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Adaptive Control of the Boost DC-AC Converter

Carolina Albea, Carlos Canudas-de-Wit*, Francisco Gordillo

Abstract—In this paper an adaptive control is de-
signed for the nonlinear boost inverter in order to cope
with unknown resistive load. This adaptive control is
accomplished by using a state observer to one side
of the inverter and by measuring the state variables.
In order to analyze the stability of the full system
singular perturbation analysis is used. The resultant
adaptive control is tested by means of simulations.

I. Introduction

The control of boost DC-AC converters is usually ac-
complished tracking a reference (sinusoidal) signal. The
use of this external signal makes the closed-loop control
system to be non-autonomous and thus, making its anal-
ysis involved. In [1], [2] a different approach was used: a
control law was designed for the boost converter in order
to stabilize a limit cycle corresponding to the desired
behavior. No external signals were needed. Nevertheless,
the use of a boost converter prevents the achievement
of zero-crossing signals and, thus, AC current was not
achieved. This problem was solved in [3] with the use
of a double boost converter as was proposed in [4]. A
phase-lock loop was necessary for the correct operation
of the circuit as well as for synchronization with the
electrical grid. Only the case of known resistive load was
considered.

In this paper the previous results are extended to the
case of unknown load using an adaptation mechanism.
Adaptation mechanism for similar controllers were used
in [1] for the case of the buck converter which can be
modelled by linear equations. The fact that the boost
converter model is nonlinear makes the design of the
adaptation law more involved. A state observer for some
of the converter variables is designed even when the state
variables are measured. In order to analyze the stability
of the full system singular perturbation analysis is used.
For simplicity, the phase-lock system is not considered in
this analysis. The resultant adaptive control is tested by
means of simulations.

The rest of the paper is organized as follows: in Sect. II
the model of the double boost converter (boost inverter)
is presented. Section III states the problem, which is
solved in Sect. IV by means of the design of the adap-
tation mechanism. Section V is devoted to the stability
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analysis and Sect. VI presents some simulation results.
The paper closes with a section of conclusions.

II. Boost inverter model

The boost inverter is specially interesting because it
generates an AC output voltage larger than the its DC
input [4]. It is composed of two DC-DC converters and
a load connected as shown in Fig. 1. Each converter
produces a DC-biased sine wave output, Va and Vb,
so that each source generates an unipolar voltage. The
circuit implementation is shown in Fig. 2. Voltages Va

and Vb should present a phase shift equal to 180◦, which
maximizes the voltage excursion across the load [4].

It is here assumed that:

• all the components are ideal and the currents of the
converter are continuous,

• the inductances L1 = L2, and the capacitances C1 =
C2, are known and symmetric,

• the load R0 is unknown, and it is needed to be
estimated.
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Fig. 1. Basic representation of the boost inverter.
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Fig. 2. Ideal Boost DC-AC Converter.

The circuit in Fig. 2 is driven by the transistor
ON/OFF inputs Qi. This yields two modes of opera-
tions illustrated in Appendix A. Formally this yields a
switched model which is more involved. For control pur-
poses, it is common to use an averaged model described
in terms of the mean currents and voltages values. This
model is more suited for control because it is described



by a “continuous” time smooth and nonlinear ODE. Fol-
lowing [3], this averaging process yields the normalized
model described below.

A. Normalized averaged model

Assuming resistive load, a normalized model in terms
of the averaged current x1 and the averaged voltage x2,
for one side of the inverter (see, [3]) is:

ẋ1 = −u1x2 + 1 (1)

ẋ2 = u1x1 − ax2 + ax4 (2)

and the respective normalized model for the other side
is obtained similarly by symmetry

ẋ3 = −u2x4 + 1 (3)

ẋ4 = u2x3 + ax4 − ax2 (4)

where here ui ∈ [0, 1], i = 1, 2 describes the control
inputs. Note that they are also normalized and reflect the
mean duty-cycle activation percent of each circuit. They
are here treated as “continuous” variables. Parameter
a = 1

R0

√
L1

C1

depends on the load charge and is assumed

to be known.

III. Problem formulation

The control problem is to design a control law for u1,
and u2, for the system (1)–(2) and (3)–(4) in order to
make the output y to oscillate as a sinusoidal signal with
a given amplitude i.e.

y = x2 − x4 → yr = A cos(ωt + ϕ)

with a pre-specified value for A, and ω. The phase shift
ϕ is no specified.

