet deformation in a viscous sus-
pending fluid. Such flows can lead to stable droplet de-
formation or to droplet breakup. In this problem, the
capillary number Ca = "2;%7 (where 7 is the suspend-
ing fluid viscosity, R the radius of the drop, 4 the rate
of deformation in shear or elongation, and o is the in-
terfacial tension) and the viscosity ratio A = I (where
1 is the droplet viscosity) are the important dimen-
sionless parameters. Following this approach, Grace [3]
demonstrated experimentally that critical deformations
and capillary numbers for breakup can be determined as
functions of A in shear and elongational flows, over ten
decades. This was also investigated in the case of mixed
flows [4]. Results from Grace [3] show that it is easier
to break droplets in elongation than in shear. A shear
flow is indeed the combination of an elongation along the
diagonal axes, at 45 from the shear direction, and a ro-
tation tilting the drop. The competition between these
two components is controlled by the viscosity ratio, in
particular a droplet cannot be broken in a shear flow [3]
when the viscosity ratio A is larger than roughly 3.5. At
large viscosity ratios, the rotational component of the
flow tends to orient the main axis of the drop along the
shear direction, where elongational effects are weak.

The shape of the droplets in such flows is also a point of
interest. Torza et al. [5] have shown that droplet shapes
can vary quite a lot with the viscosity ratio A, in partic-
ular small ratios lead to droplets with pointed ends. The
prediction of droplet deformation has been considered
from a theoretical as well as a numerical point of view.
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Analytical models based on small deformation theory [6],
slender body theory [7, 8], or using matched asymptotics
[9], have been developed, allowing predictions of the criti-
cal capillary number for droplet breakup, also named the
onset of "burst”. In particular, using perturbations of
the flow around the droplet, stability analysis leads to a
surprisingly good prediction of the critical capillary num-
ber [6], as a function of the viscosity ratio A. With the
developement of numerical methods such as the bound-
ary integral method [10-14], calculations have also made
considerable advances therefore allowing for more intri-
cate shapes to be obtained more accurately. This is of
outmost importance when looking at nonlinear effects,
as exhibited when stretching filaments or breaking drops
into two or more droplets, or forming satellite droplets
[2, 15].

The numerical technique should not only allow to pre-
dict the burst criterion (in a possible large range of vis-
cosity ratios) but should also give the exact details of the
droplet rupture sequence, such as the rupture time, the
shape of the filament at pinch-off [15-19], the number of
droplets and their size [3, 19]. In particular, close at-
tention needs to be paid to the exact significance of the
physics involved in the rupture process, in order to deter-
mine whether it is initiated by capillary waves [15] or if
it has a deterministic nature, related to the well-defined
Rayleigh instability [20, 21].

Along with the boundary integral methods, new tech-
niques appeared such as the level-set [19, 22-24], volume-
of-fluid method [25], phase field approach [26-31], which
allow the computation of two and three-dimensional
flows, for various deformable entities under flow, such as
droplets or vesicles. The advantage of these new methods
relies on their ability to be applied to various constitutive
equations describing the inner or outer fluid (Oldroyd-B
fluid [24], yield-stress fluid [32]). Also, such problems can
be solved in the whole domain, without having to con-
sider explicitly the moving interfaces. The complexity of
the deformable object can also be investigated; in partic-
ular one may study drops with compatibilizers [33, 34],
capsules [35], or vesicles [26]. Finally, the ability of such



a technique to predict breakup (and coalescence) phe-
nomena in a whole domain seems promising for the un-
derstanding of multiphase flows [29, 30], the rheology of
emulsions, which have been problems of interest for many
years [1, 36-38].

In this paper, we propose to test the ability of the
advected phase field approach [27] to investigate the dy-
namics of droplets breakup and relaxation. The main
motivation is to compute stability curves as depicted by
Grace [3], but also to follow the relaxation of droplets
following a step-up in elongation, as studied previously
[12, 39, 40]. Numerical simulations will then be compared
with previous studies, including experimental results.

