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CARLEMAN ESTIMATE FOR ELLIPTIC OPERATORS WITH COEFFICIENTS WITH

JUMPS AT AN INTERFACE IN ARBITRARY DIMENSION AND APPLICATION TO THE

NULL CONTROLLABILITY OF LINEAR PARABOLIC EQUATIONS

JÉRÔME LE ROUSSEAU AND LUC ROBBIANO

A. In a bounded domain of Rn+1, n ≥ 2, we consider a second-order elliptic operator, A = −∂2
x0
− ∇x ·

(c(x)∇x), where the (scalar) coefficient c(x) is piecewise smooth yet discontinuous across a smooth interface S .

We prove a local Carleman estimate for A in the neighborhood of any point of the interface. The “observation”

region can be chosen independently of the sign of the jump of the coefficient c at the considered point. The

derivation of this estimate relies on the separation of the problem into three microlocal regions and the Calderón

projector technique. Following the method of Lebeau and Robbiano [LR95] we then prove the null control-

lability for the linear parabolic initial problem with Dirichlet boundary conditions associated to the operator

∂t − ∇x · (c(x)∇x).

Keywords: Elliptic equation; Non-smooth coefficient; Transmission problem; Carleman estimate; Microlocal

analysis; Calderón projectors; Parabolic equation; Control.

AMS 2000 subject classification: 35J15; 35S15; 35K05; 93B05; 93B07.

1. I  

The question of the null controllability of linear parabolic partial differential equations with smooth

coefficients was solved in the 1990’s [LR95, FI96]. In the case of discontinuous coefficients in the principal

part of the parabolic operator, the controllability issue and its dual counterpart, observability, are not fully

solved yet. A result of controllability for a semi-linear heat equation with a coefficient that is discontinuous

at an interface was proven in [DOP02] by means of a global Carleman observability estimate. Roughly

speaking, as in the case of hyperbolic systems (see e.g. [Lio88, page 356]), the authors of [DOP02] proved

their controllability result in the case where the control is supported in the region where the diffusion

coefficient is the ‘lowest’. In both cases, however, the approximate controllability, and its dual counterpart,

uniqueness, are true without any restriction on the monotonicity of the coefficients. It is then natural to

question whether or not an observability estimate holds in the case of non-smooth coefficients and arbitrary

observation location.

Recently, in the one-dimensional case, the controllability result for parabolic equations was proven for

general piecewiseC 1
coefficients in [BDL07a], and for coefficients with bounded variations (BV) in [Le 07],

which improved the result of [FCZ02]. The proof relies on global Carleman estimates, which moreover

allow to treat semilinear equations. Simultaneously, a controllability result for parabolic equations with
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2 JÉRÔME LE ROUSSEAU AND LUC ROBBIANO

general bounded coefficients in one dimension was proven in [AE07]. The method used there to achieve

null controllability is that of [LR95], which limits the field of applications to linear equations.

In the n−dimensional case, n ≥ 2, a positive answer to the controllability question was given for a

class of discontinuous coefficients, with separated variables, that are smooth w.r.t. to all but one variables,

which includes the case of stratified media [BDL07b]. The proof relies both on the Carleman estimates of

[BDL07a, Le 07] in the one-dimensional case and the method of [LR95].

In the present article, in the case n ≥ 2, we achieve null controllability for a linear parabolic equation in

the case of a coefficient that exhibits jumps of arbitrary signs at an interface. Let Ω be a smooth bounded

connected domain in Rn. We consider the operator L := ∇x · (c(x)∇x), with possibly additional lower-order

terms, and where c(x) satisfies

0 < cmin ≤ c(x) ≤ cmax < ∞,

to ensure uniform ellipticity for L. The coefficient c is assumed smooth apart from across an interface S ,

where it may jump. The interface S is the boundary of a smooth open subset Ω1 ⋐ Ω, i.e., Ω1 lies on

one side of S . Let T > 0 and set QT = (0,T ) × Ω. We set Ω2 = Ω \ Ω1. We prove the following null

controllability result.

Theorem 1.1. For an arbitrary time T > 0 and an arbitrary non-empty open subset ω ⊂ Ω and an initial

condition q0 ∈ L2(Ω), there exists u ∈ L2((0,T ) ×Ω) such that the solution q of

(1.1)



∂tq − Lq = 1ωu in QT ,

q(t, x) = 0 on (0,T ) × ∂Ω,
q(0, x) = q0(x) in Ω,

satisfies q(T ) = 0 a.e. in Ω.

We follow the method of [LR95], thus proving local Carleman estimates for an elliptic operator associ-

ated to the considered parabolic problem: we introduce the elliptic operator A := −∂2
x0
− L. The variable

x0 is an additional variables in (0, X0), for some X0 > 0. We provide such a local Carleman estimate for

the operator A in a small neighborhood V of a point (y0, y) of (0, X0) × S with an “observation” on one side

of S , independently of the sign of the jump of c at (y0, y). We hence treat all possible cases including the

case that can be treated more classically as mentioned above, for which the “observation” is supported in

the region where the diffusion coefficient is the ‘lowest’ [DOP02].

We denote by (., .) the inner product on L2((0, X0)×Ω) and by ‖.‖0 the induced norm. In the present article,

we shall make use of techniques from the semi-classical analysis of pseudodifferential operators (ψDOs)

[Mar02]. With h as the small parameter, we set D = h
i
∂. Accordingly, we shall use the semi-classical

Sobolev norm ‖ f ‖2k :=
∑
|α|≤k ‖Dα

x0,x
f ‖2

0
, k ∈ N.

The Carleman estimate we aim to prove is of the form

h‖eϕ/hw‖20 + h3‖eϕ/h∇x0,xw‖20 ≤ Ch4‖eϕ/h f ‖20, Aw = f in (0, X0) × (Ω \ S ), h > 0,

for h sufficiently small and supp(w) ⊂ V , when w is smooth on both sides of the interface.
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The sign of ∂nϕ at the interface locates the side of the interface on which the “observation” takes place

(see Section 2 for the application of the local Carleman estimate). To achieve such a Carleman estimate we

follow the method of [LR97], in the spirit of the work of [Bel03]. In particular, we separate the interface

problem into three microlocal regions for which partial Carleman estimates are obtained. In some of these

regions we make use of the Calderón-projector technique.

With this local Carleman estimate at the interface, we can then prove an interpolation inequality that first

yields an estimation of the loss of orthogonality for the eigenfunctions φ j(x), j ∈ N, of the operator L, with

Dirichlet boundary conditions, when these eigenfunctions are restricted to ω. We denote by µ j, j ∈ N, the

associated eigenvalues, sorted in an increasing sequence.

Theorem 1.2. For any (a j) j∈N ⊂ C we have:

∑

µ j≤µ
|a j|2 ≤ CeC

√
µ

∫

ω

∣∣∣∣∣∣
∑

µ j≤µ
a jφ j(x)

∣∣∣∣∣∣
2

dx, µ > 0.(1.2)

Following [LR95], this estimation then yields a construction of the control function u(t, x) in (1.1), by

sequentially acting on a finite yet increasing number of eigenspaces, and we hence obtain the result of

Theorem 1.1. We refer the reader to [LR95] or [LZ98, Section 5, Proposition 2] for the details.

The reader will observe that the proof of the Carleman estimate can be adapted to other elliptic operators

with non-smooth coefficients across an interface. Beyond the controllability result of interest in this arti-

cle, such Carleman estimates have a wide range of applications, including unique continuation properties

([Hör63, Zui83, Hör85a]. See Remark 2.8 for further details.

The result of this article opens perspectives for future research towards the null controllability of semi-

linear parabolic equations with non smooth coefficient in space dimension n ≥ 2 and towards more com-

plicated geometrical situations, for instance in the case of coefficients with singularities that do not lie on a

smooth interface.

In this article, when the constant C is used, it refers to a constant that is independent of the semi-classical

parameter h. Its value may however change from one line to another. If we want to keep track of the value

of a constant we shall use another letter. We shall use of the notation 〈η〉 := (1+ |η|2)
1
2 . Let us now introduce

semi-classical ψDOs. We denote by S m(Rn+1 ×Rn+1), S m for short, the space of smooth functions a(z, ζ, h),

defined for h ∈ (0, h0] for some h0 > 0, that satisfy the following property: for all α, β multi-indices, there

exists Cα,β ≥ 0, such that
∣∣∣∣∂αz ∂

β

ζ
a(z, ζ, h)

∣∣∣∣ ≤ Cα,β〈ζ〉m−|β|, z ∈ Rn+1, ζ ∈ Rn+1, h ∈ (0, h0].

