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Abstract Two nonlinear Maxwell systems are considered: Kerr model exhibiting an instantaneous re-

sponse of the medium, Kerr-Debye model which contains some delay term and is a relaxation approxi-

mation of the first one. In one space dimension, we prove that the limit of the solution to the ingoing

wave condition for Kerr-Debye model is a solution to the Kerr model.
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1 Introduction

Nonlinear Maxwell’s equations are used for modelling nonlinear optical phenomena. The wave
propagation in an isotropic medium is described by Maxwell’s system:

∂tD − curl H = 0,
∂tB + curl E = 0,
div D = div B = 0.

The field quantities E and H represent the electric and magnetic fields, D and B the electric and
magnetic displacements. We consider the constitutive relations for a nonlinear Kerr medium:

B = µ0H,

D = ε0E + P,

where P is the nonlinear polarization.
If the medium exhibits an instantaneous response we have a Kerr model:

P = PK = ε0εr|E|2E.

If the medium exhibits a finite response time τ we have a Kerr-Debye model:

P = PKD = ε0χE,

where

∂tχ +
1

τ
χ =

1

τ
εr|E|2

(see for example [15] or [20]).

So the Kerr-Debye model is a relaxation approximation of the Kerr model and τ is the relaxation
parameter (for a general presentation of relaxation problems, see [13]). Formally, when τ tends
to 0, χ converges to εr|E|2 and PKD converges to PK .
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Recently for the Cauchy problem with regular initial data, the convergence result was obtained in
[7] and [8] using the general framework given in [17]. This study is based on a precise description
of the boundary layer in time.
For the modelling of realistic physical situations it is more convenient to take into account
boundary value conditions. In particular we consider the impedance boundary value problem.
For the Kerr-Debye model in two space dimension, numerical studies were proposed for the
Dirichlet condition on the magnetic field in [19] and for the ingoing boundary condition in [8].
The aim of this paper is to prove convergence results in the case of impedance initial-boundary
value problem for Kerr-Debye model in one space dimension.

2 The one space dimension models

Let us suppose that
D(x, y, z) = (0, d(x), 0),
H(x, y, z) = (0, 0, h(x)).

Then Maxwell’s system rewrite
∂td + ∂xh = 0,
∂th + ∂xe = 0,

for (t, x) ∈ ([0,+∞[)2.

Once nondimensionalized the Kerr model, denoted by (K), becomes:






















∂td + ∂xh = 0,

∂th + ∂xe = 0,

d = (1 + e2)e,

(2.1)

for (t, x) ∈ (R+)2.

We suppose that the initial data vanishes

d(0, x) = h(0, x) = 0 for x ∈ R
+, (2.2)

and that we have the boundary condition

h(t, 0) + ae(t, 0) = g(t) for t ∈ R
+, (2.3)

where a is a non negative constant.

The system (K) is quasi-linear hyperbolic. It is a p-system where p is the reciproque function
of e 7→ (1 + e2)e, and it is strictly hyperbolic with eigenvalues

λ1 = −
√

p′(d) < 0 < λ2 =
√

p′(d).

The energy density EK given by

EK(e, h) =
1

2
(e2 + h2 +

3

2
e4) (2.4)

is a strictly convex entropy. In the entropic variable (e, h), system (K) writes in the symmetric
form:

(

1 + 3e2 0
0 1

)

∂t

(

e

h

)

+

(

0 1
1 0

)

∂x

(

e

h

)

= 0. (2.5)
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The boundary {x = 0} is non characteristic. We can verify that the boundary condition (2.3) is
an ingoing wave condition and is maximal dissipative (since a ≥ 0). Therefore classical existence
results of regular solution for the (K) boundary value problem (2.1)-(2.2)-(2.3) apply.

