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Abstract. Direct numerical simulations (DNS) are used to study the motion and deformation of 

leukocytes in pressure driven flows in parallel plate channels. The influence of the adhesion force 

between the leukocytes and the channel wall on such motion and deformation is also investigated. 

Leukocytes are represented by two composite fluid models, consisting of a membrane, a cytoplasm and a 

nucleus. The adhesion force is computed using two adhesion force models. In the first model, the 

adhesion force is given by a potential, and in the second model it is given by Dembo’s kinetic adhesion 

model. The numerical code is based on the finite element method and the level-set technique is used to 

track the cell membrane position. In the absence of the adhesion force, the leukocyte moves away from 

the wall to an equilibrium location that depends on the ratio of the cell to plasma viscosities. In presence 

of the adhesion force, the leukocyte is attracted to the layer of endothelial cells and, as it gets closer, it 

also flattens under the action of hydrodynamic forces. This deformation, in turn, further increases the 

adhesion force. The leukocyte, however, can be captured only when it is placed sufficiently close to the 

wall, which for the kinetic model is of the order of 30 nm. We also find that for the normal parameter 

values and flow rates the adhesive force given by the kinetic model is too small to capture the leukocyte.  

 

1. INTRODUCTION 

Although the white blood cells (WBC or leukocytes) constitute only a small fraction of blood cells, 

they play a very important role in the body’s immune response. They do so either by fighting pathogens, 

viruses, or other cells (cancer cells for example), or by reaching the site of infection through the 

transendothelial migration. The endothelial monolayer is a part of the vessel wall. Endothelial cells are 

maintained in close contact with each other by a complex network of transmembrane adhesion proteins, 

especially cadherins. Diapedesis is the way leukocytes migrate through the endothelial junctions under the 

combined effects of signalisation, changes in the rheological properties and the cell-cell adhesion 

properties. As part of the migration process, circulating leukocytes must first adhere to the luminal 

surface of the endothelium (see figure 1). 

The goal of this paper focuses on the first phase of the above process, i.e., the study of the motion and 

deformation of leukocytes in small vessels and the investigation of conditions under which leukocytes can 

remain attached to the vessel wall and do not drift away. For this, we will assume that the leukocyte is 

already close to the endothelium. The factors, that cause leukocytes to get close to the endothelium in the 

first place, such as collisions with other cells, will not be studied. This work should also be helpful in 

improving our understanding of the motion of cancerous cells, and the role of the flow rate and the 

cortical tension in the process [1]. Indeed, it has been observed that the mechanisms by which cancer cells 

[1-3] migrate to and through the endothelium to reach different tissues are similar to the ones used by 

leukocytes, although the adhesion molecules involved for the former are not all known yet [4]. 

Past recent numerical studies [5-7], based on a compound-drop model, have been capable of 

qualitatively explaining the behavior of leukocytes observed in experiments. The compound-drop model 

of a leukocyte consists of a spherical nucleus containing a core fluid which is surrounded by a thick layer 
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of cytoplasm. In this paper, we use both this compound-drop model and a drop-rigid-particle model to 

represent leukocytes. The two most common adhesion models are based on Bell’s equilibrium model and 

Dembo’s kinetics model [8-11], which are both used here to explore the adhesion mechanisms. 

 
Figure 1. The different steps corresponding to the leukocyte extravasation.  

 

2. MODELING AND GOVERNING EQUATIONS 

2.1 Rheological models for leukocytes 

In this study leukocytes, which are the only blood cells with a nucleus, will be represented using two 

different two-layered models in which the outer layer represents the cytoplasm and the inner layer 

represents the nucleus [5,7]. The two-layered models of leukocytes used here approximately represent 

neutrophils, although for simplicity the shape of the nucleus is assumed to be spherical. 