Under the assumption that a is constant and known,
in [3] a nonlinear control law based on Hamiltonian
approach was proposed. The design is based on the
following change of coordinates:

η1 =
x2

1 + x2
2

2
(5)

η2 = x1 − ax2
2 + ax2x4 + η20 (6)

η3 =
x2

3 + x2
4

2
(7)

η4 = x3 − ax2
4 + ax2x4 + η40 (8)

The controller recalled further below, has as an objective
to render the following functions tend to zero

Γ1 ≡ ω2(η1 − η10)
2 + (η2 − η2

20)
2 − µ = 0

Γ2 ≡ ω2(η3 − η30)
2 + (η4 − η2

40)
2 − µ = 0

orbitally stable. Parameters η10, η20 and η30, η40 define
the respective ellipse centers and ω, µ are related to their
size. Based on this definition, the nonlinear control law
as proposed in [3] has the following form:

u = k(x, a) =

[
u1

u2

]
=

[
k1(x, a)
k2(x, a)

]
u ∈ R

2

with k1(x, a), k2(x, a) given in Appendix B.

The design is completed with an additional outer loop
(PLL) that has the function of achieving a phase shift
equal to 180◦ between the two voltages V1, and V2

reaching in that way the desired objective. The goal here
is to extent this work to the case of unknown load.

IV. Adaptation law load design

In this section we propose an adaptive law (or a load
observer) to cope with load variations and/or uncertain-
ties on the load parameter a. This observer is designed
based only on one-side of the circuit, which contains
enough information to make this parameter observable.
Therefore the use of the full two-side circuit is not
necessary at this stage.

The one-side (left) circuit (1)-(2), can be rewritten
compactly as:

ẋl = Ulxl + aBly + El (9)

y = x2 − x4 (10)

with xl = [x1, x2]
T , and

Ul =

[
0 −u1

u1 0

]
, Bl =

[
0
−1

]
, El =

[
1
0

]

In what follows, we assume that both voltages and cur-
rents are measurable (either analogically or numerically),
and thus accessible for control use.

A. Adaptation law

The proposed adaptation law is composed by: an state
observer for one side of the inverter boost, plus an
adaptation law for a. It has the following structure:

˙̂x = Ulx̂ + âBly + El + K(xl − x̂) (11)
˙̂a = β(xl, x̂) (12)

where K ∈ R
2×2 is a constant design matrix, and β(xl, x̂)

is the adaptation law to be designed. Note, that even if xl

is accessible, the adaptation law designed here requires
the additional (or extended) state observer. This will
become clear during the analysis of the error equation
system, as studied below.

B. Error equation

Assume that a is a constant parameter (ȧ = 0) (or
that change slowly ȧ ≈ 0) and define the following error
variables:

x̃ = xl − x̂, ã = a − â, ã = −â.

Error equation are now derived from (9)–(10) together
with (11)–(12)

˙̃x = Kx̃ + ãBly (13)

˙̃a = −β(xl, x̂) (14)

Let K be of the form,

K = −αI, α > 0

and P = I be the trivial solution of PKT + KP = −Q,
with Q = 2αI.



Now introducing

V = x̃T P x̃ +
ã2

γ
(15)

it follows that

V̇ = −x̃T Qx̃ + 2ã

(
x̃T PBly +

˙̃a

γ

)

= −x̃T Qx̃ + 2ã

(
x̃T PBly −

˙̂a

γ

)

The adaptation law is now designed by canceling the
terms in square brackets, i.e.

˙̂a = γ(BT
l P x̃)y (16)

C. Stability properties

The observer and the adaptive law error equations are
now fully defined. These equations are:

˙̃x = Kx̃ + ãBly (17)

˙̃a = −γ(BT
l P x̃)y (18)

The stability properties of these equations follows from
the Lyapunov function V defined above. Note that with
the choice (16) it follows that

V̇ = −x̃T Qx̃

From standard Lyapunov arguments, it follows that the
error variable x̃ and ã are bounded. In addition by
LaSalle invariant principle, we easily conclude that x̃ →
0, which implies from (18) that ˙̃a → 0.

From (17), and by the property x̃ → 0, and ˙̃x → 0, we
have that

ãBly → 0

Note that if y behaves as a sinusoidal as expected from
the control problem formulation, the unique asymptotic
solution for ã, is ã = 0, as y 6≡ 0, ∀t ≥ 0.

Note, that in the instants that y = 0, (9) does not
depends on parameter a.

The following lemma summarizes the results:
Lemma 1: Consider the open-loop system (9)–(10),

and assume that its solutions are bounded. The extended
observer (11)–(12) has the following properties:

i) The estimated states x̂, â are bounded.
ii) limt→∞ x̂(t) = x(t).

iii) limt→∞ â(t) = a, if and only if y(t) 6≡ 0, ∀t ≥ 0.