The one dimensional Kerr-Debye model, denoted by (KD) system, writes:















































∂tdε + ∂xhε = 0,

∂thε + ∂xeε = 0,

∂tχε =
1

ε
(e2

ε − χε),

dε = (1 + χε)eε,

(2.6)

for (t, x) ∈ (R+)2, with initial data

dε(0, x) = hε(0, x) = χε(0, x) = 0 for x ∈ R
+ (2.7)

and with boundary condition

hε(t, 0) + aeε(t, 0) = g(t) for t ∈ R
+. (2.8)

Using the third equation in (2.6) and (2.7) we remark that

χε(t, x) ≥ 0. (2.9)

The system (KD) is quasi-linear strictly hyperbolic with eigenvalues

λ1 = (1 + χε)
−

1

2 < λ2 = 0 < λ3 = (1 + χε)
−

1

2 .

The energy density EKD given by

EKD(d, h, χ) =
1

2
(1 + χ)−1d2 +

1

2
h2 +

1

4
χ2

is a strictly convex entropy in {χ ≥ 0}, so the system (KD) is symmetrizable.
Using the entropy variables given by



























∂dEKD(d, h, χ) = (1 + χ)−1d := e,

∂hEKD(d, h, χ) = h,

∂χEKD(d, h, χ) = −
1

2
(1 + χ)−2d2 +

1

2
χ =

1

2
(χ − e2) := v,

system (KD) takes the symmetric form



























(1 + 3e2
ε + 2vε)∂teε + 2eε∂tvε + ∂xhε = 0,

∂thε + ∂xeε = 0,

2eε∂teε + 2∂tvε = −
2

ε
vε.
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If we use the following notations:

Wε = (Uε, vε) with Uε = (eε, hε),

A0(Wε) =





1 + 3e2
ε + 2vε 0 2eε

0 1 0
2eε 0 2



 , A1 =





0 1 0
1 0 0
0 0 0



 ,

Q(Wε) =





0
0
vε



 ,

we obtain

A0(Wε)∂tWε + A1∂xWε = −
2

ε
Q(Wε). (2.10)

The matrix A0(Wε) is definite positive because χε = e2
ε + 2vε ≥ 0 by (2.9). The matrix A1

is singular with one dimensional kernel, so the boundary {x = 0} is characteristic of constant
multiplicity. In addition, the boundary condition (2.8) is an ingoing wave boundary condition
and is maximal dissipative. Therefore the general results of [5] apply to obtain existence result
of regular solutions for the (KD) boundary value problem (2.6)-(2.8).
Now let us specify the assumptions on the source term g in the boundary condition (2.3) or (2.8).
For the modelling of realistic physical situations we can assume that g is compactly supported in
[0,+∞[. We denote by Hs the classical Sobolev space and we suppose that g belongs to H s(R)
for s great enough. So the boundary condition and the null initial data match one each other
and we obtain smooth solutions.

In order to obtain homogeneous boundary condition we replace the magnetic field h by h(t, x)+
g(t)η(x) where η is a smooth function, compactly supported in R

+, equal to 1 in a neighbourhood
of 0. We rewrite the (K) boundary value problem in the entropic variables































(

1 + 3e2 0
0 1

)

∂t

(

e

h

)

+

(

0 1
1 0

)

∂x

(

e

h

)

=

(

g1

g2

)

for (t, x) ∈ (R+)2,

e(0, x) = h(0, x) = 0 for x ∈ R
+,

h(t, 0) + ae(t, 0) = 0 for t ∈ R
+,

(2.11)

where g1(t, x) = −g(t)η′(x) and g2(t, x) = −g′(t)η(x), and we consider a regular solution of this
problem.

Proposition 2.1 There exists T ∗ > 0 and a unique regular solution U = (e, h) for the (K)
boundary value problem (2.11) defined in [0, T ∗[×R

+ and such that

∂i
tU ∈ C0([0, T ∗[;H2−i(R+)) for i = 0, 1, 2.