In the first two-layered model shown in Figure 2a, called the drop-rigid-particle model, the cytoplasm 

is assumed to be a Newtonian fluid, and the inner core is assumed to be rigid and thus modeled as a rigid 

particle. The nucleus volume is assumed to be 21% of the total cell volume, and thus the thickness of the 

outer shell in this model is 2.7 µm. The surface or cortical tension coefficient for the interface between the 

cytoplasm and the surrounding fluid (plasma) is assumed to be 3.0×10-5 N/m. The viscosity of the 

cytoplasm is higher than that of the plasma. The cell radius is assumed to be 6.5 µm, as in [12], which is 

larger than the commonly accepted mean radius of a neutrophil that is around 4.3 µm [13]. 
 

 
Figure 2. Two layered models of leukocytes. (a) drop-rigid-particle model, (b) compound-drop model. 

 

In the second model shown in Figure 2b, called the compound-drop model, the outer layer is the same 

as above but the nucleus is modeled by a viscoelastic liquid. Thus, in addition to the outer interface 

between the shell and the surrounding fluid, there is an interface between the core fluid and the shell. The 

surface tension for both interfaces is assumed to be 3.0×10-5 N/m and the viscosity of the viscoelastic 

liquid inside the nucleus is assumed to be higher than that of the shell. The values of the parameters for 

the two previous models are given in Table 1. The densities of the plasma and leukocyte are assumed to 

be equal, and thus the gravity plays no role in the dynamics. 
 

2.2 Adhesion models 

Under normal conditions, leukocytes are freely suspended in the blood stream. However, upon 

inflammation, the leukocytes that come close to the endothelial layer, as a result of the collisions with 

other blood cells and the expression or activation of adhesion molecules, can be captured. This latter 

process can be modeled by an adhesion force Fb, which acts between the leukocytes and the endothelium. 
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This force has a very short range and can result in the capture of leukocytes that come sufficiently close to 

the wall. We next describe two models that are used to represent the adhesion force.  

 

 

Table 1. Parameters for the two-layered leukocyte models. Parameters marked with a star apply to the compound-

drop model only.  Appropriate references for the choice of these values have been included in brackets. 
 

2.3 Adhesion potential model 

In the first model, introduced by Sukumaran and Seifert [11], the adhesion potential of the leukocyte 

with a plane wall at x = 0 is assumed to be 
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where w  is the adhesion strength and 
0

0.02d R=  is a constant related to the cell radius R. Depending on 

its magnitude, the latter models both specific and nonspecific interactions.  
 

2.4 Kinetic adhesion model  

The second adhesion model is the kinetic model of Dembo et al. [9]. Here, the adhesion force 

between the cell membrane and the wall is assumed to arise due to the formation of bonds between the 

specific adhesion molecules on the cell membrane and the receptors on the substrate. A bond between the 

cell and the substrate is modeled as a Hookean spring, and the corresponding force fb due to one bond is       

 ( )
b m mv
f x lσ λ= − −        (2) 

where σ is the spring constant, xm is the distance between the cell surface and the wall, lmv is the 

unstressed microvillus length [7,19-21], and λ is the equilibrium or unstretched bond length. The total 

force per unit surface area Fb between the cell and the substrate is then deduced from 

  
b b b

F N f=             (3) 

where Nb is the bond density per unit area. The time evolution of the latter is given by a kinetic equation 

which balances the formation and dissociation of bonds:  

 0 0( )( )b

f l b r b r b

N
k N N N N k N

t

∂
= − − −

∂
,              (4) 

where Nl0 and Nr0 are the initial ligands and receptors densities on the surface of the cell membrane. 

The reverse and forward reaction rate coefficients kr and kf  in (4) are given by: 
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Parameters Values used  

Radius, R 6.5 µm [14,7] 

Shell Thickness, R-r 2.7 µm [5] 

Cortical tension, γ 10 3x10-5 N/m (Ref. [15]) 

Interfacial tension, γ 12 3x10-5 N/m (Ref. [15] 

Density, ρ  1000 kg/m3 (Ref. [5]) 

Viscosity of cytoplasm, η1 35.28 Pa.s (Ref. [16]) 

Plasma viscosity, η0 0.001 Pa.s (Ref. [14]) 

Viscosity ratio  η0 / η1 0.01 [17] 

*Viscosity ratio  η1 / η2 0.35 [17,16] 

*Relaxation time of nucleus, λ r 0.1 s  [18] 

*Viscosity of nucleus, η2 100.0 Pa.s [17,16] 
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where kr0 and kf0 are the equilibrium values of the reverse and forward reaction rates, σ and σts are the 

spring and transition spring constants, kb is the Boltzmann constant, and T is the temperature. The values 

of these parameters are listed in Table 2. 