V. Stability of the full closed-loop equations

In the previous section we have presented the stability
properties of the extended observer. These properties are
independent to the evolution of the system state vari-
ables. The stability of the complete system is analyzed
in this section.

The open-loop two-sides inverter (1)-(2) and (3)-(4),
can be compactly rewritten as:

ẋ = U(u)x + aBy + E (19)

y = x2 − x4 (20)

with x = [x1, x2, x3, x4]
T
, and

U =




0 −u1 0 0

u1 0 0 0

0 0 0 −u2

0 0 u2 0



 , B =




0

−1

0

−1



 , E =




1

0

1

0





A. Tuned System

The tuned system is defined as the ideal closed-loop

system under the action of the tuned feedback law u∗ =
k(x, a), computed with the exact value of a.

The tuned systems given in [3] writes

ẋ = U(u∗)x + aBy + E (21)

= U(k(x, a))x + aBy + E (22)

= f(x) (23)

and it achieves an asymptotically orbitally stable peri-
odic solutions, i.e.

x∗(t) = x∗(t + T )

In [3] it has been shown that the funtions Γ1 and
Γ2 defined in (9)–(9) tend to zero. They correspond to
periodic sinusoidal solutions with period T = 2π/ω.
Consequently, y∗ = x∗

2 − x∗
4 is also sinusoidal.

B. Closed-loop system

In practice, the control law which is effectively applied
depends on the estimation of parameter a. We denote
this control law as û = k(x, â). Note that this control
law depends on the state x and not on its estimation x̂,
because the state x is directly measured. The role of x̂ is
then just to make possible the design of the adaptation
law for a.

The closed-loop equation resulting from the use of û =
k(x, â) writes, as

ẋ = U(û)x + aBy + E ± U(u∗)x (24)

= f(x) + [U(û) − U(u∗)] x (25)

= f(x) − U(ũ)x (26)

where ũ = u∗ − û. Note that U(ũ) = U(x̃, ã), can be
partitioned as follows:

U(ũ) = U(x̃, ã) =

(
Iϕ1(x, am)ã 0

0 Iϕ2(x, am)ã

)

where ϕi(x, am) = ∂aki(x, ã)|ã=am
, ∀i = 1, 2. This ex-

pression results from the application of the mean-value
theorem, with am ∈ [amin, amax], being a value of a in the
allowed physical interval. The screw-symmetric matrix
S = −S

T is defined as

S = diag{I, I}, I =

(
0 −1
1 0

)

The term U(ũ) = U(x, ã) captures the mismatch
between the estimated and the true value of the load. In
view of the discussion above, this term has the following
property:

Property 1: Let M = {(x, ã) : ||x−x∗|| < ǫx, |ã| < ǫa},
be a compact domain including the asymptotic periodic



solutions of the tuned system and the exact load. Then,
the function U(ũ) = U(x, ã) has ∀(x, ã) ∈ M, the
following properties:

i) it is continuous, analytic, and free of singularities
ii) it has the following limits:

lim
ũ→0

U(ũ) = lim
ã→0

U(x, ã) = 0.

Putting together (26) with the observer error system
give the complete set of closed-loop equation, with y =
y(x)

ẋ = f(x) − U(x, ã)x (27)

˙̃x = −αx̃ + ãBy (28)

˙̃a = −γ(BT P x̃)y (29)

where we have substituted K = −αI. The stability con-
sideration discussed here will be based on the time-scale
separation. The main idea is that with the suited choice
of gains (as discussed latter) the observer equation (28)-
(29) can be seen as the fast variables and the equation
(27) as the slow subsystem. Note again, that this time-
scale separation should be enforced by a particular choice
of the observer and adaption gains: K and γ.

C. Singular perturbed form

To put the system above in the standard singular
perturbation form, we follow the next steps:

• introduce ā = ã
α
,

• select γ = α2

• define ε = 1
α

With these considerations, we achieve,

ẋ = f(x) − U(x, ā)x

ε ˙̃x = −x̃ + āBy,

ε ˙̄a = −(BT P x̃)y.

where ε > 0 being the small parameter. Note that this
particular selection of gains imposes relative gains for the
adaptation γ, and defines precisely how the observer gain
are related to γ. The target system for the slow variables,
defined after the change of coordinates (5)–(8) [3], is

η̇1 = ωη2

η̇2 = −ωη1 − kx2Γ.

Dividing this equations by ω they achieve a similar form
to fast variables equations. As we want that variable x
is much slower than z we have to impose

ε ≪
1

ω
, ε ≪

1

k
.