In the same way we rewrite the (KD) boundary value problem in the entropic variables
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A0(Wε)∂tWε + A1∂xWε = −
2

ε
Q(Wε) + G(t, x) for (t, x) ∈ (R+)2,

Wε(0, x) = 0 for x ∈ R
+,

hε(t, 0) + aeε(t, 0) = 0 for t ∈ R
+,

(2.12)

where G = t(g1, g2, 0).

For fixed ε > 0, using the results in [5] we consider a regular local solution of this problem.

Proposition 2.2 There exists T ∗
ε > 0 and a unique regular solution Wε = (Uε, vε) for the (KD)

boundary value problem (2.12) defined on [0, T ∗
ε [×R

+ and such that

∂i
tWε ∈ C0([0, T ∗

ε [;H2−i(R+)), i = 0, 1, 2.

The goal of this paper is to analyse the behaviour of the regular solutions for the (KD) boundary
value problem when the relaxation parameter ε tends to 0. By energy estimates we first obtain
uniform bound of Wε in the following theorem.

Theorem 2.1 Let Wε and T ∗
ε given by Proposition 2.2. There exist T̃ > 0 and a constant

K > 0 such that for all ε > 0, T ∗
ε ≥ T̃ and the solution Wε = (Uε, vε) of the (KD) boundary

value problem (2.12) satisfies































‖∂i
tUε‖C0([0,T̃ ];H2−i(R+)) ≤ K for i = 0, 1, 2,

1

ε
‖vε‖C0([0,T̃ ];H1(R+)) ≤ K,

‖∂i
tvε‖C0([0,T̃ ];H2−i(R+)) ≤ K for i = 0, 1, 2.

Theorem 2.1 shows the strong convergence of vε =
1

2
(χε − e2

ε) to zero. The convergence of

Uε to the solution of the boundary value problem (2.11) for (K) is contained in the following
statement.

Theorem 2.2 Let U and T ∗ given by Proposition 2.1, let Uε and T̃ given by Theorem 2.1. For
T ≤ T̃ and T < T ∗, there exists a constant K > 0 such that for all ε > 0,

‖Uε − U‖C0([0,T ];L2(R+)) ≤ Kε. (2.13)

So we have proved that the regular solutions for the (KD) boundary value problem tend to the
solution for the (K) boundary value problem when the relaxation parameter tends to zero.

In our study we remark that no boundary layer appears in the time variable because the null
initial data belongs to the equilibrium manifold defined by

V =
{

(d, h, χ) such that χ − (1 + χ)−2d2 = 2v = 0
}

.

For the space variable, we have the same boundary condition for the system (K) and for the
system (KD), so no space boundary layer appears again.
In the case of non characteristic boundary conditions, a general study of boundary conditions
for hyperbolic relaxation systems is given in [16].
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To our knowledge general convergence results are not available for hyperbolic relaxation systems
in domains with boundary in the literature.
A special well investigated problem is the semilinear relaxation approximation to the boundary
value problem for a scalar quasilinear equation, see [11, 14, 10, 12], and [4, 1] for related numerical
considerations.
For the strong solutions of the (KD) boundary value problem with the entropic variables, we
obtain a symmetric hyperbolic system endowed with a flat equilibrium manifold. This basic
structure of numerous relaxation systems is explained and used for the global existence of smooth
solutions in [6] and for asymptotic behaviour in [2]. For connected works see also [18, 9].

The study of the three-dimensional case is the subject of a work in progress [3]. In this case the
previous properties are still valid: there is no boundary layer and with the entropic variables,
the equilibrium manifold is flat. On the other hand, the boundary is characteristic for both
problems, with a two-dimensional kernel for Kerr problem, and a three-dimensional kernel for
Kerr-Debye problem. We must then take into account the nonlinear conservation equations
div D = div B = 0, which is irrelevant for the one-dimensional case.