In the first part, the model is presented (I). Then finite
size effects are presented (IT) in the case of the relaxation
of a long drop, in the absence of an imposed flow field.
Indeed confinement can affect the dynamics of drop re-
laxation . Stability curves are exhibited and compared
with experimental data, as well as previous computations
by other authors (III). In the final part (IV), we focus on
droplet relaxation, in particular following the paper of
Ha and Leal [40], where extensive data is reported and
where the effect of the initial stretch or deformation has
been particularly emphasized. Comparisons between nu-
merical data and experiments are discussed.

I. THE ADVECTED FIELD METHOD (AF)

The main idea inherent to this method is to consider a
fluid-fluid interface as a diffuse locus where a function ¢
(phase field) goes smoothly from -1 to +1. In this case, -1
designates one fluid, and +1 the other fluid component.
This method is therefore well adapted for describing bi-
nary fluids, in particular immiscible fluids. ¢ varies with
time ¢ and position r and may be regarded as a rescaled
concentration, as in diffusion problems. For the study
of such binary systems, one can use a well known free-
energy functional F[¢] [41], a functional of ¢(r,t). An
example of such a free energy is the following:

o= [ (wo+SIver)ar

where W(¢) is the following potential

W) =5 (1-6)° 2)

This determines the two equilibrium values +1, and the
shape across a planar interface at equilibrium, which is
simply given by ¢(r) = tanh(r/ey/2). Thus the interface
thickness is €v/2. The temporal evolution equation for
the field ¢ is given by the advection due to the flow field,
and follows an Allen-Cahn approach[42, 43]:
0¢ aw 4
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where v is the velocity field, and I' a constant which
is the inverse of a typical relaxation time of the process.

However, this equation is not sufficient for describing a
conservative dynamics. It has been used [44] for the de-
scription of thermo-capillary flow, but cannot describe
the dynamics of mesoscopic droplets. There are two rea-
sons for that. The first one is that we cannot achieve val-
ues of € which are too small (typically less than 107%R,
R been the droplet size radius). The second is based on
the idea that a drop will relax to equilibrium (spherical
shape) in the absence of velocity and if the dynamics is
conserved, whereas it will vanish if the dynamics is not
conserved, this being due to the presence of the inter-
facial tension € fjll V/2W (¢p)d¢ [41], implicitly contained
in the Allen-Cahn approach, but not coupled to the ve-
locity field, as one would expect. As described earlier
[26, 27, 45], in order to avoid this problem, we propose to
add the counter-term, which cancels the effect due to the
Allen-Cahn surface tension, noting that the true surface
tension o is accounted for in the velocity field dynamics.
It is important to note that this counter-term has the
advantage to improve in a very efficient way the stability
of the small droplets, that would simply disappear in a
standard Allen-Cahn formulation. We shall see examples
of this fact below. We then resolve:

0 dw
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In this new formulation, c¢ is the local curvature. The
reason for this expression is due to an asymptotic expan-
sion, which shows that when e goes to 0 (sharp interface
limit), the main terms cancel out at first order e. The
equilibrium shape of the interface is then given again by

$(r) = tanh(r/ev/2) (5)

whatever the curvature of the interface, because only the
radial component r measured across the area is relevant
here. Due to the presence of the restoring term on the
r.h.s. of (4), the field ¢ now becomes a passive variable
whose value is prescribed by the hyperbolic tangent for-
mula. ¢ = 0 corresponds to the real interface locus.