Then, for all sequences am− j ∈ S m− j, j ∈ N, there exists a symbol a ∈ S m such that a ∼ ∑
j h jam− j, in the

sense that a −∑
j<N h jam− j ∈ hNS m−N (see for instance [Mar02, Proposition 2.3.2] or [Hör85b, Proposition

18.1.3]), with am as principal symbol. We define Ψm as the space of ψDOs A = Op(a), for a ∈ S m, formally

defined by

A u(z) = (2πh)−(n+1)

Ï

ei〈z−t,ζ〉/ha(z, ζ, h) u(t) dt dζ, u ∈S ′
(Rn+1).
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We shall denote the principal symbol am by σ(A). We shall use techniques of pseudodifferential calculus

in this article, such as construction of parametrices, composition formula, formula for the symbol of the

adjoint operator, etc. We refer the reader to [Tay81, Hör85b, Mar02]. In the main text the variable z will be

(x0, x) and ζ = (ξ0, ξ).

We now introduce tangential symbols and associated operators. We set z = (z′, zn), z′ = (z0, . . . , zn−1)

and ζ′ = (ζ0, . . . , ζn−1) accordingly. We denote by S m
T (Rn+1 × Rn), S m

T for short, the space of smooth

functions b(z, ζ′, h), defined for h ∈ (0, h0] for some h0 > 0, that satisfy the following property: for all α, β

multi-indices, there exists Cα,β ≥ 0, such that
∣∣∣∣∂αz ∂

β

ζ′b(z, ζ′, h)
∣∣∣∣ ≤ Cα,β〈ζ′〉m−|β|, z ∈ Rn+1, ζ′ ∈ Rn, h ∈ (0, h0].

As above, for all sequences bm− j ∈ S
m− j

T , j ∈ N, there exists a symbol b ∈ S m
T such that b ∼ ∑

j h jbm− j,

in the sense that b − ∑
j<N h jbm− j ∈ hNS m−N

T , with bm as principal symbol. We define Ψm
T as the space of

tangential ψDOs B = op(b) (observe the notation we adopt is different from above to avoid confusion), for

b ∈ S m
T , formally defined by

B u(z) = (2πh)−n

Ï

ei〈z′−t′,ζ′〉/hb(z, ζ′, h) u(t′, zn) dt′ dζ′, u ∈S ′
(Rn+1).

We shall also denote the principal symbol bm by σ(B). In the case where the symbol is polynomial in ζ′

and h, we shall denote the space of associated tangential differential operators by D m
T . We shall denote by

Λs the tangential ψDO whose symbol is 〈ζ′〉s. The composition formula for tangential symbols, b ∈ S m
T ,

b′ ∈ S m′

T , is given by

(b #T b′)(z, ζ′) = (2πh)−n

Ï

e−i〈t′,τ′〉)/hb(z, ζ′ + τ′, h) b′(z′ + t′, zn, ζ
′, h) dt′ dτ′(1.3)

=
∑

|α|≤M

(−ih)|α|

α!
∂αζ′b(z, ζ′, h) ∂αz′b

′(z, ζ′, h)

+
(−ih)M+1

(2πh)n

∑

|α|=M+1

1
∫

0

(M + 1)(1 − s)M

α!

Ï

e−i〈t′,τ′〉)/h∂αζ′b(z, ζ′ + τ′, h) ∂αz′b
′(z′ + st′, zn, ζ

′, h) dt′dτ′ds,

and yields a tangential symbol in S m+m′

T . In the main text the variable z will be (x0, x
′, xn) and ζ′ = (ξ0, ξ

′).

Following [LR95, LR97], we shall denote by (., .)0 the inner product for functions defined on {xn = 0},
i.e., ( f , g)0 :=

Î

f (x0, x
′) g(x0, x

′) dx0 dx′. The induced norm is denoted by |.|0, i.e., | f |20 = ( f , f )0. For

s ∈ R we introduce | f |s := |Λs f |0.

The outline of the article is as follows. In section 2, we prove the announced local Carleman estimate

at the interface for the elliptic operator A. In Section 3, we prove the interpolation inequality that implies

(1.2). The controllability result then follows from [LR95].

2. L C    

In the neighborhood of a point (y0, y) of (0, X0) × S , we denote by xn the variable that is normal to the

interface S and by x′ the remaining spacial variables, i.e., x = (x′, xn). In particular y = (y′, 0). The interface
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is now given by S = {x; xn = 0}. The transmission conditions at the interface we shall consider are

∀x0, x
′, w|xn=0− = w|xn=0+ + θ, c∂xn

w|xn=0− = c∂xn
w|xn=0+ + Θ,(TC)

i.e., the continuity of w at the interface as well as the continuity of the normal flux, modulo some error terms

θ and Θ. It should be noted that for a function satisfying these transmission conditions we may not have Aw

in L2 in the neighborhood of (y0, y). It will however be in L2 on both sides of the interface. Error terms like

θ and Θ will be useful in Section 3 where the Carleman estimate proven in this section is used to achieve

the null controllability result of Theorem 1.1.

In a sufficiently small neighborhood V ⊂ Rn of (y0, y), we place ourselves in normal geodesic coordinates

(w.r.t. to the spacial variables x). For convenience, we shall take the neighborhood V of the form (y0 −
ε, y0 + ε) × Vy′ × (−ε, ε), where Vy′ is a sufficiently small neighborhood of y′. In such coordinate system,

the principal part of the differential operator A takes the following form [Hör85b, Appendix C.5] on both

sides of the interface:

A2 = −∂2
x0
− c(x)

(
∂2

xn
− r(x, ∂x′/i)

)
,

with r(x, ξ′) a xn-family of second-order polynomials in ξ′ that satisfy

r(x, ξ′) ∈ R, and C1|ξ′|2 ≤ r(x, ξ′) ≤ C2|ξ′|2, x ∈ Vy′ × (−ε, ε), ξ′ ∈ Rn−1,(2.1)

for some 0 < C1 ≤ C2 < ∞. Note that the transmission conditions (TC) remain unchanged in this change

of variables.

We set

Rn+1
− = {(x0, x), xn < 0}, R

n+1

− = {(x0, x), xn ≤ 0}, Rn+1
+ = {(x0, x), xn > 0}, R

n+1

+ = {(x0, x), xn ≥ 0},

Vg = V ∩ Rn+1
− , Vd = V ∩ Rn+1

+ .

For a compact set K of V we set Kg = {(x0, x) ∈ K, xn ≤ 0} and Kd = {(x0, x) ∈ K, xn ≥ 0}. We then denote

byC ∞
c (Kg) (resp.C ∞

c (Kd)) the space of functions that areC ∞
in R

n+1

− (resp. R
n+1

+ ) with support in Kg (resp.

Kd).

We let ϕ be a (weight) function in all variables. We shall “observe” the solution of the elliptic equation

Aw = f on the side xn > 0 and thus choose ∂xn
ϕ(x0, x

′, xn = 0±) > 0. We shall consider three cases in order

to treat the general case:

Case 1: c(y′, yn = 0−) < c(y′, yn = 0+),

Case 2: c(y′, yn = 0−) = c(y′, yn = 0+),

Case 3: c(y′, yn = 0−) > c(y′, yn = 0+).

Recall that Case 3 is the case for which controllability and global Carleman estimates were obtained in

[DOP02].
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On both sides of S we define Aϕ = h2eϕ/hA2e−ϕ/h. Considered as a semi-classical differential operator

we denote by aϕ its principal symbol, which is given by

aϕ = (ξ0 + i∂x0
ϕ)2 + c(x)

(
(ξn + i∂xn

ϕ)2 + r(x, ξ′ + i∂x′ϕ)
)
.

We make the following assumption.

Assumption 2.1. The weight function ϕ(x0, x) is inC (V) and ϕ|
R

n+1

∓
∈C ∞

(V
g/d ) and satisfies |∇(x0,x)ϕ| > 0

in V. We assume

∀x0, x
′, ∂xn

ϕ(x0, x
′, xn = 0±) > 0, ∂xn

ϕ(x0, x
′, xn = 0+) − ∂xn

ϕ(x0, x
′, xn = 0−) ≥ C > 0,

(2.2) (c∂xn
ϕ)(x0, x

′, xn = 0+) − (c∂xn
ϕ)(x0, x

′, xn = 0−) ≥ 0.

The function ϕ satisfies the sub-ellipticity condition

∀(x0, x, ξ0, ξ) ∈ V
g/d × Rn+1, aϕ(x0, x, ξ0, ξ) = 0 ⇒ {Re aϕ, Im aϕ}(x, ξ) > 0.(2.3)

Case 1: The neighborhood V is chosen sufficiently small such that

c(x′, xn = 0+) − c(x′, xn = 0−) ≥ C > 0, x′ ∈ Vy′ .

Moreover we assume

(2.4) ∀x0, x
′,

(
∂xn
ϕ(x0, x

′, xn = 0+)
)2 − (

∂xn
ϕ(x0, x

′, xn = 0−)
)2

− (
∂x0
ϕ(x0, x

′, xn = 0)
)2

(
1

c(x′, xn = 0−)
− 1

c(x′, xn = 0+)

)
≥ C > 0.

Case 2: The neighborhood V is chosen sufficiently small such that |c(x′, xn = 0−) − c(x′, xn = 0+)| is
itself sufficiently small.