Section 3 is devoted to the proof of Theorem 2.1. Using energy estimates, we bound the time
derivatives of Wε. The boundary is characteristic so we cannot directly obtain the bounds for
the space derivatives. Since Ker A1 = R(0, 0, 1) with the first two equations, we can express and
estimate the space derivatives for Uε. Estimates for vε are obtained solving the third equation
by Duhamel formula.
We prove Theorem 2.2 in Section 4.

3 Proof of Theorem 2.1

We denote by · the canonical scalar product on R
3 and by |.| the associated euclidean norm.

For the convenience of the reader, we rewrite System (2.12) omitting the dependance on ε. Let
W be a solution to the problem



























A0(W )∂tW + A1∂xW = −
2

ε
Q(W ) + G on [0, T ∗

ε [×R
+,

W (0, x) = 0 on R
+,

(h + ae)(t, 0) = 0 on [0, T ∗
ε [.

(3.1)

Here we denote by T ∗
ε ∈]0,+∞] the lifespan of W given by [5]. We prove the result when

‖W‖L∞(0,T ∗

ε ×R+) = +∞.

If this asumption is not satisfied, we use the extension Theorem in [5] with analogous arguments
as below.

Let M be a positive constant large enough with respect to the L∞-norm of the initial data.
Consider the regular solution W = (U, v) to problem (3.1), as given by Proposition 2.2. Define
Tε > 0 as

Tε = max{T ≤ T ∗
ε , ‖W‖L∞([0,T ]×R+) < M}, (3.2)

that is Tε is the first time such that the L∞-norm of W reaches the given bound M .
We recall that the solution W = (U, v) satisfies:
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∂i
tW ∈ C0([0, Tε];H

2−i(R+)) for i = 0, 1, 2. (3.3)

Furthermore we recall that

e2 + 2v ≥ 0 on [0, Tε] × R
+. (3.4)

From (3.2) and (3.4), by definition of A0 we have

∀ ξ ∈ R
3, A0(W )ξ · ξ ≥

1

M2 + 2
|ξ|2. (3.5)

We measure the boundary value lifting G by the quantities γ and Γ defined by:

γ(t) =
(

‖G(t)‖2
L2(R+) + ‖∂tG(t)‖2

L2(R+) + ‖∂ttG(t)‖2
L2(R+) + ‖∂xG(t)‖2

L2(R+)

) 1

2

, (3.6)

and
Γ(t) = sup

s∈[0,t]
γ(s). (3.7)

For t ∈ [0, Tε] we define ϕ and Φ by

ϕ(t) =
(

‖W (t)‖2
L2(R+) + ‖∂tW (t)‖2

L2(R+) + ‖∂ttW (t)‖2
L2(R+)

)
1

2

, (3.8)

Φ(t) = sup
s∈[0,t]

ϕ(s). (3.9)

We first prove the following result.

Lemma 3.1 There exists a constant K1, independant of M , such that

∀ ε > 0, ∀ t ∈ [0, Tε], Φ(t)2 ≤ K1(2 + M2)

∫ t

0

(

1 + (Φ(s))5 + (Γ(s))5
)

ds. (3.10)

First step: L2 estimate

We take the inner product of Equation (3.1) with W and we obtain that

1

2

d

dt

∫

R+

A0(W )W · Wdx +
2

ε

∫

R+

|v|2dx + a|e(t, 0)|2 =

∫

R+

G · W +
1

2

∫

R+

∂t(A0(W ))W · Wdx,

where

∂t(A0(W )) =





6e∂te + 2∂tv 0 2∂te

0 0 0
2∂te 0 0



 . (3.11)

We have
∣

∣

∣

∣

∫

R+

∂t(A0(W ))W · Wdx

∣

∣

∣

∣

≤ ‖∂t(A0(W ))‖L∞(R+)‖W‖2
L2(R+)

≤ C(1 + ‖e‖L∞(R+))
(

‖∂te‖L∞(R+) + ‖∂tv‖L∞(R+)

)

‖W‖2
L2(R+),
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thus we obtain that

1

2

d

dt

∫

R+

A0(W )W · W dx +
2

ε

∫

R+

|v|2dx + a|e(t, 0)|2 ≤ ‖G‖L2(R+)‖W‖L2(R+)

+C(1 + ‖e‖L∞(R+))(‖∂te‖L∞(R+) + ‖∂tv‖L∞(R+))‖W‖2
L2(R+).