The equilibrium bond density Nb0 reaches the maximum value Nb0m when the bond stretching x = xm - 

λ - lmv is zero. For a given value of xm, the equilibrium bond density Nb0 satisfies the following quadratic 

equation, which is deduced by setting the time dependent term in (4) equal to zero  

 ( )( ) 000000 =−−− brbrblf NkNNNNk       (7) 

and which admits two solutions: 
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where D is the discriminant of the quadratic equation, i.e. 
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The larger solution N1 leading to a value larger than the number of available bonds is not physically 

meaningful. The only physical solution of (7) is thus N2, leading to the equilibrium bond density: 
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For the parameter values listed in Table 2, the maximum value of the equilibrium bond density, which is 

deduced by setting kf = kf0 and kr=kr0, is Nb0m=1.5×10
14 m-2.  

 

Parameters Range 
Values used in 

calculations 

Initial ligand density on the surface, 
0l

N , m-2 2.0 - 5.0 ×1014   [9] 1.5 ×1014  

Initial receptors density on the cell membrane, 
0r

N , m-2 2.0 - 5.0 ×1014  [9] 3.0  ×1014  

Initial reverse reaction rate, 
0r

k  , 1/ s   10-5 -10 [8] 10     

Initial forward reaction rate, 
0f

k ,   m2/s 10-18 -10-10  [8] 10-10   

Spring constant, σ , N/m 0.00001 - 0.01 [8] 2 ×10-4   

Transition spring constant, 
ts

σ  , N/m -0.005 - 0.0095[8]  10-4  

Unstressed microvillus length, lmv, m 3×10-7 [19, 21] 3×10-7  

Equilibrium bond length, λ , m 10-8 ~10-7 [19] 10-8  

Thermal energy,  kbT, N·m 3.8 ~ 4.3×10-21   4.28×10-21   
Table 2. Parameter values for the kinetic adhesion model. Appropriate references have been included in brackets. 

 

Both the equilibrium bond density Nb0 and the adhesion force vary with the distance between the cell 

membrane and the wall. In Figure 3a the adhesion force and bond density are shown as a function of the 

dimensionless bond stretching 3' 10.
mvl

x
x

+
=

λ
. Notice that when x’ is approximately 48 the force 

reaches the maximum possible value. In terms of the dimensional variables, the force is maximum when 

|xm – λ – lmv| = 14.9 nm, and the adhesion force is approximately zero when |xm – λ – lmv| is greater than 

27.9 nm. Therefore, the force is present only over the narrow distance range of ~30 nm. Consequently, as 

discussed later, a cell can be captured only if it is located within the above range. 

We next consider the time evolution of Nb when xm is suddenly increased from (λ + lmv) at t=0, to 

1.01(λ + lmv), which causes the bonds to break and the bond density to evolve to a new equilibrium value 

(see Figure 3b). The bond density Nb in this case decays with time from Nb0m to a smaller value. Our 
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objective here is to determine the characteristic time over which the bond density evolves. This is 

important because in a flow situation the distance between the cell wall and the endothelial monolayer 

changes with time. Clearly, if this characteristic time over which the new equilibrium value is reached is 

much smaller than the flow time scale, it is appropriate to assume in the fluid dynamics problem that the 

bond density is given by the steady solution of equation (4). 
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Figure 3. Kinetic adhesion model. (a)The adhesion force Fb and the equilibrium bond density Nb0 are shown as 

functions of the dimensionless bond stretching x’. (b) The bond density as a function of time when at t=0, xm is 

suddenly increased from (λ + lmv) to 1.01(λ + lmv). The new equilibrium value is approximately reached at t=7x10
-6 s.  

