Pointing to a target while naming it with /pata/ or /tapa/: the effect of consonants and stress position on jaw-finger coordination

Amélie Rochet-Capellan, Jean-Luc Schwartz, Rafael Laboissière, and Arturo Galvàn

GIPSA-Lab, Département parole et cognition (ICP, Institut de la Communication Parlée), France
Max Planck Institute for Human Cognitive and Brain Science, Munich, Germany
Espace et Action, U864 INSERM, Lyon, France

amelie.rochet-capellan@icp.inpg.fr, jean-luc.schwartz@icp.inpg.fr, laboissiere@cbs.mpg.de, galvan@cbs.mpg.de

Abstract

This study investigates jaw-finger coordination in a task consisting in pointing to a target while naming it with a /pata/ or a /tapa/ utterance stressed either on the first (CVCV) or on the second (CV'CV) syllable. Optotrak measurements of jaw and finger displacements show that for CVCV names, the moment at which the finger reaches the target alignment is synchronized with the maximum of the first jaw opening motion. For CV'CV names, the synchronization occurs between the moment at which the finger leaves the target-alignment position and the maximum of the jaw opening motion for the second vowel. This pattern of synchronization does not depend on the target position or on the consonants order. These results add some support to theories involving the coordination of orofacial and brachiomanual gestures in the development and phylogeny of human languages.

1. Introduction

1.1. Substance-based deixis

The deictic function of language (refer to an object) has been assumed to be first supported by the hand and later connected to speech [1][2]. This connection could constitute a substrate for the emergence of language indexical signs (e.g. “this”) in the course of ontogeny and phylogeny. Hence, a close link might exist between speech and pointing deictic sites, enabling to show respectively by the hand and by the voice. Synchronization of speech and hand pointing in face-to-face communication [3][4] could consist in coherence between the speech focus and the pointing focus, with a trend to align the arm-hand-finger system with the speech focus. Moreover, developmental studies displayed a link between the frequencies of arm-hand gestures and jaw oscillations in babbling [5]. This link would evolve toward a “rendez-vous” between the motor control of jaw oscillations in babbling, the speech frame [6][7] and brachiomanual oscillations in pointing, the sign frame [8]. This “rendez-vous” would play a key role in language acquisition [9][10]. In addition, it leads to suspect that synchronization between speech and pointing gestures could rest on a close coordination of the jaw and arm-hand oscillatory systems, anchored in motor control acquisition.

1.2. Focus and jaw-finger coordination

In this framework, we previously studied jaw-finger coordination in a task consisting in pointing to a target while naming it with a CVCV word (/papa/ vs. /tata/) stressed either on the first (CVCV) or on the second (CV'CV) syllable [11]. The hypothesis was that the instant of finger-target alignment (pointing apex, Pa) would be synchronized with the instant of maximum jaw opening (apex) for the stressed vowel; that is, with the first jaw apex (Ja1) for CVCV names and the second one (Ja2) for CV'CV ones. The results showed that Pa would be actually close to Ja1 for CVCV names. For CV'CV ones, Pa occurred after Ja1, but before Ja2, roughly at an equal delay between Ja1 and Ja2, contrary to the prediction. However, in that case, Ja2 was synchronized with the end of the period of finger-target alignment, when finger began its return stroke. Hence, there seems to be clear jaw-finger coordination, though different from our original hypothesis. The effect of stress position on finger-jaw synchronization mainly results from a speech adaptation: jaw movement begins earlier for CVCV than for CV'CV names. However, it also involves the duration during which the finger points on the target: the finger stays longer in its apex position for CVCV than CVCV names, “expecting”, in some sense, jaw arrival on the stressed vowel. Further analyses showed that stress modifies amplitude and duration of the two jaw opening gestures, but has no effect on initiation and apex times of the pointing gesture. Conversely, increasing target distance delays both pointing apex and jaw apices, but has no effect on amplitude and duration of the two jaw opening strokes. Altogether, this previous experiment showed that the speech focus tends to be achieved during the finger-target alignment and that jaw events tend to be anchored in pointing events. Moreover, the pointing gesture aims at reaching the target alignment; it is mainly “target-driven”. On the contrary, jaw motions are adapted both to the phonetic goal and to the pointing task.