(3.12)

Second step: estimate on ∂tW

We can derivate the system (3.1) with respect to t. We obtain that



























A0(W )∂ttW + ∂t(A0(W ))∂tW + A1∂txW = −
2

ε
Q(∂tW ) + ∂tG on [0, Tε] × R

+,

∂tW (0, x) = 0 on R
+,

(∂th + a∂te)(t, 0) = 0 on [0, Tε].

(3.13)

Taking the inner product of (3.13) with ∂tW , we obtain that

1

2

d

dt

∫

R+

A0(W )∂tW · ∂tWdx +
2

ε

∫

R+

|∂tv|
2dx + a|∂te(t, 0)|

2 =

∫

R+

∂tG · ∂tW

−
1

2

∫

R+

∂t(A0(W ))∂tW · ∂tWdx,

and thus there exists a constant C such that

1

2

d

dt

∫

R+

A0(W )∂tW · ∂tWdx +
2

ε

∫

R+

|∂tv|
2dx + a|∂te(t, 0)|

2 ≤ ‖∂tG‖L2(R+)‖∂tW‖L2(R+)

+C(1 + ‖e‖L∞(R+))
(

‖∂te‖L∞(R+) + ‖∂tv‖L∞(R+)

)

‖∂tW‖2
L2(R+).

(3.14)

Third step: estimate on ∂ttW

We can derivate System (3.13) with respect to t. We obtain that

1

2

d

dt

∫

R+

A0(W )∂ttW · ∂ttWdx +
2

ε

∫

R+

|∂ttv|
2dx + a|∂tte(t, 0)|

2 =

∫

R+

∂ttG · ∂ttW

−
3

2

∫

R+

∂t(A0(W ))∂ttW · ∂ttWdx −

∫

R+

∂tt(A0(W ))∂tW · ∂ttW.

Now we have:

∂tt(A0(W )) =





6(∂te)
2 + 6e∂tte + 2∂ttv 0 2∂tte

0 0 0
2∂tte 0 0



 ,

thus

‖∂tt(A0(W ))∂tW‖L2(R+) ≤ C(1 + ‖e‖L∞(R+))
(

‖∂te‖L∞(R+) + ‖∂tv‖L∞(R+)

)

‖∂ttW‖L2(R+)

+C‖∂te‖
2
L∞(R+)‖∂te‖L2(R+).
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Therefore

1

2

d

dt

∫

R+

A0(W )∂ttW · ∂ttWdx +
2

ε

∫

R+

|∂ttv|
2dx + a|∂tte(t, 0)|

2

≤ ‖∂ttG‖L2(R+)‖∂ttW‖L2(R+) + C(1 + ‖e‖L∞(R+))
(

‖∂te‖L∞(R+) + ‖∂tv‖L∞(R+)

)

‖∂ttW‖2
L2(R+)

+C‖∂te‖
2
L∞(R+)‖∂te‖L2(R+)‖∂ttW‖L2(R+).

(3.15)

Fourth step: L∞ estimates for ∂te and ∂tv

We recall the equations satisfied by W = (e, h, v):

(3e2 + 2v + 1)∂te + 2e∂tv + ∂xh = g1, (3.16)

∂th + ∂xe = g2, (3.17)

e∂te + ∂tv = −
1

ε
v. (3.18)

From (3.17) we have
‖∂xe‖L2(R+) ≤ ϕ + ‖G‖L2(R+) ≤ ϕ + γ, (3.19)

where ϕ is defined by (3.8) and γ is defined by (3.6). Thus

‖e‖H1(R+) ≤ 2ϕ + γ, (3.20)

and by Sobolev injection
‖e‖L∞(R+) ≤ C(ϕ + γ). (3.21)