Finally, the velocity field is the solution of the momen-
tum equation:

0
p (8—‘; + v.Vv) =-Vp+V.IE+F,; (6)

where p is the common density of both fluids, v the
macroscopic velocity field, ¥ the stress tensor and F,,; is
the force due to interfacial tension which is located at the
interface and has been added to the momentum balance.
In fact, F;,; is simply given by:

Fipy = gaw (7)

where V¢/2 = §(r)n, n is a unit normal vector to the
interface pointed outwards, §(r) is a Dirac distribution
in the sharp interface limit. Note that the curvature is
defined by ¢ = —V.n (negative for a sphere). The stress



field X is given by Newton’s law: 3 = 27(¢)D, where
D is the symmetric part of the velocity gradient tensor
Vv. The viscosity 7n(¢) is domain-dependent and the
system of equations (4,6,7) may be solved together with
the incompressibility condition

Vv=0 (8)

The boundary conditions and initial conditions will be
specified in what follows. Note that the viscosity is al-
lowed to vary smoothly across the interface by prescribing
it to be

w6 =3 -9 +mO+e)} ()

thus the value corresponding to the location of the inter-
face (¢ = 0) is simply the average (1 +12)/2. Note that
when using (6), care needs to be taken of the derivative of
the viscosity, which is no longer a constant. The method
can also allow for density contrasts, but this will not be
used here since we are only interested in looking at the
influence of the viscosity ratio and capillary number. The
other parameter is a Reynolds number Re = &, when
a shear or elongational rate 7 is applied, and conversely

a Suratman number Su = 2 f;” , when relaxation phe-

nomena are considered, and tlzlere is no typical velocity,
except the one based on surface tension induced veloc-
ity 7% In the case of interest, these two dimensionless
parameters (Re and Su) are quite small, like in Stokes
flow.

The method used is based on the calculation of ¢, the
pressure p, and the velocity field v. ¢ is solved for using a
finite difference scheme (equation (4)), whereas the veloc-
ity field is solved from (6) in the Fourier space. For this
purpose, we use a regular rectangular grid, with cubic
(3D) or square elements (2D or 3D-axisymmetric). The
spacing is chosen to be exactly € whose value is taken to
be 0.04R. The flow field v can be divided into two com-
ponents; the undisturbed external flow field v¢,; (shear
or elongational flow), plus a contribution u, which is due
to the flow induced by the droplet. The boundary con-
ditions have been chosen to be periodic for the advected
field ¢, and also for u = v — veyy.

This enables to solve for relatively small droplets, but
satellite droplets smaller than e are obviously not visible.
In such cases, other more technical methods may be rele-
vant such as the ones used in solidification problems, like
the Boundary Element Method (BEM) of Almgren [46]
or the phase field model by Wheeler and coauthors [47].

II. FINITE SIZE EFFECTS

It is important to analyze the strong influence of finite
size effects on the breakup sequence, for example when
following the relaxation of a drop in a quiescent fluid.
Such effects are now investigated. To discuss this point

15 T T T T T T T T
- 1500x1200 grid
- 1200x800 grid
10F -
o uu%%%
S 004,
:‘g “99909805a00009508a88339895904
Q
o DEgﬁWEGGWiiﬁﬂﬁii“iii“iii\\
5r LIR=15 o, i
03520,
RO )
oosusesseaad}
o038
O L L L I%En uuuuuuuuuuuuuuuu
0 20 40 60 80 100

FIG. 1: Fragment edges trajectories for L/R = 15 and two
different box sizes. Similar scenarios

in more details we specify here the geometry we consid-
ered and the values of the resolution parameters such as
the grid spacing and its size. Since we mostly considered
2D and 3D-axisymmetric situations, the resolution box is
a rectangle of size N h x Nyh, where h is the lattice spac-
ing (here we consider square elements). In 2D, z and y
denote the usual coordinates, while in a 3D-axisymmetric
geometry, x corresponds to the coordinate along the axis
and y the radial coordinate. A droplet is initially placed
at the center of the grid. Since we make extensive use of
Fourier Transformations, we still consider the full grid for
3D-axisymmetric situations, while a direct space imple-
mentation could reduce the problem to a quarter of the
grid only, accounting for the symmetries. The bound-
ary conditions on the velocity field are chosen to reduce
the boundary effects: we considered periodic boundary
conditions for the counter flow induced by the drop, as
specified in part I. We fixed h = 0.04 R in order to have
a sufficient resolution to describe the rapid variation of
the Advected Field across the interface, and to have a
small enough value of ¢, the interfacial width introduced
by the phase field model. All the results reported in
parts III and IV have been obtained with N, = 1200 and
N, = 800, corresponding to a box size 48R x 32R in units
of the drop radius at rest. We also considered a smaller
box N, = 800 and N, = 200 (32R x 8R) that revealed
to be too small to provide robust data.