1.3. Jaw profiles and jaw-finger coordination

The previous study used CVCV words with a single consonantal articulation place. However, in another study focused on jaw-tongue-lips coordination in speech sequences, we found different jaw motion profiles in duplicated (/tata/-/papa/) vs. variegated (/pata/-/tapa/) utterances produced with rate increase [12][13]. The main tendency is to realize variegated CVCV sequences with large asymmetries between the two jaw cycles, evolving towards a single jaw cycle with rate increase. On the contrary, duplicated CVCV always required two jaw cycles. The present study aims at testing if the pattern of jaw-finger coordination observed with /papa/ and /tata/ with different stress positions resists to the
modifications in jaw dynamics imposed by variegation in /pata/ and /tapa/ sequences. This would provide an argument for the independence of internal speech planning relative to the adaptation of speech gestures to pointing gestures.

2. Methods

Participants. Twenty native Brazilian Portuguese speakers (4 men and 16 women), right-handed with normal or corrected-to-normal vision, participated in the experiment. The Brazilian Portuguese language was chosen because it is possible to find pairs of words in this language that differ only by the position of the stress. The participants and the procedure were the same as those of our previous study [11].

Procedure. The participant was seated at a table. She/he was informed that a word and a red smiley sign (the target) would appear on the board in front of her, projected by a beamer. The word was introduced as the name of the person represented by the smiley-target. It could be either /pata/ or /tapa/ with a stress on the first (e.g. /pata/) or on the second (e.g. /tapa/) vowel. The vowel /a/ was selected since its realization requires a large jaw opening gesture. The target appeared in the right visual field, either at the near or at the far position (see Figure 1). The task was to point to the smiley and name it with the word as soon as its color changed from red to green. The presentation of the red target lasted for 3.5 s plus a Gaussian variation with zero mean and 0.15 s standard deviation. Then, the target became green (the GO signal) and lasted 1 s on the board. A black square on the midline of the table indicated the onset position for the finger-pointing gesture. The experiment was divided into four blocks separated by a 30 s pause. A block contained 4 practice trials and 40 experimental trials, 10 for each [stress position][target position][consonants order] experimental condition. The order of the trials was randomized for each block and each participant.

Data recording and processing. Finger and jaw movements were recorded using an Optotrak. Two markers were pasted at the tip of index finger, such that at least one of them was always visible by the cameras during the course of the pointing movement. The jaw position was tracked by a third marker attached to the chin. Three other markers were pasted on the table to provide a referential for the moving markers. Head motion was measured by three markers attached to a plastic triangle fixed around the subject’s head. Jaw positions were computed in relation to the head moving reference frame. The markers positions were sampled against time at 100 Hz. In order to reduce the amount of data to process, we conducted a Principal Component Analysis (PCA) on the Optotrak data. The first principal component appears as a good representation of markers motions. In average, for the 20 participants, it explained 98% of the variance for the finger markers and 95% for the jaw marker. These signals were lowpass filtered at 15 Hz with a Butterworth filter. The temporal measurements are indicated in Figure 2. Motion onset (initiation) and apex times correspond to 10% of the peak velocity at the beginning and the end of the movement, respectively. \(P_1 \) and \(P_R \) are the initiation and apex times for the forward movement of the finger, while \(P_J \) is the onset of the return movement. For the jaw, \(J_1, J_1A, J_2, J_2A, J, J_J \) are the initiation and the apex times of the first and second opening gestures, respectively.

3. Results

Absolute positions of jaw and finger events are displayed in Figure 3. As in [11], we also computed positions of \(P_A \) and \(P_R \) relative to the two jaw apices, defined as:

\[
P_{A,3} = (P_A - J_{A,1})/(J_{A,2} - J_{A,1}) \quad \text{and} \quad P_{R,3} = (P_R - J_{A,1})/(J_{A,2} - J_{A,1})
\]

A value of 0 (respectively 1) indicates that the finger event is synchronized with \(J_{A,1} \) (respectively \(J_{A,2} \)). Finger positions relative to jaw apices are displayed in Figure 4. Amplitude and duration of jaw and finger strokes, were also computed as the difference of position and duration between the initiation and the apex of the stroke, respectively. They are displayed in Figure 5. The effects of the three experimental factors on each measure were tested using three-way within-subject ANOVAs (effects are considered significant for \(p < .05 \) with \(F(1,19) \)).