Derivating (3.17) with respect to t we obtain that

‖∂x∂te‖L2(R+) ≤ ϕ + ‖∂tG‖L2(R+),

so
‖∂te‖H1(R+) ≤ 2ϕ + ‖∂tG‖L2(R+), (3.22)

and by Sobolev injections there exists a constant C such that

‖∂te‖L∞(R+) ≤ C(ϕ + γ). (3.23)

Now we solve Equation (3.18) with Duhamel formula:

v(t, x) = −

∫ t

0
exp(

s − t

ε
)e(s, x)∂te(s, x)ds,

so

‖v(t, .)‖L∞(R+) ≤

∫ t

0
exp(

s − t

ε
)‖e(s, .)‖L∞(R+)‖∂te(s, .)‖L∞(R+)ds

≤ C

∫ t

0
exp(

s − t

ε
) (ϕ(s) + γ(s))2 ds

≤ C(Φ(t) + Γ(t))2ε,
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where Φ is defined in (3.9) and Γ is defined by (3.7).
Using Equation (3.18) we obtain then that

‖∂tv‖L∞(R+) ≤
1

ε
‖v‖L∞(R+) + ‖e∂te‖L∞(R+)

≤ C(Φ(t) + Γ(t))2.
(3.24)

Fifth step: end of the proof of Lemma 3.1

We sum up inequalities (3.12), (3.14) and (3.15). Using (3.23) and (3.24) we obtain that there
exists a constant K1 independant of ε, M and t ∈ [0, Tε] such that

1

2

d

dt

∫

R+

(

A0(W )W · Wdx + A0(W )∂tW · ∂tWdx + A0(W )∂ttW · ∂ttW
)

dx

+
2

ε

∫

R+

(

|v|2dx + |∂tv|
2dx + |∂ttv|

2
)

dx + a
(

|e(t, 0)|2 + |∂te(t, 0)|
2 + |∂tte(t, 0)|

2
)

≤ Cγϕ + C(1 + ϕ + γ)
(

ϕ + γ + (Φ + Γ)2
)

ϕ2 + C(ϕ + γ)2ϕ2

≤ K1

(

1 + Φ5 + Γ5
)

.

We integrate this inequality on [0, t] for t ∈ [0, Tε] and we have by (3.5) that

∀ t ∈ [0, Tε], ϕ2(t) ≤ K1(2 + M2)

∫ t

0

(

1 + Φ(s)5 + Γ(s)5
)

ds.

So we obtain Lemma 3.1.

Lemma 3.1 provides estimates on the time derivatives of W . The space derivatives can not be
obtained by the same method since it is impossible to derivate the system (KD) with respect to
the normal variable x. We deduce estimates on the space derivatives from the equations as we
will see in the following lemma.

Lemma 3.2 There exists K2 such that for all t < T ∗
ε ,

‖U‖H2(R+) ≤ K2(Γ + Φ + Γ3 + Φ3),

‖v‖H1(R+) ≤ K2(Γ
2 + Φ2)ε,

‖∂tv‖H1(R+) ≤ K2(Γ
2 + Φ2),

‖W‖L∞(R+) ≤ K2(Γ + Φ + Γ3 + Φ3).