Case 3: The neighborhood V is chosen sufficiently small such that

c(x′, xn = 0+) − c(x′, xn = 0−) ≤ −C < 0, x′ ∈ Vy′ .

Moreover we assume

(2.5) ∀x0, x
′,

(c(x′, xn = 0+))2

c(x′, xn = 0−)

(
∂xn
ϕ(x0, x

′, xn = 0+)
)2

− c(x′, xn = 0−) r(x′, xn = 0, ∂x′ϕ(x0, x
′, xn = 0)) ≥ K,

where K is some positive constant and

(2.6) ∀x0, x
′, C1

(
1 − c(x′, xn = 0+)

c(x′, xn = 0−)

) 
1

(
(c∂xn

ϕ)(x0, x′, xn = 0−)
)2
− 1

(
(c∂xn

ϕ)(x0, x′, xn = 0+)
)2



−C2
2(∂x0

ϕ)2(x0, x
′, xn = 0)

(
1(

c(∂xn
ϕ)2

)
(x0, x′, xn = 0−)

− 1(
c(∂xn

ϕ)2
)

(x0, x′, xn = 0+)

)2
∣∣∣∣∣∣∣
xn=0+

≥ 0,

where C1 and C2 are the constants in (2.1).
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Note that ϕ is chosen continuous across the interface. In particular, we have

∂x0
ϕ|xn=0− = ∂x0

ϕ|xn=0+ , ∂x′ϕ|xn=0− = ∂x′ϕ|xn=0+ ,

which we shall simply write ∂x0
ϕ|xn=0+ and ∂x′ϕ|xn=0+ respectively in the sequel.

The conditions we impose on the weight function ϕ will make sense in the course of the proof of Propo-

sition 2.7 below. In Section 3 we shall construct a weight function that satisfies the properties listed in

Assumption 2.1.

From the assumption made on the weight function ϕ we shall obtain the following local Carleman esti-

mate.

Theorem 2.2. Let K be a compact subset of V. Let the coefficient c(x) satisfy Cases 1, 2 or 3. With the

weight function ϕ satisfying Assumption 2.1 in V, there exist C > 0 and h0 > 0 such that

(2.7) h‖eϕ/hw‖20 + h3‖eϕ/h∇x0,xw‖20 + h|eϕ/hw|xn=0± |
2

0 + h3|eϕ/h∂x0,x′w|xn=0± |
2

0 + h3|eϕ/h∂xn
w|xn=0± |

2

0

≤ C

(
h4‖eϕ/h f ‖20 + h|eϕ/hθ|20 + h3|eϕ/h∂x0,x′θ|

2

0 + h3|eϕ/hΘ|20
)
, 0 < h ≤ h0,

for w satisfying (TC), w|
R

n+1

∓
∈C ∞

c (K
g/d ) and where f = A2w in V \ S .

Remark 2.3. This Carleman estimate yields the same estimate for the operator A making use of the insen-

sitivity of such estimates to changes of variables and to additional lower-order terms.

The remainder of this section is devoted to the proof of Theorem 2.2.

2.1. Preliminaries. We assume that the function w satisfies (TC) and A2w = f . Following [Bel03], we

shall consider the transmission problem as a system of two equations on Vd coupled at the boundary xn = 0+.

We thus make the change of variables xn to −xn in Vg. This yields the following system in Vd:


(− 1
cg(x)

∂2
x0
− (∂2

xn
− rg(x, ∂x′/i))) wg = Fg = 1

cg(x)
f g,

(− 1
cd(x)

∂2
x0
− (∂2

xn
− rd(x, ∂x′/i))) wd = Fd = 1

cd(x)
f d,

(2.8)

with

wg|xn=0+ = wd |xn=0+ + θ, cg∂xn
wg|xn=0+ + cd∂xn

wd |xn=0+ = Θ,(TC∗)

where for a function ψ defined in V , we set ψd := ψ|Vd and ψg(x′, xn) = ψ(x′,−xn) for xn > 0. In particular,

we have rg(x, ∂x′/i) = r(x′,−xn, ∂x′/i), and rd(x, ∂x′/i) = r(x, ∂x′/i) for xn > 0. If there is no possible

confusion, we shall now write ψ = t(ψg, ψd). From Assumption 2.1 we have

∂xn
ϕg(x0, x

′, xn = 0) < 0, ∂xn
ϕd(x0, x

′, xn = 0) > 0,(2.9)

and

cg∂xn
ϕg(x0, x

′, xn = 0) + cd∂xn
ϕd(x0, x

′, xn = 0) ≥ 0.(2.10)

Observe also that condition (2.3) is preserved since {Re aϕ, Im aϕ} is invariant under a change of variables

[Hör63, Section 8.1, page 186].
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We denote by p
g/d the symbols of the operators acting on w

g/d in (2.8). We set P(x0, x,Dx0
,Dx) :=

Op(diag(pg, pd)) and Φ := diag(ϕg, ϕd). We set v = t(vg, vd). For v = eΦ/hw, the entries of v satisfy

the following boundary condition

vg|xn=0+ = vd |xn=0+ + θϕ, cg(Dxn
+ i∂xn

ϕg)vg|xn=0+ + cd(Dxn
+ i∂xn

ϕd)vd |xn=0+ = Θϕ,(TCϕ)

where

θϕ = eϕ/h|xn=0+θ and Θϕ =
h

i
eϕ/h|xn=0+Θ.(2.11)

We define the following conjugated operator Pϕ = h2eΦ/hPe−Φ/h, which we shall, in the sequel, treat as a

second-order semi-classical differential operator, with h as the small parameter. The principal symbol of Pϕ

is given by

pϕ(x0, x, ξ0, ξ
′, ξn) = diag(p

g
ϕ(x0, x, ξ0, ξ

′, ξn), pd
ϕ(x0, x, ξ0, ξ

′, ξn)),

with

p
g/d
ϕ (x0, x, ξ0, ξ

′, ξn) =
1

c
g/d

(ξ0 + i∂x0
ϕ

g/d )2 + (ξn + i∂xn
ϕ

g/d )2 + r
g/d (x, ξ′ + i∂x′ϕ

g/d ).

For the sake of concision, we shall often omit the time and spacial variables in the functions c
g/d and ϕ

g/d ,

as we have just done, when there is no possible confusion. Separating the real and imaginary parts of the

principal symbol, we write p
g/d
ϕ = q̃

g/d
2
+ iq̃

g/d
1

, and following [LR95] we set

q̃
g/d
2
= ξ2

n + q
g/d
2
, q̃

g/d
1
= 2∂xn

ϕ
g/dξn + 2q

g/d
1
,

with

q
g/d
2

(x0, x, ξ0, ξ
′) = −

(
∂xn
ϕ

g/d
)2
+

1

c
g/d

(
ξ2

0 −
(
∂x0
ϕ

g/d
)2
)
+ r

g/d (x, ξ′) − r
g/d (x, ∂x′ϕ

g/d ),

q
g/d
1

(x0, x, ξ0, ξ
′) =

1

c
g/d
∂x0
ϕ

g/dξ0 + r̃
g/d (x, ξ′, ∂x′ϕ

g/d ),

where r̃
g/d (x, ξ′, η′) are the symmetric bilinear forms in ξ′, η′ associated to the real quadratic forms r

g/d (x, ξ′).

2.2. Signs of the imaginary part of the two roots of p
g/d
ϕ

. At xn = 0+, the polynomials (in ξn) p
g/d
ϕ (x0, x, ξ0, ξ

′, ξn)

have two complex roots. Depending on the signs of the imaginary parts of the two roots of the two poly-

nomials, we shall adopt different strategies for the proof of partial Carleman estimates. By “partial” we

actually mean that the resulting estimate will only hold in some microlocal region. Once collected together,

the partial estimates will yield the result of Theorem 2.2.

Following [LR97], we set

µ
g/d (x0, x, ξ0, ξ

′) := q
g/d
2

(x0, x, ξ0, ξ
′) +

(
q

g/d
1

(x0, x, ξ0, ξ
′)
)2

(
∂xn
ϕ

g/d
)2

,(2.12)
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and define

E
g/d ,+ := {(x0, x, ξ0, ξ

′) ∈ Vd × Rn; µ
g/d (x0, x, ξ0, ξ

′) > 0},

E
g/d ,− := {(x0, x, ξ0, ξ

′) ∈ Vd × Rn; µ
g/d (x0, x, ξ0, ξ

′) < 0},

Z
g/d := {(x0, x, ξ0, ξ

′) ∈ Vd × Rn; µ
g/d (x0, x, ξ0, ξ

′) = 0}.

Remark 2.4. The regions E
g/d ,− and Z

g/d are bounded. Hence, for |(ξ0, ξ
′)| sufficiently large, say |(ξ0, ξ

′)| >
R, then (x0, x, ξ0, ξ

′) ∈ E g,+ ∩ E d,+, with dist((x0, x, ξ0, ξ
′),Z

g/d ) ≥ C > 0.

The following lemma is proven in [LR97, proof of Lemma 3].