 

By integrating equation (4) analytically, it is easy to show that  
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the initial bond density which, for the case considered, is mbN 0 .  

 From equation (11) it is clear that as ∞→t , we obtain N(t) = N2 as the solution for the new 

equilibrium state. Furthermore, it is interesting to notice that for all t > 0, we have 
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We then define the characteristic time tc by setting N2=N’(0) tc + α, which after using (12) gives, 

 1 2

1 1

( ) 1
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c

f
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From the above expression, we deduce that while tc depends on 0 0, , ,f r r lk k N N , it is independent of ,tsσ σ .  

For the parameter values listed in Table 2, the characteristic time tc given by equation (13) is O(10
-4) 

s. If the shear rate is between 10 and 100 s-1, the characteristic flow time will be between 0.01~0.1 s. 

Clearly, only when these two time scales are comparable we need to consider the time evolution of the 

bond density for computing the adhesion force. If this is not the case, which happens for the parameter 

values selected in this paper, it is appropriate to assume in the fluid dynamics problem that the bond 

density is equal to the equilibrium value for that particular bond length. The adhesion force, in this case, 

depends only on the distance between the cell surface and the wall, which is also the case for the potential 

model. The force range for the kinetic model is however much shorter.  

 

2.5 GOVERNING EQUATIONS 

Let us denote the domain containing the plasma and the leukocyte by Ω , and the domain boundary 

by Γ . The plasma is modeled as a Newtonian liquid while the nucleus is modeled as a rigid sphere P(t) or 

as a viscoelastic liquid. The governing equations for this system are 

0=⋅∇ u            (14) 
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The nucleus in the compound-drop model of leukocytes is assumed to be a viscoelastic liquid modeled by 

the Oldroyd-B model. The viscoelastic stresses, in terms of the configuration tensor A, is given by  

T

r

1
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t

∂
+ ⋅∇ = ⋅∇ +∇ ⋅ − −

∂ λ

A
u A A u u A A I       (15) 

Here u is the velocity, p is the pressure, 
 
η
s
is the solvent viscosity, ρ  is the density, D is the symmetric 

part of the velocity gradient tensor, c is the polymer concentration parameter, λr is the relaxation time of 

the viscoelastic fluid, n is the outer normal, γ is the surface tension, κ is the surface curvature, φ  is the 

level set function which is defined to be the distance from the interface and δ  is the delta function. The 
polymer contribution to the viscosity is ηp = cηS, and the zero shear viscosity of the fluid is ηo = ηs + ηp. 

The equations for the fluid and leukocyte motions are nondimensionalized by taking the 

characteristic length, velocity, time and stress scales as R, U, R/U and η0U/R, respectively. Here R is the 

leukocyte radius, 0η  is the plasma viscosity, and U is the centerline velocity of the undisturbed pressure 

driven flow. The nondimensional parameters are: Reynolds number 00Re ηρ UR= , Deborah number 

De= arUλ , Capillary number Ca= γη0U , Weber number γρ RUWe 2

0= , viscosity ratios 

202101 , ηηληηλ == , Adhesion number 
2

0UFAdh b ρ= , and dimensionless viscosity 

0
' ηηη ss = . 

A code based on the finite element method [22-27] is used for solving the deformation of a 

leukocyte in a pressure driven flow. Here, the governing equations are solved simultaneously both inside 

and outside the leukocyte. The cell interface is tracked using the level set method [28,22] and the 

adhesion force between the wall and the leukocyte is treated as a body force.  

 

3. RESULTS 

We next describe the direct simulation results for the motion of leukocytes in pressure driven flows in 

three dimensional channels with rectangular cross sections. The distance h between the left and right 

walls of the channel is 50 µm, the width of the channel is 37 µm, and the radius of the leukocytes is 6.5 

µm [5-7]. All lengths reported in this paper have been nondimensionalized with respect to the leukocyte 

radius. For most cases reported, the dimensionless parameters are Re=0.5, Ca=0.167, De= 0.1 and 

Adh=50.0. For some cases Re, Ca and Adh are varied.  