Proof of Lemma 3.2

We recall that

v(t, x) = −

∫ t

0
exp

(

s − t

ε

)

e(s, x)∂te(s, x)ds,

thus

‖v(t, .)‖H1(R+) ≤ C

∫ t

0
exp

(

s − t

ε

)

‖e(s, .)‖H1(R+)‖∂te(s, .)‖H1(R+)ds,
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thus by Estimates (3.22) and (3.20), we have

‖v(t, .)‖H1(R+) ≤ C(Φ(t) + Γ(t))2ε. (3.25)

From (3.18) we obtain that

‖∂tv(t, .)‖H1(R+) ≤
1

ε
‖v(t, .)‖H1(R+) + ‖e‖H1(R+)‖∂te‖H1(R+),

thus
‖∂tv(t, .)‖H1(R+) ≤ C(Φ(t) + Γ(t))2. (3.26)

Now from Equation (3.16) we estimate ∂xh in the following way:

‖∂xh‖H1(R+) ≤ ‖g1‖H1(R+)+‖3e2+2v‖H1(R+)‖∂te‖H1(R+)+‖∂te‖H1(R+)+2‖e‖H1(R+)‖∂tv‖H1(R+),

and thus there exists a constant C such that

‖h‖H2(R+) ≤ C(Γ + Φ + Γ3 + Φ3). (3.27)

We derivate (3.17) with respect to x:

∂xxe = ∂xg2 − ∂t∂xh.

Thus
‖∂xxe‖L2(R+) = γ + ‖∂t∂xh‖L2(R+).

Derivating (3.16) with respect to t we obtain that:

‖∂t∂xh‖L2(R+) ≤ ‖3e2 + 2v + 1‖L∞(R+)‖∂tte‖L2(R+) + ‖6e∂te + 2∂tv‖L2(R+)‖∂te‖L∞(R+)

+2‖∂te‖L∞(R+)‖∂tv‖L2(R+) + 2‖∂te‖L∞(R+)‖∂ttv‖L2(R+) + ‖∂tg1‖L2(R+)

≤ C(Γ + Φ + Φ3 + Γ3),

using (3.21), (3.23), (3.24) and (3.25).
So we have obtained that

‖e‖H2(R+) ≤ C(Γ + Φ + Φ3 + Γ3). (3.28)

This concludes the proof of Lemma 3.2.

Proof of Theorem 2.1

We fix M = 3K2(Γ∞ + Γ3
∞), where K2 is given by Lemma 3.2, and where Γ∞ = sup

R+

Γ.

Let us introduce ξ the solution of

{

ξ′ = K1(2 + M2)
(

1 + ξ
5

2 + Γ5
∞

)

,

ξ(0) = 0,

defined on the maximal interval [0, T1[, where K1 is given by Lemma 3.1. By comparison results,
from Estimate (3.10) we have

∀ t ∈ [0,min(T1, Tε)[, Φ2(t) ≤ ξ(t).
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From Lemma 3.2 we have then that

‖W‖L∞(R+) ≤ K2(Γ + ξ
1

2 + Γ3 + ξ
3

2 ).

The map ξ is continuous and ξ(0) = 0, thus there exists a time T̃ with 0 < T̃ ≤ T1 such that

K2(ξ
1

2 (T̃ ) + ξ
3

2 (T̃ )) ≤
M

3
.

For all t ≤ T̃ , we then have:

K2(Γ + ξ
1

2 + Γ3 + ξ
3

2 ) ≤
2M

3
.

Thus T̃ < Tε because if Tε ≤ T̃ then ‖W (t)‖L∞(R+) ≤
2M

3
for all t ≤ Tε, which is contradictory

to the fact that ‖W (Tε)‖L∞(R+) = M (see (3.2)).

It remains to obtain an uniform H2 estimate on v. We have

v(t, x) = −
1

2

∫ t

0
exp

(

s − t

ε

)

∂t(e(s, x)2)ds,

thus with an integration by parts we obtain that

v(t, x) = −
1

2

[

exp

(

s − t

ε

)

e(s, x)2
]t

0

+
1

2ε

∫ t

0
exp

(

s − t

ε

)

e(s, x)2ds.

So we obtain that there exists a constant C independant of ε such that for t ≤ T̃

‖v(t, .)‖H2(R+) ≤ C‖e‖2
L∞([0,t];H2(R+)).

This concludes the proof of Theorem 2.1.