Lemma 2.5. In the region E
g/d ,+, the polynomials p

g/d
ϕ have two distinct roots ρ

g/d ,+ and ρ
g/d ,− that satisfy

Im ρ
g/d ,+ > 0 and Im ρ

g/d ,− < 0. In the region E
g/d ,−, the imaginary parts of the two roots have the same sign

as that of −∂xn
ϕ

g/d . In Z
g/d , one of the roots is real.

Hence, for the polynomial pd
ϕ, for |(ξ0, ξ

′)| > R, there are two roots, ρd,+ and ρd,− with Im ρd,+ > 0 and

Im ρd,− < 0. As the value of µd decreases, the root ρd,+ moves towards the real axis, and crosses it in the

region Z d. In the region E d,− the two roots both have negative imaginary parts.

For the polynomial p
g
ϕ, for |(ξ0, ξ

′)| > R, there are two roots, ρg,+ and ρg,− with Im ρg,+ > 0 and Im ρg,− <

0. As the value of µg decreases, the root ρg,− moves towards the real axis, and crosses it in the region Z g.

In the region E g,− the two roots both have positive imaginary parts. The “motion” of the roots of p
g
ϕ and pd

ϕ

is illustrated in Figure 1.

Remark 2.6. From the proof of Lemma 3 in [LR97], we see that µ
g/d ≥ C > 0 is equivalent to having

Im ρ
g/d ,+ ≥ C′ > 0 and Im ρ

g/d ,− ≤ −C′.

With the choice of weight function ϕ made in Assumption 2.1 we have the following proposition.

Proposition 2.7. The properties of the weight function ϕ imply E d,+ ⊂ E g,+, and dist(E d,+,Z g) ≥ C > 0,

if the neighborhood Vy of y is chosen sufficiently small.

The result of the proposition implies that the root ρd,+ crosses the real axis before the root ρg,− does, as µd

decreases from positive to negative values. This is illustrated in Figure 1. We enforce this root configuration

because of the techniques we shall use to prove partial Carleman estimates.

In the case where the roots of the polynomial are separated by the real axis, or in the case where they

are both in the lower open half plane, we can apply the Calderón-projector technique to the associated

differential operator. The first case occurs for P
g/d
ϕ in regions E

g/d ,+. The second case can only occur for Pd
ϕ

in the region E d,−. In such regions, the Calderón-projector technique in fact yields an additional boundary

condition at xn = 0+.

In fact, the choice of weight function ϕ we have made excludes the situation in which Im ρg,± > 0 and

the root ρd,+ may cross the real axis. In such a case, the Calderón projector technique cannot be used for
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ρg,−
Re ξn

Im ξn
P

g
ϕ

Re ξn

Im ξn
Pd
ϕ

ρd,−

ρd,+

ρg,+

(a) Root configuration in E d,+, µd > 0;

ρg,− Re ξn

Im ξn
P

g
ϕ

Re ξn

Im ξn
Pd
ϕ

ρd,−

ρg,+

ρd,+

(b) Root configuration in Z d , µd = 0;

ρg,− Re ξn

Im ξn
P

g
ϕ

Re ξn

Im ξn
Pd
ϕ

ρd,−

ρg,+

ρd,+

(c) Root configuration in E d,−, µd < 0.

Figure 1: The root ρd,+ crosses the real axis before the root ρg,− does, as µd decreases.

P
g
ϕ or Pd

ϕ. The classical Carleman technique then yields a quadratic form for the traces of v and its normal

derivative Dxn
v which is of unknown or negative sign, which prevents the derivation of a proper Carleman

type estimate.

Proof of Proposition 2.7. The result is clear in the case |(ξ0, ξ
′)| > R by Remark 2.4. We shall thus only

consider the case |(ξ0, ξ
′)| ≤ R. We set W = {(x0, x

′, ξ0, ξ
′) ∈ [s − ε, s + ε] × Vy′ × Rn; |(ξ0, ξ

′)| ≤ R}. A

sufficient condition to prove the result is then

µg(x0, x, ξ0, ξ
′)|xn=0+ − µd(x0, x, ξ0, ξ

′)|xn=0+ ≥ C > 0, (x0, x
′, ξ0, ξ

′) ∈ W.(2.13)

In fact, since W is compact, by choosing V sufficiently small in the xn-direction, this inequality remains

valid in Vd × Rn ∩ {|(ξ0, ξ
′)| ≤ R} and the result follows.

We first treat Case 1. Observing that

rd(x, ∂x′ϕ
d)|xn=0+ = rg(x, ∂x′ϕ

g)|xn=0+ ,

r̃(x, ξ′, ∂x′ϕ)|xn=0+ := r̃d(x, ξ′, ∂x′ϕ
d)|xn=0+ = r̃g(x, ξ′, ∂x′ϕ

g)|xn=0+ ,

we obtain

(µg − µd)(x0, x, ξ0, ξ
′)|xn=0+ = (∂xn

ϕd |xn=0+ )
2 − (∂xn

ϕg|xn=0+ )
2 +

(
ξ2

0 −
(
∂x0
ϕ|xn=0+

)2
) (

1

cg
− 1

cd

)∣∣∣∣∣∣
xn=0+

+


( 1

cg ξ0∂x0
ϕ|xn=0+ + r̃(x, ξ′, ∂x′ϕ))|xn=0+

∂xn
ϕg|xn=0+


2

−


( 1
cd ξ0∂x0

ϕ|xn=0+ + r̃(x, ξ′, ∂x′ϕ))|xn=0+

∂xn
ϕd |xn=0+


2

,
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which, after expansion, we write

(µg − µd)(x0, x, ξ0, ξ
′)|xn=0+ = (∂xn

ϕd |xn=0+ )
2 − (∂xn

ϕg|xn=0+ )
2 − (

∂x0
ϕ|xn=0+

)2

(
1

cg
− 1

cd

)∣∣∣∣∣∣
xn=0+

(2.14)

+ ξ2
0


(

1

cg
− 1

cd

)∣∣∣∣∣∣
xn=0+

+
(
∂x0
ϕ|xn=0+

)2


1

(
cg∂xn

ϕg
)2
− 1

(
cd∂xn

ϕd
)2



∣∣∣∣∣∣∣
xn=0+



+ (r̃(x, ξ′, ∂x′ϕ))2|xn=0+


1

(
∂xn
ϕg

)2
− 1

(
∂xn
ϕd

)2



∣∣∣∣∣∣∣
xn=0+

+ 2 ξ0 r̃(x, ξ′, ∂x′ϕ) ∂x0
ϕ|xn=0+


1

cg
(
∂xn
ϕg

)2
− 1

cd
(
∂xn
ϕd

)2



∣∣∣∣∣∣∣
xn=0+

.

The first line in (2.14) is larger than some positive constant by (2.4) in Assumption 2.1–Case 1. The last

three lines in (2.14) can be viewed as a quadratic form in ξ0 and r̃(x, ξ′, ∂x′ϕ)|xn=0+ . The determinant of the

associated symmetric matrix is given by

(
1

cg
− 1

cd

)
1

(
∂xn
ϕg

)2 (
∂xn
ϕd

)2

(
(∂xn

ϕd)2 − (∂xn
ϕg)2 − (

∂x0
ϕ
)2

(
1

cg
− 1

cd

))∣∣∣∣∣∣∣
xn=0+

,

and is thus positive by (2.4). Since the coefficient in front of r̃(x, ξ′, ∂x′ϕ)|xn=0+ in (2.14) is itself positive

by Assumption 2.1, we find that the quadratic form is nonnegative. The sufficient condition (2.13) hence

follows.

We now treat Case 2. We write

(µg − µd)(x0, x, ξ0, ξ
′)|xn=0+ = (∂xn

ϕd |xn=0+ )
2 − (∂xn

ϕg|xn=0+ )
2(2.15)

+

(
1

cd
ξ0∂x0

ϕ|xn=0+ + r̃(x, ξ′, ∂x′ϕ))|xn=0+

)2 (
1

(∂xn
ϕg|xn=0+ )2

− 1

(∂xn
ϕd |xn=0+ )2

)

+

(
1

cg
− 1

cd

)∣∣∣∣∣∣
xn=0+

(
ξ2

0 −
(
∂x0
ϕ|xn=0+

)2
+ 2ξ0∂x0

ϕ|xn=0+

(
r̃(x, ξ′, ∂x′ϕ))|xn=0+ +

∂x0
ϕ|xn=0+ ξ0

cd |xn=0+

))

+

(
1
cg − 1

cd

)2
∣∣∣∣
xn=0+

(∂xn
ϕg|xn=0+ )2

(ξ0∂x0
ϕ|xn=0+ξ0)2.

With |(ξ0, ξ
′)| ≤ R, we see that the last two terms in the previous expression can be made as small as desired

by choosing the neighborhood Vy′ sufficiently small, which implies |c(x′, xn = 0−) − c(x′, xn = 0+)| small.

The sum of the first two terms in (2.15) is larger than some positive constant by the properties of ϕ in

Assumption 2.1, which yields the conclusion.