We considered the simple case of a spherocylindrical
drop of initial half-length L/R = 15 (L half length,
R radius of the equivalent spherical drop) to investi-
gate the influence of finite size effects and varied N,
and Ny in quite a large range: 800 < N, < 1500 and
200 < N, < 1500. A very sensitive test is to analyze
the fragmentation sequence at L/R = 15 for example.
We also tested the breakup sequence for L/R = 18 and
a 1500 x 1500 grid. We consider as equivalent two frag-
mentation sequences for which only small quantitative
differences are observed, as shown in Fig.1.



1500x1200 | 1200x1200 | 1000x1200 | 800x1200

1200x1000 1000x1000 | 800x1000

1200x800  1000x800 | 800x800

1000x600 | 800x600
1200x400  1000x400 | 800x400
1200x200 1000x200  800x200

TABLE I: Summary of the data obtained for the relaxation of
a spherocylindrical drop with an initial half-length L/R = 15.
The straight solid lines separate regions with very different
fragmentation sequences while dashed lines correspond to ap-
parent differences only.

In table I, we summarize the results obtained for
L/R = 15. A full line separating two different box sizes
indicates different fragmentation sequences, while no line
indicates a similar sequence. The dashed line does in fact
correspond to equivalent results, but due to the proxim-
ity of a transition between 5 fragments for L/R = 15 and
7 fragments for L/R = 15.1 (with a 1200 x 800 grid), a
slight deviation of the transition point induces an appar-
ent difference in the fragmentation sequence. We conse-
quently also explored neighboring values of L/R to check
this feature. From table I, 1200 x 800 seems to be a good
compromise between accuracy and computational speed.
Therefore, in what follows, we will use such a mesh cor-
responding to a box size 48R x 32R.

IIT. STABILITY CURVES

We first investigate the ability of the method to predict
deformation and breakup of drops accurately. In order
to do so, we consider Buckmaster and Flaherty’s ana-
lytical solution [48] of the flow around a droplet placed
in a 2D elongational flow. The 2D flow corresponds to
v:, = Yz, v2., = —Yy, where z is the coordinate along
the axis of the drop. The authors [48] were able to calcu-
late the deformation of the drop up to the burst transi-
tion. The results of our simulations are presented in Fig.2
and compared with their approximate theory. Below a
critical capillary number Ca., the drop deforms until it
reaches a steady shape [3] that can be characterized by
its elongation 1 — B/L, where B is the half-width, and L
is the half-length. B/L being always smaller than 1, the
drop has a prolate shape. Above Ca,, the drop is elon-
gated until it breaks. Such a behavior corresponds to a
saddle node bifurcation, thus an unstable branch exists
which merges with a stable one, at a critical capillary
number. This number is determined by the maximum
of the curve in Fig.2, giving approximately Ca. ~ 0.18,
according to their results. Fig.2 also shows a good com-
parison between the theory [48] and results (A = 1) ob-
tained with the present AF method. The predictions of
the AF method are quite accurate. The analysis of the
two branches is as follows.
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FIG. 2: Capillary number vs. elongation parameter 1 — B/L
(A=1) [48]

For a given flow rate, i.e. given capillary number, there
are two solutions. The solution corresponding to 1 —
B/L < 0.72 (stable branch) gives the proper solution,
whereas the one corresponding to 1 — B/L > 0.72 gives
the unstable one. This type of analysis is the starting
point for obtaining stability curves at different capillary
numbers.