  

3.1 Leukocyte motion in the absence of adhesion forces.  

We first consider the case where the adhesion force between the wall and the leukocytes is not 

present, and thus the behavior of a leukocyte is similar to that of a drop in a pressure driven flow. In a 

pressure driven flow, since the shear stress is maximum at the channel wall and decreases linearly with 

increasing distance from the wall, the deformation is expected to be maximum when the leukocyte is 

close to the wall and to decrease with increasing distance from the wall. The stretching occurs at an angle 

of 45o with the flow direction, and the stretched material elements rotate due to the flow vorticity. 

 

Compound-drop model. Figure 4 shows the steady state leukocyte shapes for the compound-drop model 

at various distances from the channel wall. In all cases, both the outer layer and the nucleus of the 

leukocyte are deformed. Also, as noted above, the deformation of the leukocyte increases, and the angle 

between the principal axis of the deformed shape and the channel wall decreases, as the cell gets closer to 

the channel wall. In addition, the angle between the principal axis of the deformed nucleus and the wall is 
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greater than that between the deformed cell and the wall. Moreover, the viscoelastic stresses inside the 

nucleus are maximal in the region which is closest to the wall.  

 

 

 

 

 

(a) (b) (c) (d) 
Figure 4. Leukocyte deformation in the case of the compound-drop model at different distances from the wall. The 

shape on the xz-mid plane through the leukocyte center are shown. (a) x=1.9, (b) x=2.425, (c) x=2.9, and (d) 

x=3.375 at time t=4.6. Notice that both the leukocyte and the nucleus are deformed. The Reynolds number is 0.5. 

 

Drop-rigid-particle model. In the drop-rigid-particle model, the nucleus (a rigid sphere) remains spherical 

while the outer layer of the leukocyte deforms. The steady deformed shapes for the drop-rigid-particle 

model at various distances from the wall are shown in Figure 5. Figures 4 and 5 show that the overall 

deformation is smaller for the drop-rigid-particle model. This implies that the drop-rigid-particle model is 

not appropriate for situations in which the cell, as well as the nucleus, deform significantly, such as during 

spreading or transmigration.  

Figure 6 displays the steady shape of a leukocyte released at a distance of x=2 from the wall. It is 

stretched and its principal direction makes an angle of ~40 degrees with the channel wall. Our simulations 

show that the leukocyte is moving laterally, away from the channel wall, while moving in the flow 

direction. This is also the case for the compound-drop model described in the previous subsection. 

 

 

 

        (a)        (b) (c) (d) 
Figure 5. Leukocyte deformation in the case of the drop-rigid-particle model versus the distance from the wall. (a) 

x=1.9, (b) x=2.425, (c) x=2.9, and (d) x=3.375 at time t=4.6. The deformation increases with decreasing gap 

between the leukocyte and the wall. Since the nucleus is rigid, it does not deform. The Reynolds number is 0.5. 

 

 
 

  

  

 

 

 

 

 

 

Figure 6. Leukocyte deformation in the case of the drop-rigid-particle model at (a) t=0.82 and (b) t=5.25. The 

Reynolds number is 0.5. 

 

Lateral migration of leukocytes. Past studies of the motion of drops in the pressure driven flows have 

shown that a drop not only moves in the flow direction, but also drifts laterally [29,30]. The velocity of 

the lateral drift, however, is very small compared to the velocity in the flow direction. Therefore, 

regardless of the initial position of the drop, it eventually, after a relatively large displacement in the flow 

direction, reaches a lateral equilibrium position, which depends on the ratio of the viscosity of the fluid 

inside the drop and that of the surrounding fluid.  

For the parameter values considered in this study, the Reynolds number is 0.5, and the ratio of the 

cytoplasm and plasma viscosities is 100. The lateral migration of leukocytes, released at different 

distances from the wall of the channel, is studied in a periodic domain. The initial positions ranged 

(a) (b) 
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between x= 1.475 and x=3.375. The channel wall is at x=0 and the centerline of the channel is at x=3.85. 