We finally treat Case 3. Then cg|xn=0+ > cd |xn=0+ . In particular, note that

cd(∂xn
ϕd)2|xn=0+ ≥ cg(∂xn

ϕg)2|xn=0+ ,(2.16)

from Assumption 2.1. Observe that in this case we have

cgq
g

2
(x0, x, ξ0, ξ

′)|xn=0+ ≥ λ(x0, x
′, ξ0, ξ

′), cdqd
2(x0, x, ξ0, ξ

′)|xn=0+ ≥ λ(x0, x
′, ξ0, ξ

′),
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where

λ(x0, x
′, ξ0, ξ

′) = ξ2
0 −

(
∂x0
ϕ
)2 − cd(∂xn

ϕd)2
∣∣∣
xn=0+

+ cdr(x, ξ′)
∣∣∣
xn=0+

− cgr(x, ∂x′ϕ)|xn=0+ .

Let K be the constant appearing in (2.5). In the case λ(x0, x
′, ξ0, ξ

′) > K/2, then locally, for xn ≥ 0, |xn|
small, this remains valid with K/2 changed into K/4. Locally, we thus have µg ≥ K/(4cmax) > 0 and

µd ≥ K/(4cmax) > 0, from the definitions of µ
g/d in (2.12). In the region λ(x0, x

′, ξ0, ξ
′) > K/2 the result is

hence clear.

We now treat the region λ(x0, x
′, ξ0, ξ

′) ≤ K/2. By choosing the neighborhood V sufficiently small,

arguing as above, it is now sufficient to prove that

µg(x0, x, ξ0, ξ
′)|xn=0+ − µd(x0, x, ξ0, ξ

′)|xn=0+ ≥ C > 0, (x0, x
′, ξ0, ξ

′) ∈ W̃,

where W̃ = W∩{(x0, x
′, ξ0, ξ

′); λ(x0, x
′, ξ0, ξ

′) ≤ K/2}which is compact. From Assumption 2.1, we observe

that we have

(∂xn
ϕd |xn=0+ )

2 − (∂xn
ϕg|xn=0+ )

2 ≥
(
cd

)2
(

1

cd
+

1

cg

) (
1

cd
− 1

cg

)∣∣∣∣∣∣
xn=0+

(
∂xn
ϕd |xn=0+

)2
.

With λ(x0, x
′, ξ0, ξ

′) ≤ K/2 in W̃, we then obtain

(µg − µd)(x0, x, ξ0, ξ
′)|xn=0+ = Q + ξ2

0

(
∂x0
ϕ|xn=0+

)2


1

(
cg∂xn

ϕg
)2
− 1

(
cd∂xn

ϕd
)2



∣∣∣∣∣∣∣
xn=0+

(2.17)

+ (r̃(x, ξ′, ∂x′ϕ))2|xn=0+


1

(
∂xn
ϕg

)2
− 1

(
∂xn
ϕd

)2



∣∣∣∣∣∣∣
xn=0+

+ 2 ξ0 r̃(x, ξ′, ∂x′ϕ) ∂x0
ϕ|xn=0+


1

cg
(
∂xn
ϕg

)2
− 1

cd
(
∂xn
ϕd

)2



∣∣∣∣∣∣∣
xn=0+

,

where

Q ≥
(

1

cd
− 1

cg

)∣∣∣∣∣∣
xn=0+



(
cd

)2

cg

∣∣∣∣∣∣
xn=0+

(
∂xn
ϕd |xn=0+

)2
+ cdr(x, ξ′)

∣∣∣
xn=0+

− cgr(x, ∂x′ϕ)|xn=0+ − K/2



≥
(

1

cd
− 1

cg

)∣∣∣∣∣∣
xn=0+

(
K/2 + cdr(x, ξ′)

∣∣∣
xn=0+

)
≥

(
1

cd
− 1

cg

)∣∣∣∣∣∣
xn=0+

(
K/2 +C1(cd |xn=0+ )|ξ′|2

)
,

by (2.5) in Assumption 2.1 and where C1 is the uniform-ellipticity constant appearing in (2.1). As we have

|r̃(x, ξ′, ∂x′ϕ)|xn=0+ | ≤ C2|ξ′| |∂x′ϕ|xn=0+ |,
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with C2 also appearing in (2.1), we obtain

(µg − µd)(x0, x, ξ0, ξ
′)|xn=0+ ≥

(
1

cd
− 1

cg

)∣∣∣∣∣∣
xn=0+

K/2 + ξ2
0

(
∂x0
ϕ|xn=0+

)2


1

(
cg∂xn

ϕg
)2
− 1

(
cd∂xn

ϕd
)2



∣∣∣∣∣∣∣
xn=0+

(2.18)

+C1 cd

(
1

cd
− 1

cg

)∣∣∣∣∣∣
xn=0+

|ξ′|2

− 2C2|∂x0
ϕ|xn=0+ | |∂x′ϕ|xn=0+ | |ξ0| |ξ′|


1

cg
(
∂xn
ϕg

)2
− 1

cd
(
∂xn
ϕd

)2



∣∣∣∣∣∣∣
xn=0+

,

since the third term in the r.h.s. of (2.17) is nonnegative by Assumption 2.5. Next, we consider the last three

terms in (2.18) as a quadratic form in |ξ′| and ξ0. The coefficients associated to ξ2
0

and |ξ′|2 are nonnegative.

The result of the proposition follows if the quadratic form is nonnegative, that is, if its determinant is itself

nonnegative. The determinant is given by

(
∂x0
ϕ|xn=0+

)2

C1

(
1 − cd

cg

)∣∣∣∣∣∣
xn=0+


1

(
cg∂xn

ϕg
)2
− 1

(
cd∂xn

ϕd
)2



∣∣∣∣∣∣∣
xn=0+

−C2
2(∂x0

ϕ|xn=0+ )
2


1

cg
(
∂xn
ϕg

)2
− 1

cd
(
∂xn
ϕd

)2


2
∣∣∣∣∣∣∣
xn=0+

 ,

and is nonnegative by (2.6) in Assumption 2.1–Case 3. �

Remark 2.8. Because of the controllability result we aim to prove in this article, we have considered the

elliptic operator A := −∂2
x0
− L, with the additional variable x0. The Carleman estimate of Theorem 2.2 also

holds for the operator L = ∇x · (c(x)∇x)). In this case, we simply assume that the weight function satisfies

∀x0, x
′, ∂xn

ϕ(x0, x
′, xn = 0±) > 0, ∂xn

ϕ(x0, x
′, xn = 0+) − ∂xn

ϕ(x0, x
′, xn = 0−) ≥ C > 0.

In fact, in this case, after dividing by c(x) on both sides of the interface S as above, the symbols q
g/d
2

and q
g/d
1

reduce to

q
g/d
2

(x, ξ′) = −
(
∂xn
ϕ

g/d
)2
+ r

g/d (x, ξ′) − r
g/d (x, ∂x′ϕ

g/d ), q
g/d
1

(x, ξ′) = r̃
g/d (x, ξ′, ∂x′ϕ

g/d ).

We then have

µg(x, ξ′)|xn=0+ − µd(x, ξ′)|xn=0+ =
(
(∂xn

ϕd |xn=0+ )
2 − (∂xn

ϕg|xn=0+ )
2
) (

1 +
r̃(x, ξ′, ∂x′ϕ)2|xn=0+

(∂xn
ϕd |xn=0+ )2(∂xn

ϕg|xn=0+ )2

)

≥ C > 0

with the assumptions on ϕ we just wrote. We can then use the same argument as in the proof of Propo-

sition 2.7 and prove that the result of this proposition also holds in this case. The rest of the proof of

Theorem 2.2 below remains unchanged. More generally, for other elliptic operators, the result of Theo-

rem 2.2 holds if we can choose a weight function that yields the result of Proposition 2.7.

In particular, the Carleman estimate in Theorem 2.2 provides a quantitative result for the unique contin-

uation property across the interface S (See for instance [Hör63] or [Zui83]).
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2.3. Estimate in the region E d,+. With a microlocal cut-off, we place ourselves in the region region E d,+,

hence in E g,+ by Proposition 2.7, and finitely away from Z d (and thus Z g). Making use of the Calderón-

projector technique we shall prove the following partial Carleman estimate.

Proposition 2.9. Let K be a compact subset of V. Let χ+(x0, x, ξ0, ξ
′) ∈ S 0

T with a compact support w.r.t.

(x0, x) contained in V, such that in the support of χ+ we have µd(x0, x, ξ0, ξ
′) ≥ C > 0. With the weight

function ϕ satisfying Assumption 2.1, there exist C > 0 and h1 > 0 such that

(2.19) ‖ op( χ+)v‖1 + h
1
2 | op( χ+)v|xn=0+ |1 + h

1
2 | op( χ+)Dxn

v|xn=0+ |0
≤ C

(
‖Pϕv‖

0
+ h‖v‖1 + h2|Dxn

v|xn=0+ |0 + h
1
2 |θϕ|1 + h

1
2 |Θϕ|0

)
,

for 0 < h ≤ h1, and for v = t(vg, vd), vg, vd ∈C ∞
c (Kd) and satisfying (TCϕ).