The case of a drop subjected to a shear flow or an
elongational flow is considered next. The results are
shown in Fig.3. Both 2D and 3D results are also pro-
duced. Our analysis is concerned with 2D-shear flows
(where v, = 4y, v¥,, = 0), 2D-elongational flows as
shown above, and finally 3D-axisymmetric elongational
flows where the flow field is vZ,, = Jz, vl,, = —4r/2, in
cylindrical coordinates, and x is the direction of elonga-
tion whereas r is the radial coordinate. This last case is
different from the usual four-roll apparatus used in pre-
vious studies [4], which assumes a 2D elongational flow.
Critical capillary numbers have been obtained in all these
cases, and are compared with results from Grace’s work
[3] both in shear and in elongation (Fig.3). Also shown
is the data from Bentley and Leal [4]. The results ob-
tained with the AF method are in good agreement with
the data from the experiments, in particular in the case
of elongational flows [3, 4]. While 3D simulations give a
very good agreement with the experimental data in this
case, we can note that the 2D data differ significantly.
The quantitative difference is even larger in the shearing
situation, where the 2D simulated data can only be com-
pared qualitatively with the 3D experimental geometry.
Apart from the quantitative discrepancies, it is interest-
ing to note on the contrary the qualitative agreement
between 2D and 3D situations. Our study was limited
to viscosity ratios varying between 0.01 and 100. This is
already a very satisfactory result, covering four decades
in A. When small viscosity ratios are considered (say
A < 0.01), droplets exhibit pointed ends, and the method
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FIG. 3: Critical capillary number Ca. vs. viscosity ratio A in
2D and 3D shear and elongational flows

fails to predict such shapes because it is unable to account
for such large curvatures. Indeed, the small radius of cur-
vature at the ends becomes close to the size of the mesh
€, therefore the method cannot give accurate solutions.
This AF method is also in agreement with the small de-
formation theory [6], which predicts well the data in this
region, as pointed out by the authors in previous work
[27]. Computations in 2D-shear flow are also of interest
since they provide evidence of a stable region at viscos-
ity ratios above roughly A = 4. We observe quantitative
differences from the 3D experimental case [3], but we are
not aware of such data for the 2D-burst criterion. Our
data is not exhaustive, in particular 3D simulations of
shear flow are not provided due to the long times in-
volved for carrying out such computations. Part of this
data is available in another paper [25].

IV. DROPLET RELAXATION

The relaxation of droplets following an elongation is
an interesting problem, since it poses the question of
what governs the number of fragments, and whether or
not the drop relaxes to its initial state. It has been ex-
plored both experimentally [39, 40, 49-51] and numeri-
cally [12, 50, 51]. It seems well known now that the initial
deformation controls the fate of the relaxing droplet, but
parameters like the capillary number used to stretch the
droplet are also of importance, as well as the viscosity
ratio X\. Recently, Ha and Leal [40] took over the prob-
lem of relaxation following a step up in elongation, using
their four-roll mill apparatus. At low Reynolds num-
bers, they showed that the critical stretch ratio increases
sharply with the capillary number, when the latter is
greater than its critical value for breakup. Also, an in-
teresting feature occurs in the case of stretching followed
by relaxation (Newtonian droplets) which is a restabiliza-

tion of the droplet following relaxation, when increasing
the initial stretch ratio, at a fixed capillary number. The
droplet relaxes first to a sphere at small initial stretch ra-
tio, then into two droplets (first transition), then relaxes
into a sphere again, and finally into three droplets (sec-
ond transition). This feature was observed at a viscosity
ratio A = 0.056 and for Ca/Ca, = 2.15 [40]. There-
fore, more investigations remain to be done in order to
see whether this feature is always present, and if such a
cascade of restabilizations is possible.

Such an approach is now conducted, based on this
interesting set of data [40]. We consider here a 3D-
axisymmetric situation.

Before discussing in details the results, we shall first
identify the parameters entering in this problem, and the
role they play. The elongation-relaxation experiments are
essentially controlled by three parameters: The capillary
number Ca (or alternatively Ca/Ca.), the stretch ratio
L/R, which corresponds to the maximal elongation of
the drop, and the viscosity ratio A. Whereas these three
parameters play a role during the elongation stage, and
thus determine the shape of the drop that will suffer the
relaxation, only A plays a role in the relaxation stage (for
a given initial shape). During this stage, the capillary
number is indeed not defined (no applied flow), and the
capillary time can be absorbed by a redefinition of the
time scales. We shall thus mainly focus on Ca/Ca. and
L/ R to control the initial shape of the relaxing drop, and
the particular role of A will be briefly discussed.