3.1. Pattern of jaw-finger synchronization

The effect of stress position on \(P_{A,3} \) is significant, with \(P_{A,3} \) smaller for 'CVCV' (-0.02) than for 'CV' (0.41) (\(p < .0001 \)). The effect of stress position on \(P_{R,3} \) is also significant, with \(P_{R,3} \) smaller for 'CVCV' (0.44) than for 'CV' (0.95) (\(p < .0001 \)). Target position and consonant order effects on \(P_{A,3} \) are not significant, but \(P_{R,3} \) depends on the target position.
with greater value in the far (0.73) than in the near (0.66) target condition (p < .01). Interaction effects are not significant.

Hence, the synchronization pattern is similar to the one found previously [11]. Firstly, the pointing apex is close to the first jaw apex for CV'CVCV sequences while it occurs at about an equal delay from the two jaw apices for CV'CVCV ones. Secondly, the pointing return occurs close to the second jaw apex for CV'CVCV names while it occurs at about an equal delay from the two jaw apices for CV'CVCV ones. This pattern of synchronization does not depend on target position or consonant order.

![Figure 4. Position of pointing apex (P_{A1} left) and pointing return onset (P_{A2}, right) relatively to jaw apices according to experimental conditions.](image)

3.2. Finger motion

Increase in target distance results in a significant 11 ms advance of P_{f} and a significant delay of P_{A} and P_{R} (respectively 11 ms and 30 ms, p < .05). Thus, the pointing forward motion (from P_{f} to P_{A}) is 20 ms longer in the far- than in the near- target condition (p < .0001; Figure 5, top right). The stroke amplitude is also 147 mm greater in the far- than in the near- target condition (p < .0001, Figure 5, top left). Finally, the plateau (P_{M} – P_{A}) duration is 19 ms longer in the far- than in the near- target condition (p < .01, see Figure 3).

The stress position has no significant effect on P_{f} and P_{A} and on the amplitude and the duration of the forward motion. On the contrary, P_{R} is 35 ms later for CV'CVCV than for CV'CVCV sequences (p < .001). Hence the plateau (P_{R} – P_{A}) duration is 22 ms longer for CV'CVCV than CV'CVCV sequences (p < .001).

The consonant order has no significant effect on P_{f} and P_{A} and on amplitude and duration of the forward motion. Then, this factor has a significant but weak effect on the (P_{R} – P_{A}) duration (4 ms longer for /tp/ than /pt/, p < .05).

No interaction effect is significant.

Altogether, the finger forward motion just depends on the target position. Then, once the alignment with the target is achieved, the plateau duration adapts to the stress position: the finger can wait for the jaw.

3.3. Jaw motion

Figure 3 shows that all jaw events J_{1}, J_{A1}, J_{2} and J_{A2} occur significantly earlier for CV'CVCV than CV'CVCV names (p < .001). The J_{1} to J_{A2} duration is larger for CV'CVCV utterances (290 ms) than for CV'CVCV ones (275 ms). Duration of the first jaw motion is 35 ms greater for CV'CVCV than for CV'CVCV utterances (p < .0001). Conversely, the second jaw motion is 44 ms longer for CV'CVCV than for CV'CVCV utterances (p < .0001). Similarly, the amplitude of the first stroke is 3.1 mm larger for CV'CVCV than for CV'CVCV utterances (p < .0001) while the amplitude of the second stroke is 3.8 mm larger for CV'CVCV than for CV'CVCV utterances (p < .0001).

The consonant order has a significant effect on J_{1} and J_{A2}, occurring respectively 34 ms (p < .001) and 20 ms (p < .01) earlier for /tp/ than for /pt/, but no significant effect on J_{A1} and J_{A2}. It does not significantly affect the first stroke amplitude while the second stroke is 3.2 mm larger for /tp/ than /pt/ (p < .0001). Furthermore, the first and second jaw strokes are, respectively, 29 ms (p < .001) and 26 ms (p < .0001) longer for /tp/ than /pt/.