Some of the numerically obtained trajectories of leukocytes’ centers of mass are displayed in figure 7. 

Our simulations show that the lateral equilibrium position of a leukocyte is around x=2.5, which is 

approximately at a distance of 0.32 h from the channel wall, where h is the channel height. This implies 

that a leukocyte cannot be captured at a wall unless it is brought closer to the wall by some other 

mechanism, e.g., by collisions with other blood cells.   
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Figure 7. Trajectories of leukocytes released from different lateral positions within the channel. The Reynolds 

number is 0.5. 

 

3.2 Leukocyte motion in the presence of adhesion forces.  

We next describe the motion of a leukocyte released near the channel wall at a distance such that the 

adhesion force is present. Our objective here is to study its motion and deformation under the combined 

action of the adhesive and hydrodynamic forces. We consider both models of the adhesive force, i.e., the 

potential model (1) and the kinetic model described in section 2.4.  

In the presence of a pressure driven flow, the leukocyte experiences a hydrodynamic lift force whose 

magnitude depends on many factors including the flow velocity. If the lift force is larger than the 

adhesion force, the leukocyte moves away from the wall. Obviously, when the flow velocity is smaller 

than a critical value such that the lift force is smaller than the adhesive force, the leukocyte is expected to 

remain attached to the wall.  

 

Adhesion potential model. In a pressure driven flow, in addition to the adhesion force the leukocyte also 

experiences a hydrodynamic force. The component of the hydrodynamic force in the flow direction, or 

drag, moves it in the flow direction and the component normal to the wall, or lift, moves it away from the 

wall, thus countering the adhesion force acting towards the wall. The adhesion potential strength and the 

initial leukocyte position of x=2.0 were selected so that the leukocyte is attracted to the wall. We first 

consider the case of the drop-rigid-particle model. 

The flow causes the leukocyte to stretch along the shear direction, while the adhesive force pulls it 

towards the wall (see Figure 8). The adhesive force in the potential model is long-ranged, which can be 

seen by the fact that a leukocyte located at a short distance from the wall is pulled towards the wall. This 

feature of the potential model is perhaps unrealistic since the adhesive forces are not long-ranged. We 

remind the reader that the force for the kinetic model is very short-ranged. As the trailing end of the 

deformed leukocyte is closer to the wall, it experiences a larger attractive potential force, and thus is 

pulled further towards the wall. Consequently, the trailing end of the leukocyte begins to flatten, and the 

contact area between the leukocyte and the wall starts increasing. The contact area continues to increase 

until the surface tension force becomes equal to the deforming forces. 

For the compound-drop model, the nucleus of the leukocyte also deforms (Figure 9). The other 

features of the overall deformation are similar. Here, the initial position of the center of the leukocyte is 

x=0.5. The flow causes the leukocyte to move upwards, and the adhesive and shear forces cause the 

surface of the leukocyte near the wall to flatten. Furthermore, it is interesting to note that the gap between 

the leukocyte surface and the wall near the leading edge is larger than that near the trailing edge. Notice 
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that this flattening of the leukocyte cannot be seen in the top view where it appears to be only elongated 

[7,12]. This is an important point because in experiments we generally have access only to the top view. 

 

  
  (a) (b) 

Figure 8. Deformation of a leukocyte in the case of the drop-rigid-particle model due to shear forces while it moves 

towards the wall under the action of the adhesive force at (a) t=0.82 and (b) t=2.46. The Reynolds number is 0.5, 

Ca=0.167, De= 0.1 and Adh=50.0. 

 

  
 

Figure 9. Leukocyte deformation for the compound-drop model released close to the wall at (a) t=0.82, and (b) 

t=2.46, and (c) t=3.94. The top view is also shown. The Reynolds number is 0.5, Ca=0.167, De= 0.1 and Adh=50.0. 

 

Kinetic adhesion model. As noted above, the adhesion force for the kinetic model is non-zero for a very 

small range of distances between the leukocyte surface and the wall. Therefore, for the results presented 

in this section the initial position of the leukocyte is selected so that the force is present. Figure 10 shows 

that at the beginning the leukocyte rolls near the wall surface. The Reynolds number for this case is 0.5. 