A. Comparison with experiments

We consider in this section the experimental situation
of Ha and Leal where the drop is elongated until it reaches
a given stretch ratio, and follows a free relaxation after-
wards. A first set of data is obtained for Ca/Ca. = 1.05,
and a viscosity ratio A = 0.2. These values are very sim-
ilar to those used experimentaly by Ha and Leal (they
used A = 0.209 and found Ca, = 0.135, whereas here
A = 0.2 and Ca, = 0.151). The results are presented in
Fig.4, showing the effect of a change in the stretch ratio
L/R, where L, the half length of the droplet, has been
defined previously. This enables to determine a critical
stretch ratio (L/R). above which the drop starts to break
during the relaxation stage. Fig.4 shows the variation of
the drop elongation with time. The instantaneous stretch
ratio shall be noted L(t)/R and must not be confused
with the mazimum stretch ratio that we called L/R. The
features of the curves L(t)/R are as follows: when L/R
is smaller than roughly 3.9, the drop is stretched and re-
laxes to a spherical shape, as expected, whereas if L/R is
larger than 3.9, the drop relaxes into two droplets. Note
that a satellite droplet is also observed (L/R = 4.2),
with a very small size of the order of a few times the
value of e. Attention thus needs to be paid regarding
this feature both in simulations and in experiments. Our
observations are however in good agreement with the ex-
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FIG. 4: Ca = 0.159. Ca. = 0.151. Ca/Ca. = 1.05. Relax-
ation patterns at different values of L/R (3.5 ; 3.8 ; 4.0 ; 4.2)
and A =0.2. t" =to/mR.

| L/R| N | comment |stable |
6.5 |1 X
7.0|1 X
711 X
7212 o
7412 o
7.45|3 satellite central drop o)
7.8 13 satellite central drop o)
7.9 (2 no central drop o)
8.0 13 small central drop o)
8.4 13 small central drop o)
8.5 | 5 |alternated large and satellite drops| o

TABLE II: Breakup events for different L/R (A =0.2. Ca =
0.326, Ca/Ca. = 2.11). N is the number of fragments.

periments of Ha and Leal.

While the previous example corresponds to a capil-
lary number very close to the critical capillary number
Ca/Ca. = 1.05, it is interesting to consider larger values.
We can carry out a similar analysis for Ca/Ca, = 2.11
(and still A = 0.2). The results are presented in Table II
and show similarities with the previous example (a suc-
cession of one, two and three fragments with a satellite
central drop while increasing the stretch ratio L/R), but
more interesting is the restabilization sequence.

The transition from two to three droplets occurs be-
tween L/R = 7.4 and L/R = 7.45. Then a restabilization
is observed for L/R = 7.9 for which two fragments are
produced. Again, we find the formation of three frag-
ments at L/R = 8.0, indicating that the region of resta-
bilization was very small. Whereas Ha and Leal reported
a restabilization scenario from two to one droplet (at a
viscosity ratio of A\ = 0.056, that we shall consider be-
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FIG. 5: Ca = 0.455. Ca. = 0.151. Ca/Ca. = 3.0. Relax-
ation patterns at different L/R (8.1 ; 8.2 ; 8.5) and A = 0.2.
t* =to/mR.

low), the restabilization situation observed here seems to
be new.

It could be tempting to increase further the capillary
number in order to observe more complex sequences. We
tested the case A = 0.2, Ca/Ca. = 3 presented in Fig.5.
We find a larger critical value of 8.15 for (L/R). in this
case, in agreement with the experiments, but the over-
all fragmentation sequence seems to be simpler than the
previous one. We shall however mention that we do not
observe the fragmentation into two droplets for this set of
parameters, instead, the drop relaxes into three droplets,
after cessation of flow, above the critical stretch ratio.
For this computation, as the capillary number is rather
larger due to the large elongation rate used (steep in-
crease of L/R in time), the time step has been reduced
to avoid instabilities, due to the finite difference scheme
used.