The proof we give follows that of Lemma 4 in [LR97] and the notation used therein. We reproduce some

of the arguments of [LR97] to have a self-contained proof of Proposition 2.9. Note that the first term in the

partial estimate (2.19) differs from the equivalent term in the Carleman estimate (2.7) by a factor h
1
2 . Here,

a “better” estimate is actually obtained because we have restricted ourselves microlocally to an ellipticity

region of the symbol pϕ. The Carleman estimate (2.7), for the second-order operator A2, in fact corresponds

to a sub-elliptic estimate.

Proof. In supp( χ+), we have

Im ρ
g/d ,+ ≥ C > 0, Im ρ

g/d ,− ≤ −C < 0,

by Lemma 2.5 and remark 2.6. Moreover, χ+ρ
g/d ,+ and χ+ρ

g/d ,− are in S 1
T .

We set u = op( χ+)v. Then, Pϕu = g with g = op( χ+)Pϕv + [Pϕ, op( χ+)]︸         ︷︷         ︸
∈hΨ1

v. In particular, we have

‖g‖0 ≤ C
(
‖Pϕv‖

0
+ h‖v‖1

)
.(2.20)

The transmission conditions satisfied by ug and ud are

ug|xn=0+ = ud |xn=0+ + θϕ,χ+ , cg(Dxn
+ i∂xn

ϕg)ug|xn=0+ + cd(Dxn
+ i∂xn

ϕd)ud |xn=0+ = G1,(TCu)

with θϕ,χ+ := op( χ+)θϕ|xn=0+ and

G1 = [cg(Dxn
+ i∂xn

ϕg), op( χ+)]︸                            ︷︷                            ︸
∈hΨ0

T

vg|xn=0+ + [cd(Dxn
+ i∂xn

ϕd), op( χ+)]︸                            ︷︷                            ︸
∈hΨ0

T

vd |xn=0+ + op( χ+)Θϕ|xn=0+

that satisfies

|G1|0 ≤ Ch|v|xn=0+ |0 +C|Θϕ|0.(2.21)

We denote by φ the zero-extension of a function φ ∈C ∞
(Vd) to Rn+1. We then have

Pϕ u = g − h2γ0(u) δ′ +
h

i

(
γ1(u) − op(qρ) γ0(u)

)
δ, γ0(u) := u|xn=0+ , γ1(u) := Dxn

u|xn=0+ ,
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where δ( j) =
(

d
dxn

) j
δxn=0, and qρ = diag(ρg,− + ρg,+, ρd,− + ρd,+) since ρ

g/d ,+ + ρ
g/d ,− = −2i ∂xn

ϕ
g/d . Setting

w1 := γ0(u), and w0 = γ1(u) − op(qρ) γ0(u),(2.22)

we write

Pϕ u = g − h2w1 δ
′ +

h

i
w0δ.(2.23)

We now choose χ(x0, x, ξ0, ξ) ∈ S 0 equal to one for sufficiently large |(ξ0, ξ)| as well as in a neighborhood

of supp( χ+) with moreover supp( χ)∩ det(pϕ)−1({0}) = ∅. These conditions are compatible from the choice

made for supp( χ+) and Proposition 2.7. From the ellipticity of pϕ on supp( χ), for large M, there exists a

ψDO EM = Op(e), with e ∈ S −2, of the form e =
∑M

j=0 h je j, with e j ∈ S −2− j and e
g/d
0
= χ/p

g/d
ϕ , that satisfies

EM ◦ Pϕ = Op( χ) + hM+1RM , RM ∈ Ψ−1−M .

Note that the parametrix construction yields the symbols e
g/d
j
, j = 0, . . . ,M, in the form of rational functions

for large |ξn|, with ρ
g/d ,+ and ρ

g/d ,− for only poles.

With such a parametrix EM we obtain

u = EMg + EM

(
−h2w1 δ

′ +
h

i
w0δ

)
+ g1, g1 = (Id−Op( χ))u − hM+1RMu.(2.24)

We have the following lemma.

Lemma 2.10. Let σ(z, ζ′, h) ∈ S m
T and Σ(z, ζ, h) ∈ S −∞ such that supp(σ) ∩ supp(Σ) = ∅. Then

op(σ) ◦ Op(Σ) ∈
⋂

N∈N
hNΨ−N , and Op(Σ) ◦ op(σ) ∈

⋂

N∈N
hNΨ−N .

Proof. We use the idea of the proof of Theorem 18.1.35 in [Hör85b]. From the remark preceding Theorem

18.1.17 in [Hör85b], adapted to semi-classical operators, we observe that

op(σ) ◦ Op(Σ)ei〈z,ζ〉/h = op(σ)
(
eiznζn/hΣ(z,Dz′ , ζn, h)ei〈z′,ζ′〉/h

)
= eiznζn/h

(
op(σ) ◦ Σ(z,Dz′ , ζn, h)

)
ei〈z′,ζ′〉/h,

where Σ(z,Dz′ , ζn, h) denotes the tangential operator op(Σ(z, ζ, ζn, h)) with ζn as a parameter. Since 〈ζ′〉 ≤
〈ζ〉, we indeed observe that, for all N ∈ N, Σ(z, ζ, ζn, h) is bounded in S −N

T uniformly w.r.t. ζn ∈ Rn. We set

λ(z, ζ′, ζn, h) := σ #T Σ as given in the composition formula (1.3), with ζn as a parameter. We hence have

op(σ) ◦ Op(Σ)ei〈z,ζ〉/h = ei〈z,ζ〉/hλ(z, ζ, h).

With supp(σ) ∩ supp(Σ) = ∅, for all M ∈ N, we find

λ(z, ζ, h) =
(−ih)M+1

(2πh)n

∑

|α|=M+1

1
∫

0

(M + 1)(1 − s)M

α!

Ï

e−i〈t′,τ′〉)/h

× ∂αζ′σ(z, ζ′ + τ′, h) ∂αz′Σ(z′ + st′, zn, ζ
′, ζn, h) dt′dτ′ds.

Note that for all j ∈ N, ∂
j
zn
∂α
ζ′σ(z, ζ′, h) is in S

m−|α|
T , and that, for all M′,M′′, j, k ∈ N, 〈ζn〉M

′
∂

j
zn
∂k
ζn
∂αz′Σ(z, ζ, h)

is bounded in S −M′′

T uniformly w.r.t. ζn in R. It follows that 〈ζn〉M
′
∂

j
zn
∂k
ζn
λ(z, ζ, h) ∈ hNS −N

T , for all M′,N, j, k ∈
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N. Since 〈ζ〉 ≤ 〈ζ′〉〈ζn〉, we see that λ(z, ζ, h) is a symbol in all variables and is in ∩N∈NhNS −N . We thus

have ei〈z,ζ〉/hλ(z, ζ, h) = Op(λ)ei〈z,ζ〉/h and therefore find

op(σ) ◦ Op(Σ)ei〈z,ζ〉/h = Op(λ)ei〈z,ζ〉/h, for all ζ ∈ Rn+1.

Since both sides are continuous inS ′
(Rn+1) and linear combinations of exponential functions are dense in

S ′
, we obtain op(σ) ◦ Op(Σ) = Op(λ).

To treat the other case, i.e., Op(Σ) ◦ op(σ), we prove that op(σ)∗ ◦Op(Σ)∗ ∈ ∩N∈NhNΨ−N . We denote by

σ∗ and Σ∗ the symbols of op(σ)∗ and Op(Σ)∗. They are of the form

σ∗ = σ̃ + σ∞, σ̃ ∈ S m
T , σ∞ ∈ ∩N∈NhNS −N

T , and Σ∗ = Σ̃ + Σ∞, Σ̃ ∈ S −∞, Σ∞ ∈ ∩N∈NhNS −N ,

where σ̃ and Σ̃ can be chosen such that supp(σ̃) ∩ supp(Σ̃) = ∅ from the ψDO calculus. This yields

op(σ)∗ ◦ Op(Σ)∗ = op(σ̃) ◦ Op(Σ̃) + op(σ̃) ◦ Op(Σ∞) + op(σ∞) ◦ Op(Σ∞) + op(σ∞) ◦ Op(Σ̃).