As the leukocyte deforms, the lift force it experiences increases and in this case the leukocyte moves 

away from the wall as the adhesion force is not sufficiently large to keep it attached. After the leukocyte 

moves out of the range of the kinetic adhesion force, which as noted above corresponds to the relatively 

short distance of about 30 nm, the adhesion force becomes zero. The leukocyte then migrates to a lateral 

distance at which the lateral hydrodynamic force is zero, as discussed above. 

 
  (a) (b) (c) 
Figure 10. Leukocyte deformation in the case of the compound-drop model and the adhesion force given by the 

kinetic model at (a) t=0.6, (b) t=3, and (c) t=6, for a Reynolds number of Re=0.5, Ca=0.167, De= 0.1 and Adh=50.0. 

(a) (b) (c) 
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 (a) (b) (c) 
Figure 11. Leukocyte deformation in the case of the compound-drop model and the adhesion force given by the 

kinetic model. The parameters are selected so that the adhesion force is 100 times larger than for the case shown in 

Figure 10 at (a) t=0.6, (b) t=3 and (c) t=6. The parameters are the same as in figure 10, except Adh=5000.0.  
 

In order to ensure that the leukocyte is captured at the wall, we next consider the case where the 

adhesion force is 100 times larger and the adhesion parameter is 5000. In this case, the cell remained 

attached to the wall (Figure 11). After the steady state is reached and the deformation no longer increases, 

the lower area of the cell is flattened, and the leukocyte rolls and slides on the adhesive wall. In addition, 

the front edge of the leukocyte is farther away from the wall and the trailing end (located near the wall) is 

flattened. The flattening increases the surface area over which the adhesion force acts, which is especially 

critical in the kinetic model, as the distance range over which the force acts is rather small [12,31].  

 

4.0 DISCUSSION AND CONCLUSIONS 

We have performed three-dimensional direct numerical simulations of the motion and deformation of 

a leukocyte in channels. The surface of the leukocyte is tracked using the level set method and in the case 

of the solid nucleus model the rigid motion enforcement inside the nucleus is performed by using the 

distributed Lagrange multiplier method. The leukocyte is represented using two different models: the 

compound-drop model and the drop-rigid-particle model. Preliminary results using this approach were 

presented in [32]. 

Our simulations show that the leukocyte deformation is larger when it is closer to the wall, where the 

shear rate is larger. The deformation is smaller for the drop-rigid particle model of the leukocyte. For the 

parameter values selected, which are typical for such flows, the leukocyte moved away from the wall to a 

stable location positioned between the center of the channel and the wall. This implies that the adhesion 

force is necessary for the leukocyte to remain attached to the wall.  

In the presence of a pressure driven flow, the leukocyte experienced not only a lift force whose 

magnitude depends on many parameters including the flow velocity, but also a hydrodynamic torque. 

Both cause the trailing end of the leukocyte to move away from the wall. Clearly, when the bulk flow 

velocity is sufficiently small the combined effect of these hydrodynamic forces is smaller than the 

adhesive force, and the leukocyte remained attached to the wall. However, when the flow velocity was 

larger and closer to typical values, the hydrodynamic forces overcame the adhesive force and the 

leukocyte moved away from the wall. Our simulation results showed that for the kinetic model parameter 

values selected in section 2.4 and typical flow rates, the leukocyte was found to move away from the wall. 

This is somewhat problematic since in experiments leukocytes do get attached to the endothelium 

monolayer. 

For the two adhesion models used in this study the trailing end of the leukocyte flattened. The 

flattening increases the contact surface area over which the adhesion force acts, and thus the adhesion 

force acting on the leukocyte. The flattening, therefore, plays an important role in increasing the adhesion 

force so that the latter does not get canceled by the hydrodynamic lift force and torque. The flattening of 

the leukocyte is particularly crucial for the kinetic model since the distance range over which the 

corresponding adhesive force acts is approximately 30 nm.  
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