These three examples illustrate quite well the complex-
ity of the fragmentation sequences, and the non trivial de-
pendence on the control parameters. We could observe a
high sensitivity of the results to the control parameters,
in particular the restabilization observed in the second
example presented above only exists in a very narrow
range of parameters (between L/R = 7.9 and L/R = 8.0)
that could be easily missed experimentally.

To complete the comparison with the experimental
work of Ha and Leal, we plot the critical stretch ratios
obtained for A = 0.2 in Fig.6.

These values correspond to the first transition from
a sphere to two or more spherical droplets plotted as
a function of the capillary ratio Ca/Ca.. The capillary
numbers are all higher than the critical one, to be able to
obtain droplet breakup. Also shown are the experimen-
tal data by Ha and Leal (Fig.3 of their paper), that are
found to be in qualitative agreement. The discrepancy
might be due to the difficulty to control the stretching
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FIG. 6: Critical L/R vs. Ca/Ca. at a viscosity ratio A = 0.2.

rate accurately in the experiments. Another explanation
may be that, to become more accurate, a smaller value of
€ is needed in the simulations, this was not possible due
to the large systems we had to consider. We can only
mention that in 2D our results compared very well with
the analytical calculation by Buckmaster and Flaherty
(Fig.2) for similar values of e.

B. Influence of the capillary number

In the previous part, we observed that the capillary
number plays an important but complex role in the resta-
bilization process. Our purpose is now to identify more
precisely this role. To this aim, we shall consider a fixed
elongation ratio L/R = 7.5, and investigate the relax-
ation sequence as a fonction of the capillary number used
to produce the elongated shape. We thus follow the hor-
izontal path plotted in Fig.6. This value has been chosen
to match the data of Ha and Leal (Figures 2 in Ref. [40]),
still at a viscosity ratio of 0.2. Figs 7a-c show the dif-
ferent relaxation mechanisms, following stretching rates
corresponding to capillary numbers of 0.212, 0.326 and
0.455 respectively.

The first breaking pattern leads to the formation of
a long elongated droplet in the center, which eventually
breaks due to end-pinching [15-18], thus forming three
droplets. In the second case, larger side droplets are
formed and the central resulting droplet is smaller, but
they are still three. Finally, as the capillary number (i.e.
the elongational rate) is increased, the initial shape of
the droplet is different, exhibiting almost pointed ends,
as expected for such a small viscosity ratio. This fea-
ture is due to the fast elongation process, inhibiting the
creation of bulbed ends.

Whereas the elongated drops present bulbed ends at
small capillary numbers, favoring fragmentation in a re-
laxation experiment, they do not present these features

60

L/R

FIG. 7: Relaxation patternfollowing elongation. Stretch ratio
L/R="7.5. A=0.2. Cac. = 0.151.
a) Ca =0.212, Ca/Ca. = 1.4 b) Ca = 0.326,
Ca/Cac =2.15 ¢) Ca = 0.455, Ca/Ca. = 3.

at large capillary numbers. In this case, the bulbed ends
responsible for the break-up process must be produced
during the relaxation, which can take time. When re-
laxation is not efficient enough for the drop to develop
bulbed ends rapidly as time goes on, the droplet relaxes
to a sphere.

Large values of Ca/Ca, thus do not favor the fragmen-



tation, and the most interesting restabilization sequences
were observed around Ca/Ca, = 2.11 —2.15, at A = 0.2.

C. Restabilization

In this part we investigate the restabilization sequence
in more details. We would like to emphasize that this
feature is generic, and can be observed for many values
of the parameters. Moreover, we also would like to show
that such restabilization sequences are very sensitive to
the precise values of the parameters and can present a
huge richness. We thus used a set of parameters also
considered by Ha and Leal [40] (A = 0.056 and Ca/Ca. =
2.15), and we shall compare results with the previous
restabilization sequence (A = 0.2 and Ca/Ca,. = 2.11).