This means that the adaptation gain γ as well as
the tuning parameter k should be related to the desired
frequency as:

γ ≫ ω2, γ ≫ k2

Letting z = [x̃, ā]T gives the general form

ẋ = f(x) − U(ũ)x (30)

εż = g(x, z) (31)

with, x(t0) = x0, x ∈ R
3, z(t0) = z0, z ∈ R

5, and

g(z, x) =

[
−x̃ + āBy
−(BT P x̃)y

]

According to the singular perturbation analysis, we need
to follow the next steps:

1) Find a stationary solution of the fast subsystem
(31) by finding roots of the equation g(x, z) = 0,
i.e. z = φ(x)

2) Substitute this solution in the slow subsystem (30),
and find a the resulting slow system

ẋ = f(x) − U(ũ(x, φ(x)))x

3) Check the boundary layer properties of the fast
subsystem along one particular solution of ẋ =
f(x) − U(ũ(x, φ(x)))x.

D. Slow sub-system

Proceeding to the steps 1 and 2 above requires to find
the solution for the algebraic equation

0 = g(x, z) =

[
−x̃ + āBy
−(BT P x̃)y

]

whose roots are calculated from

x̃ = āBy

0 = −āBT PBy2

note that BT PB = 1, and that the above equation has
multiple solutions, i.e

x̃ = 0

āy2(x) = 0

which means that if y ≡ 0, there one solution for x̃ = 0,
and infinite solutions for ā. However, if y 6≡ 0, for instance
the particular tuned solution y∗ = A cos(ωt), then

z = φ(x) =

[
x̃
ā

]
= 0

become an isolated root. Then for this particular solu-
tion, and noticing that ā = a−â

α
= 0, e.i. â = a the slow

model writes as:

ẋ = f(x) − U(x, 0)x = f(x), (32)

which is nothing else than the tuned system whose
solutions x(t) = x∗(t) are sinusoidal.



E. Boundary layer fast subsystem

Now, the next step is to evaluate the stability of the
boundary layer system in the finite time interval t ∈
[t0, t1]. This is obtained by evaluating the fast subsystem
(31) along one particular solution of the quasi-steady-
state x∗(t), ∀t ∈ [t0, t1] (tuned system solutions), and by
re-scaling time t to τ = (t − t0)/ε.

As a particular solution we consider y∗ = x∗
2 − x∗

4 =
A cos(ωt + ϕ), which expressed in the stretched time
coordinates τ = (t − t0)/ε is:

y∗ = y∗(τ, ω, ε, t0) = A cos(ω(ετ + t0) + ϕ)

the fast subsystem (31) evaluated along such solution is,

d

dτ
ˆ̃x1 = −ˆ̃x1

d

dτ
ˆ̃x2 = −ˆ̃x2 − ˆ̄ay∗

d

dτ
ˆ̄a = ˆ̃x2y

∗

which can be rewritten as:

d

dτ
ẑ = J(y∗)ẑ = J(τ, ω, ε)ẑ (33)

with

J =




−1 0 0
0 −1 −y∗

0 y∗ 0





Under this conditions, system (33) is reduced to the
autonomous linear system

d

dτ
ẑ = J(τ, ω, 0)ẑ = J(y∗

0)ẑ (34)

Consider the y∗
0 ∈ Dx, with Dx , {x : |y| = |x2 − x4| >

α0 > 0}, the above system has the following properties.
Property 2: The eigenvalues of J(y∗), for [t, x∗, z] ∈

[t0, t1] × Dx × R
3, are all strictly negative, i.e.

λ1 = −1 (35)

λ2 = Re

{
−1 +

√
1 − 4y∗2

2

}
< 0 (36)

λ3 = Re

{
−1 −

√
1 − 4y∗2

2

}
< 0 (37)

where c1 > 0 is a constant.
Therefore J(y∗) is Hurwitz in the considered do-

main. As a consequence, there exists a matrix P (y∗) =
P (y∗)T > 0 and a Q(y∗) > 0 such that the standard
Lyapunov equation holds:

P (y∗)J(y∗) + J(y∗)T P (y∗) = −Q(y∗)

From standard Lyapunov arguments, it follows that
for all t ∈ [t0, t1]

||ẑ(t, ε)|| ≤ c1 exp

{
−λmin(Q(y∗))

(
t − t0

ε

)}

Tikhonov’s theorem, see [5], can now be advocated to
summarize the previous result.