The first term is treated as above. The other terms can be treated similarly with formula (1.3) for M = 0:

for the second and third terms we use that for all M′,M′′, j, k ∈ N, 〈ζn〉M
′
∂

j
zn
∂k
ζn
Σ∞(z, ζ, h) is bounded in

hM′′S −M′′

T uniformly w.r.t. ζn in R; for the fourth term we use that for all j,N ∈ N, ∂
j
zn
σ∞(z, ζ′, h) is in

hNS −N
T and 〈ζn〉M

′
∂

j
zn
∂k
ζn
Σ̃(z, ζ, h) is bounded in S −N

T uniformly w.r.t. ζn in R, for all M′,N, j, k ∈ N. �

Continuation of the proof of Proposition 2.9. With Lemma 2.10, we have (Id−Op( χ)) ◦ op(χ+) ∈
∩N∈NhNΨ−N . Noting that u = op( χ+) v, we obtain

‖g1‖2 ≤ Ch2‖v‖0.(2.25)

Next, we compute the action in the region xn > 0 of the parametrix EM on the terms defined on the

interface in (2.24). We find

EM

(h

i
w0δ

)
(x0, x) = (2πh)−n

Ï

ei((x0−z0)ξ0+〈x′−z′,ξ′〉)/h t̂0(x0, x, ξ0, ξ
′)w0(z0, z

′)d(z0, z
′) d(ξ0, ξ

′),

EM(−h2w1δ
′) = (2πh)−n

Ï

ei((x0−z0)ξ0+〈x′−z′,ξ′〉)/h t̂1(x0, x, ξ0, ξ
′)w1(z0, z

′)d(z0, z
′) d(ξ0, ξ

′),

where

t̂0(x0, x, ξ0, ξ
′) =

1

2iπ

∫

R

eixnξn/he(x0, x, ξ0, ξ) dξn, t̂1(x0, x, ξ0, ξ
′) =

1

2iπ

∫

R

eixnξn/he(x0, x, ξ0, ξ)ξn dξn.

Note that the integral defining t̂0 is absolutely converging. The integral defining t̂1 is however to be under-

stood in the sense of oscillatory integrals [Hör90, Section 7.8]. Note that we have

t̂1(x0, x, ξ0, ξ
′) =

1

2iπ
Dzn

∫

R

eiznξn/he(x0, x, ξ0, ξ) dξn

∣∣∣∣∣
zn=xn

.(2.26)

The choice we have made for the cut-off function χ makes the symbol e(x0, x, ξ0, ξ) holomorphic for large

|ξn|, ξn ∈ C. In xn > 0, we thus obtain

t̂0(x0, x, ξ0, ξ
′) =

1

2iπ

∫

γ

eixnξn/he(x0, x, ξ0, ξ) dξn,(2.27)
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where γ is the union of the segment {ξn ∈ R; |ξn| ≤ C0|(ξ0, ξ
′)|} and the half circle {ξn ∈ C; |ξn| =

C0|(ξ0, ξ
′)|, Im ξn > 0}, where the constant C0 is chosen sufficiently large so as to have the roots ρ

g/d ,+ inside

the domain with boundary γ (recall that χ+ρ
g/d ,+ is in S 1). From (2.26), we obtain similarly

t̂1(x0, x, ξ0, ξ
′) =

1

2iπ

∫

γ

eixnξn/he(x0, x, ξ0, ξ)ξn dξn, xn > 0.(2.28)

The expression (2.27) and (2.28) above are valid in xn > 0 but admit a trace at xn = 0+. In particular, we

note that we have

|Dl
xn
∂α(x0,x′)

∂
β

(ξ0,ξ′)
t̂ j| ≤ Cα,β,l〈(ξ0, ξ

′)〉−1+ j+l−|β|, xn ≥ 0, j = 0, 1, l ∈ N.(2.29)

We now choose χ1(x0, x, ξ0, ξ
′) ∈ S 0

T , satisfying the same requirement as χ+, equal to one in a neighborhood

of supp( χ+) and such that the symbol χ be equal to one in a neighborhood of supp( χ1). We set t j = χ1 t̂ j,

j = 0, 1 and g2 = op((1 − χ1)t̂0)w0 + op((1 − χ1)t̂1)w1. This yields

u = EMg + op(t0)w0 + op(t1)w1 + g1 + g2.(2.30)

From the composition formula of tangential operators (1.3), noting that it does not involve derivations w.r.t.

the variable xn, and estimate (2.29), we obtain

‖g2‖2 ≤ Ch2(‖v‖1 + |Dxn
v|xn=0+ |0),(2.31)

since supp(1 − χ1) ∩ supp( χ+) = ∅, by making use of the following trace formula [LR97, page 486]

|ψ|xn=0+ | j ≤ Ch−
1
2 ‖ψ‖ j+1, j ∈ N.(2.32)

We now observe that the symbols e(x0, x, ξ0, ξ) is holomorphic w.r.t. ξn in the support of χ1. We can then

write

t j = diag(t
g

j
, td

j ), t
g/d
j
(x0, x, ξ0, ξ

′) = χ1(x0, x, ξ0, ξ
′)

1

2iπ

∫

γ
g/d
0

eixnξn/he
g/d (x0, x, ξ0, ξ)ξ

j
n dξn, j = 0, 1,(2.33)

where γ
g/d
0

is a direct contour surrounding the roots ρ
g/d ,+ in the region Im ξn ≥ c0|(ξ0, ξ

′)|, for c0 > 0.

We note that in supp( χ1) we have

e
g/d
0
=

1

p
g/d
ϕ

=
1

ρ
g/d ,+ − ρg/d ,−

(
1

ξn − ρg/d ,+
− 1

ξn − ρg/d ,−

)
.

The residue formula then yields

e−ixnρ
g/d ,+/h t

g/d
j
= χ1

(ρ
g/d ,+) j

ρ
g/d ,+ − ρg/d ,−

+ hλ
g/d , j = 0, 1, λ

g/d ∈ S
−2+ j

T .(2.34)

It should be noted that it is crucial to have Im ρ
g/d ,+ ≥ C > 0 and Im ρ

g/d ,− ≤ −C < 0 here. From (2.33) we

obtain the estimate

|(Dxn
)l∂αx0,x′

∂
β

ξ0,ξ′
t j| ≤ Cα,β,le

−c0(xn/h)〈(ξ0,ξ
′)〉〈(ξ0, ξ

′)〉−1+ j−|β|+l, xn ≥ 0,
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again by the residue formula, which yields ec0 xn/h(Dxn
)lt j bounded in S

j−1+l

T uniformly w.r.t. xn ≥ 0. It

follows that

‖Λ1 ◦ op(t j)w j‖
2

0
=

∫

xn>0

e−2c0 xn/h
∣∣∣op(ec0 xn/ht j)w j

∣∣∣2
1

(xn) dxn ≤ Ch|w j|2j ,(2.35)

and

‖Dxn
op(t j)w j‖20 =

∫

xn>0

e−2c0 xn/h
∣∣∣op(ec0 xn/hDxn

t j)w j

∣∣∣2
0

(xn) dxn ≤ Ch|w j|2j .(2.36)

From (2.30), and estimates (2.20), (2.25), (2.31), (2.35), (2.36) we obtain

‖u‖1 ≤ C
(
‖Pϕv‖

0
+ h‖v‖1 + h

1
2 (|w0|0 + |w1|1) + h2|Dxn

v|xn=0+ |0
)
.(2.37)

We shall now address the boundary terms w0 and w1. We take the trace at xn = 0+ of (2.30) which gives

γ0(u) = op(a)γ0(u) + op(b)γ1(u) +G2,(2.38)

where a ∈ S 0
T and b ∈ S −1

T , with principal symbols

a0 = diag(a
g

0
, ad

0), with a
g/d
0
= −

(
χ1

ρ
g/d ,−

ρ
g/d ,+ − ρg/d ,−

)∣∣∣∣∣∣
xn=0+

,

b−1 = diag(b
g

−1
, bd
−1), with b

g/d
−1
=

(
χ1

1

ρ
g/d ,+ − ρg/d ,−

)∣∣∣∣∣∣
xn=0+

,

by (2.34) and (2.22). Note that the symbols a and b are diagonal. The function G2 is given by G2 =

(EMg + g1 + g2)|xn=0+ . From the trace formula (2.32), we write

|G2|1 ≤ Ch−
1
2 ‖EMg + g1 + g2‖

2
≤ Ch−

1
2

(
‖Pϕv‖

0
+ h‖v‖1 + h2|Dxn

v|xn=0+ |0
)
,(2.39)

since EM ∈ Ψ−2 and making use of estimates (2.20), (2.25) and (2.31).

The transmission conditions (TCu) give

γ0(ug) = γ0(ud) + θϕ,χ+ , γ1(ug) = −β γ1(ud) + kγ0(ud) + G̃1(2.40)

where β = (cd/cg)|xn=0+ , k = −i(∂xn
ϕg|xn=0+ + β ∂xn

ϕd |xn=0+ ) and G̃1 = −i∂xn
ϕgθϕ,χ+ +

1
cg |xn=0+

G1 with

|G̃1|0 ≤ Ch|v|xn=0+ |0 +C(|θϕ|0 + |Θϕ|0),(2.41)

by (2.21). From (2.38) we thus obtain

(Id− op(a))

(
γ0(ud) + θϕ,χ+

γ0(ud)

)
= op(b)

(
−β γ1(ud) + kγ0(ud) + G̃1

γ1(ud)

)
+G2.