The observations are shown in Fig.8, where the droplet
has been elongated from its initial spherical shape to a
certain degree of elongation characterized by a value of
L/R, at a capillary number Ca = 0.359. For this case,
the critical capillary number is found to be Ca, = 0.167
(thus Ca/Ca. = 2.15). An interesting series of droplet
breakups is observed. This scenario is very similar to the
experiments of Ha and Leal:

e at first the droplet is elongated but relaxes to a
single sphere L/R = 6.9

e then the droplet breaks up into two spheres L/R =
7.1

e the droplet restabilizes and goes back into a sphere
L/R=173

e the droplet breaks into three droplets L/R = 7.5

e the central droplets disappears and two droplets are
obtained L/R =17.7

e the central drop is formed again and we end up
with three drops L/R = 8.5

As expected from the work of Ha and Leal [40], these
results confirm the idea that the mechanism of relaxation,
which is governed by two parameters, A and the initial
shape of the droplet, is based on the following idea: a
droplet relaxes by forming first bulbed ends, which need
to have enough time to develop [12]. After this deforma-
tion is achieved, the droplet motion is governed by the
stability of the filament, which can be described accu-
rately by linear stability analysis [12, 20]. Following the
work of Tomotika [20, 21], predictions of the most unsta-
ble mode can be obtained when the viscosity ratio A is
known. Of course, this study has been carried out when
the outer fluid is at rest, but nevertheless it seems to pre-
dict rather well the onset of stability [12]. Analysis of the
previous droplet shapes reveal that, after bulbed ends are
formed, the length of the filament seems to predict rather
well the evolution of the droplet to an unstable situation
or not.
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FIG. 8: Relaxation of droplets after stretching at a given L/R
(Ca/Cac = 2.15, A = 0.056, Ca. = 0.167).



Another interesting aspect is the restabilization of the
droplet independently of its size, as revealed by the suc-
cession of shapes in Fig.8. From L/R="7.1to L/R = 7.3,
the droplet restabilizes. From L/R = 7.5 to L/R =
7.7, restabilization is also obtained, but now the cen-
tral droplet has disappeared. This phenomenon is also
observed at different viscosity ratios, and could be uni-
versal. Even in this case the restabilization differs from
the situation presented in Table II by the fact that the
central fragments for A = 0.2 are small satellite droplets
whereas for A = 0.056 they correspond to the largest
fragment.

A case of interest would be to follow systematically
the fragmentation process as L/R is increased and for a
fixed A. This should allow to determine whether fragmen-
tation is governed by a deterministic process or exhibits
a chaotic behavior. This still requires to improve the nu-
merical scheme presented here in terms of precision (i.e.
smaller values of €, mesh adaptation, etc.) in order to
capture the formation of smaller daughter droplets in-
cluding satellites. This work is currently under way.

V. CONCLUSION

We presented a comparison between the elongation-
relaxation experimental data obtained by Ha and Leal

and the numerical data obtained with the Advected
Field method. Although we observe quantitative dif-
ferences between 2D shear simulations and 3D experi-
mental data, which can be explained by the difference of
dimensionality, the numerical data obtained in 3D is in
very good agreement with the experimental findings. In
particular, the method is able to reproduce the complex
fragmentation-restabilization sequence observed experi-
mentally, and may give the possibility to investigate sim-
pler drop geometries such as the spherocylindrical shape.
The observed behaviors are deterministic, and the resta-
bilization sequences are responsible for the apparent noise
in the data. However this poses the problem of the in-
fluence of thermal fluctuations. These fluctuations have
not been introduced in the model, but are expected to
become important when the drop is elongated. Indeed, a
thermal noise in the problem could reduce the restabiliza-
tion processes, and reduce the data dispersion. This is of
course a conjecture that needs to be further investigated.
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