Theorem 1: There exists a positive constant ε∗ such
that for all y∗

0 ∈ Dx, and 0 < ε < ε∗, the singular
perturbation problem of (30)-(31) has a unique solution
x(t, ε), z(t, ε) on [t0, t1], and

x(t, ε) − x∗(t) = O(ε) (38)

z(t, ε) − ẑ∗(t/ε) = O(ε) (39)

hold uniformly for t ∈ [t0, t1], where ẑ∗(τ) is the solution
of the boundary layer model (34). Moreover, given any
tb > t0, there is ε∗∗ ≤ ε∗ such that

z(t, ε) = O(ε)

holds uniformly for t ∈ [tb, t1] whenever, ε < ε∗∗.

Extension of this result to infinite time interval, requires
prove that the boundary layer system is exponential
stable in a neighborhood of the tuned slow solution x∗(t)
for all t ≥ t0. This may not be a trivial demonstration,
and it will be left for further investigation. Instead, we
demonstrated using simulation the effectiveness of this
approach.

VI. Simulations

The following simulations are made considering V in =
10V , R0 = 100Ω, L1 = L2 = 100µH , C1 = C2 = 100µF .
The desired output of the circuit is Vout = 40 sin 50t V .

In order to obtain this voltage, the parameters are a =
0.001, ω = 0.0314, A = 2, k = 1.2 and η20 = η40 = 0. The
ellipse parameters result according to [3] are η10 = η30 =
51.14, µ = 0.395. The estimated value of parameter a
will be â = 0.0077 (R0 = 130Ω), i.e., a 23% error.

Fig. 3 shows the output voltage evolution. Note that
the circuit achieves the desired behavior. The time scale
is the real time scale, without variable change.

The adaptation of the parameter a is represented in
the Fig. 4, moreover, it tests the equation (39). The
convergence of slow state variable x2(t, ε)−x∗

2(t) to O(ε)
with different ε is shown in the Fig. 5, (equation (38)).
Notice the scale value for the vertical axis.
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Fig. 3. Output voltage with adaptation of a perturbation of a 23%
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VII. Conclusions

An adaptive control for unknown load is presented
for a nonlinear boost inverter. The method is based on
using a state observer to one side of the inverter and
by knowing that the state variables are measured. The
stability of the complete system is proved putting the
system in the standard singular perturbation form, hence
we obtained a relationship between the adaptation gain,
γ, the observer matrix parameter, α, and the perturbed
variable parameter, ε. Another important relationship
between the perturbed variable parameter, ε, and the
system frequency, ω, was achieved in the analysis of the
boundary layer fast subsystem. Finally, the stability is
established by means of Tikhonov’s theorem.

Open problem is the extension of this result to infinite
time interval.
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Appendix

A. operation modes

The two operation modes of the boost inverter are
shown in Fig. 6.
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Fig. 6. Operation status.

The equations of the system are

L1
diL1

dt
= −u1vC1

+ Vin (40)

C1
dvC1

dt
= u1iL1

−
vC1

R
+

vC2

R0
(41)

where u1 is a continuous variable that control the tran-
sistor states.

In order to simplify the study, the system (40)–(41) is
normalized as (1)–(2) by using the change of variables:

x1 = 1
Vin

√
L1

C1

iL1
, x2 =

vC1

Vin
and defining the new time

variable with t̃ = 1√
L1C1

t and a = 1
R0

√
L1

C1

.

B. Control law proposed in [3]

k1(x, a) =
1 + 2a2x2

2 − 3a2x2x4 + a2x2
4 + a2x2ẋ4

x2 + 2ax1x2 − ax4x1

+
kΓ1(η2 − η20) + ω2(η1 − η10)

x2 + 2ax1x2 − ax4x1

k2(x, a) =
1 + 2a2x2

4 − 3a2x2x4 + a2x2
2 − a2x4ẋ2

x4 − 2ax3x4 + ax2x3

+
−kΓ2(η4 − η40) + ω2(η3 − η30)

x4 − 2ax3x4 + ax2x3

References

[1] F. Gordillo, D. Pagano, and J. Aracil, “Autonomous oscillation
generation in electronic converters,” in Proceedings of the 2004
International Workshop on Electronics and System Analysis,
IWESA’04, 2004, pp. 57–65.

[2] D. J. Pagano, J. Aracil, and F. Gordillo, “Autonomous oscilla-
tion generation in the boost converter,” in Proceedings of the
16th IFAC World Congress, 2005.

[3] C. Albea, F. Gordillo, and J. Aracil, “Control of the boost dc-
ac converter by energy shaping,” in Proceedings of the 32th

Annual Conference of the IEEE Industrial Electronics Society,
IECON06, 2006.
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