4 Proof of Theorem 2.2

Let us consider U = (e, h) the solution of the (K) boundary value problem (2.11) defined on the
time interval [0, T ∗[ given by Proposition 2.1. We recall that we denote by Wε = (Uε, vε) the
solution of the (KD) boundary value problem (2.12) given by Proposition 2.2, with Uε = (eε, hε).

Set Rε =
1

ε
(Uε − U) = (rε, sε). The remainder term Rε satisfies











(3e2
ε + 2vε + 1)∂trε + ∂xsε + 3(eε + e)(∂te)rε = −

2

ε
eε∂tvε −

2

ε
vε∂te,

∂tsε + ∂xrε = 0,

(4.1)

with the initial and boundary conditions:






sε = eε = 0 for t = 0,

sε + arε = 0 for x = 0.
(4.2)

In order to estimate the right hand side term we recall that from (2.12) we have

1

ε
∂tvε = −∂ttvε − (∂teε)

2 − eε∂tteε.
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Using Theorem 2.1, for all T ≤ T̃ , there exists a constant K independant of ε such that

‖∂tvε‖L2(R+) ≤ Kε. (4.3)

We take the inner product of (4.1) with Rε to obtain that

1

2

d

dt

∫

R+

(

(3e2
ε + 2vε + 1)r2

ε + s2
ε

)

+ a(sε(t, 0))
2 =

1

2

∫

R+

(6eε∂teε + 2∂tvε)r
2
ε

−

∫

R+

3(eε + e)(∂te)r
2
ε −

2

ε

∫

R+

eε(∂tvε)rε −
2

ε

∫

R+

vε(∂te)rε.

So, there exists a constant C such that

1

2

d

dt

∫

R+

(

(3e2
ε +2vε + 1)r2

ε + s2
ε

)

≤ C
(

‖eε‖L∞(R+)‖∂teε‖L∞(R+) + ‖∂tvε‖L∞(R+)

)

‖rε‖
2
L2(R+)

+C
(

‖eε‖L∞(R+)‖∂te‖L∞(R+) + ‖e‖L∞(R+)‖∂te‖L∞(R+)

)

‖rε‖
2
L2(R+)

+
2

ε
‖eε‖L∞(R+)‖∂tvε‖L2(R+)‖rε‖L2(R+) +

2

ε
‖∂te‖L∞(R+)‖vε‖L2(R+)‖rε‖L2(R+).

From the estimates of Theorem 2.1, from the properties of e (see Proposition 2.1) and from
(4.3), there exists a constant K such that fo all T ≤ min(T̃ , T ∗),

1

2

d

dt

∫

R+

(

(3e2
ε + 2vε + 1)r2

ε + s2
ε

)

≤ K(1 + ‖rε‖
2
L2(R+)).

We integrate this equation from 0 to t and we obtain, using (3.5), that

‖rε(t)‖
2
L2(R+) + ‖sε(t)‖

2
L2(R+) ≤ K(M2 + 2)

∫ t

0

(

1 + ‖rε(τ)‖2
L2(R+)

)

dτ.

We conclude the proof of Theorem 2.2 by Gronwall Lemma.
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[1] Denise Aregba-Driollet and Vuk Milǐsić. Kinetic approximation of a boundary value problem
for conservation laws. Numer. Math., 97(4):595–633, 2004.

[2] Stefano Bianchini, Bernard Hanouzet and Roberto Natalini. Asymptotic Behaviour of
Smooth Solutions for Partially Dissipative Hyperbolic Systems with a Convex Entropy.
Preprint 2005, to appear in Comm. Pure Appl. Math..

[3] Gilles Carbou and Bernard Hanouzet, in preparation.

[4] A. Chalabi and D. Seghir. Convergence of relaxation schemes for initial boundary value
problems for conservation laws. Comput. Math. Appl., 43(8-9):1079–1093, 2002.

[5] Olivier Guès. Problème mixte hyperbolique quasi-linéaire caractéristique. Comm. Partial
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