The interaction between stress and consonant order is significant only for J_{2} with a greater stress effect for /tp/ than for /pt/ (p < .05).

Jaw events occur about 10 ms earlier in the near- than in the far-target condition. This target effect is significant for J_{A1}, J_{2} and J_{A2} (p < .05) but not for J_{1}. Moreover, it does not significantly interact with the two other factors and it has no significant effect on amplitude and duration of jaw strokes.

Altogether, jaw motion is mainly driven by the phonetic goal with different profiles according to the stress position and to the consonant order. The timing of jaw events is also adapted to the finger pointing motion, as showed by the target position effects on jaw timing.

![Figure 5. Amplitude and duration of finger forward stroke (top) and of first (middle) and second (bottom) jaw opening strokes according to experimental conditions.](image)

4. Discussion

4.1. A stable jaw-finger coordinative pattern

Globally, the results confirm those we previously obtained with ‘papa’ and ‘tata’ target names [11]. First, the stress position has the same effect on jaw-finger synchronization. The jaw apex for the stressed vowel is included in the period of finger-target alignment. More precisely, for CV'CVCV names, the jaw apex for the stressed vowel is aligned with the onset of finger-target alignment. For CV'CVCV names, the jaw apex for the stressed vowel is aligned with the end of finger-target alignment. This pattern of synchronization mainly results from both an adaptation of the jaw motion and of the duration for which the finger points to the target. Indeed, jaw response begins earlier for CV'CVCV as compared to CV'CVCV. This lead makes the second jaw apex closer to the pointing apex. However, it is not enough to make the second jaw apex synchronized with the pointing apex. Consequently, the finger has to stay longer in its apex position for CV'CVCV names as compared to CV'CVCV ones: it waits for speech focus achievement. This mainly results from the fact that the pointing motion for reaching the target alignment is “target driven”: it may begin as soon as possible in order to reach the target. This “externally-driven” system would take priority...
over the “internally-driven” and more flexible speech system, which agrees with previous results [4][14][15].

4.2. How does jaw motion adapt to the phonetic and deictic requirements?

The jaw motion is affected by the stress position, the consonant order and the target position. The stress position modifies both the motion timing and parameters. The initiation and apex of opening strokes occur earlier for CVCCV than for ‘CVCV sequences. Unsurprisingly, the duration and amplitude of the first stroke are greater for CVCCV than for CVCCV utterances while the reverse is observed for the second stroke. The consonant order affects the initiation times of jaw opening strokes but not their apices times. It also affects the amplitude and duration of jaw strokes with a tendency to observe longer opening strokes for /pt/ than for /tp/ and a larger second opening stroke for /pt/ as compared to /tp/. However these changes do not affect jaw-finger apices synchronization.

The target position mainly affects the timing of jaw motion. The lag of initiation and apex times of the two jaw strokes from the near- to the far- target condition is 10 ms, which is about that observed in [11] and corresponds to the delay of the finger apex from the near- to the far- target. Hence, the increase of target distance induces a translation in time of jaw motion while amplitudes and durations remain the same. This adaptation allows preserving the jaw-finger synchronization pattern for both target positions.

5. Conclusion

Taken together, these results agree with the idea of an anchoring of speech focus in pointing gesture in deictic expressions. Moreover, this anchoring seems to be supported by a synchronization of the speech-frame with the sign-frame [8]. This happens to result from two independent levels of speech adaptation. Firstly, the effects of stress position and consonant order indicate an “internal” adaptation of the gestures to the phonetic goal. Secondly, the spatial target effect suggests an “external” adaptation for the synchronization with the pointing motion. These results agree with those obtained on /papa/ and /tata/ sequences [11].

Within the hotly debated topic of the gestural vs. vocal origin of human language [16], recent theories suggest a reconciliation of gestures and vocalisations in proposals where the coordination of sounds and gestures would be a crucial step [1][17]. Future experiments allowing to better understand the coordination of the orofacial and brachiomuual systems in face-to-face communication should provide very important inputs in this framework.

6. Acknowledgements

This work is part of the “Patinpapa” project funded by the French Ministry of Research (Action Concertée Initiative “Systèmes Complexes en Sciences Humaines et Sociales”). We also wish to thank Christian Abry for his comments on this work.

7. References