We thus have
(
Id− op(ag) − op(bg) ◦ k op(bg) ◦ β

Id− op(ad) − op(bd)

) (
γ0(ud)

γ1(ud)

)
= G2 +

(
op(ag) − Id

0

)
θϕ,χ+ +

(
op(bg)

0

)
G̃1

where β and k stand here for the associated multiplication operators. We thus obtain a system of the form

op(κ)

(
γ0(ud)

Λ−1γ1(ud)

)
= G2 + op(π)θϕ,χ+ + op(Π)G̃1,(2.42)
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where κ is a 2 × 2 matrix with entries in S 0
T , with principal symbol

κ0 =

(
1 − a

g

0
− kb

g

−1
β 〈(ξ0, ξ

′)〉 bg

−1

1 − ad
0

−〈(ξ0, ξ
′)〉 bd

−1

)
,

and π and Π are 2 × 1 matrices with entries in S 0
T and S −1

T respectively, with principal symbols

π0 =

(
a

g

0
− 1

0

)
and Π−1 =

(
b

g

−1

0

)
.

We now choose χ2(x0, x, ξ0, ξ
′) ∈ S 0

T , satisfying the same requirement as χ+, equal to one in a neighborhood

of supp( χ+) and such that the symbol χ1 be equal to one in a neighborhood of supp( χ2). In supp( χ2), we

obtain

κ0|supp( χ2) =



ρg,+ − k

ρg,+ − ρg,− β 〈(ξ0, ξ
′)〉 1

ρg,+ − ρg,−

ρd,+

ρd,+ − ρd,− −〈(ξ0, ξ
′)〉 1

ρd,+ − ρd,−



∣∣∣∣∣∣∣∣∣∣∣∣
xn=0+

.

This yields

det(κ0)|supp( χ2) = −
〈(ξ0, ξ

′)〉(ρg,+ + β ρd,+ − k)

(ρg,+ − ρg,−)(ρd,+ − ρd,−)

∣∣∣∣∣∣
xn=0+

.

Since we have Im(ρg,+ + β ρd,+) ≥ C〈(ξ0, ξ
′)〉 > 0 in supp( χ2), and since

Im(−k) =
1

cg|xn=0+
(cg∂xn

ϕg + cd∂xn
ϕd)|xn=0+ ≥ 0,

by (2.10), we find that | det(κ0)|supp( χ2)| ≥ C > 0. It follows that κ is elliptic in supp( χ2). Then, there exists

lM ∈ S 0
T , such that

op(lM) ◦ op(κ) = op( χ2) + hM+1R̃M ,

with R̃M ∈ Ψ−1−M
T , for M ∈ N large. This yields

(
γ0(ud)

Λ−1γ1(ud)

)
= op(lM)G2 + op(lM) ◦ op(π)θϕ,χ+ + op(lM) ◦ op(Π)G̃1 +

(
op(1 − χ2) − hMR̃M

) ( γ0(ud)

Λ−1γ1(ud)

)
.

From the ψDO calculus, since supp(1− χ2)∩ supp( χ+) = ∅, and making use of the trace formula (2.32) we

obtain

|γ0(ud)|1 + |γ1(ud)|0 ≤ C
(
|G2|1 + |θϕ,χ+ |1 + |G̃1|0 + h2‖v‖1 + h2|Dxn

v|xn=0+ |0
)

(2.43)

≤ C′
(
h−

1
2 ‖Pϕv‖

0
+ h

1
2 ‖v‖1 + h

3
2 |Dxn

v|xn=0+ |0 + |θϕ|1 + |Θϕ|0
)
,

by (2.41) and (2.39). From (2.40), the same estimate holds for |γ0(ug)|1 + |γ1(ug)|0, and also for |w0|0 + |w1|1
by (2.22):

h
1
2 (|w0|0 + |w1|1) ≤ C

(
‖Pϕv‖

0
+ h‖v‖1 + h2|Dxn

v|xn=0+ |0 + h
1
2 |θϕ|1 + h

1
2 |Θϕ|0

)
.(2.44)

Observing that

Dxn
op( χ+v) = op( χ+)Dxn

v + [Dxn
, op( χ+)]︸           ︷︷           ︸
∈hΨ0

T

v,
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we have

h
1
2

(
| op( χ+)v|xn=0+ |1 + | op( χ+)Dxn

v|xn=0+ |0
)
≤ Ch

1
2

(
|u|xn=0+ |1 + |Dxn

u|xn=0+ |0 + h|v|xn=0+ |0
)

(2.45)

≤ C
(
‖Pϕv‖

0
+ h‖v‖1 + h2|Dxn

v|xn=0+ |0 + h
1
2 |θϕ|1 + h

1
2 |Θϕ|0

)
,

from the previous inequalities and the trace formula (2.32). We conclude the proof by combining estimates

(2.37), (2.44) and (2.45). �

2.4. Estimate in the region E d,−. With a microlocal cut-off, we place ourselves in the region E d,−, finitely

away from Z d. Making use of the standard techniques to prove Carleman estimates for both P
g
ϕ and Pd

ϕ, we

obtain the following partial Carleman estimate.

Proposition 2.11. Let K be a compact subset of V. Let χ−(x0, x, ξ0, ξ
′) ∈ S 0

T with a compact support w.r.t.

(x0, x) contained in V, be such that in the support of χ− we have µd(x0, x, ξ0, ξ
′) ≤ −C < 0. With the weight

function ϕ satisfying Assumption 2.1, there exist C > 0 and h1 > 0 such that

h‖ op( χ−)v‖21 + h| op( χ−)v|xn=0+ |21 + h| op( χ−)Dxn
v|xn=0+ |20 ≤ C

(
‖Pϕv‖2

0
+ h2‖v‖21 + h|θϕ|21 + h|Θϕ|20

)
,(2.46)

for 0 < h ≤ h1, and for v = t(vg, vd), vd, vg ∈C ∞
c (Kd) and satisfying (TCϕ).

Proof. We set u = op( χ−)v. Then, Pϕu = g with g = op( χ−)Pϕv + [Pϕ, op( χ−)]v. In particular, we have

‖g‖0 ≤ C
(
‖Pϕv‖

0
+ h‖v‖1

)
.(2.47)

The transmission conditions satisfied by ud and ug are (TCu) –see the proof of Proposition 2.9– with θϕ,χ− :=

op( χ−)θϕ|xn=0+ in place of θϕ,χ+ and with G1 here given by

G1 = [cg(Dxn
+ i∂xn

ϕg), op( χ−)]vg|xn=0+ + [cd(Dxn
+ i∂xn

ϕd), op( χ−)]vd |xn=0+ + op( χ−)Θϕ|xn=0+ ,

and satisfying

|G1|0 ≤ Ch|v|xn=0+ |0 +C|Θϕ|0.(2.48)

We apply the Carleman method to the operators P
g
ϕ and Pd

ϕ. By Assumption 2.1, and in particular by (2.3),

and by Lemma 2 in [LR95], we then have

h‖ug/d‖21 + Re
(
hB

g/d (u
g/d ) + h2

(
(Dnu

g/d + L
g/d
1

u
g/d )|xn=0+ , L

g/d
0

u
g/d |xn=0+

)
0

)
≤ C‖gg/d‖20,(2.49)

for h sufficiently small, where L
g/d
1
∈ D 1

T , L
g/d
0
∈ Ψ0

T . The quadratic forms B
g/d are given by

B
g/d (ψ) =

( (
2∂xn

ϕ
g/d B

g/d
1
Λ−1

Λ−1B
g/d′
1
Λ−1B

g/d
2
Λ−1

)

︸                       ︷︷                       ︸
B

g/d ∈Ψ0
T

(
γ1(ψ)

Λ1γ0(ψ)

)
,

(
γ1(ψ)

Λ1γ0(ψ)

) )

0

, γ0(ψ) = ψ|xn=0+ , γ1(ψ) = Dxn
ψ|xn=0+ ,(2.50)

where B
g/d
1

, B
g/d′
1
∈ D 1

T , with σ(B
g/d
1

) = σ(B
g/d′
1

) = 2q
g/d
1

and B
g/d
2
∈ D 2

T , with σ(B
g/d
2

) = −2∂xn
ϕ

g/d q
g/d
2

. Observe

that we have

h2
∣∣∣∣
(
(Dnu

g/d + L
g/d
1

u
g/d )|xn=0+ , L

g/d
0

u
g/d |xn=0+

)
0

∣∣∣∣ ≤ Ch2
(
|γ1(u

g/d )|20 + |γ0(u
g/d )|21

)
.(2.51)
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The tangential ψDOs B
g/d defined in (2.50) are of order 0 and their principal symbols are

σ(B
g/d ) =

(
2∂xn

ϕ
g/d 2q

g/d
1
〈(ξ0, ξ

′)〉−1

2q
g/d
1
〈(ξ0, ξ

′)〉−1 −2∂xn
ϕ

g/d q
g/d
2
〈(ξ0, ξ

′)〉−2

)
.

We find det(σ(B
g/d )) = −4(∂xn

ϕ
g/d )2〈(ξ0, ξ

′)〉−2 µ
g/d , with µ

g/d as defined in Section 2.2; it follows that in

supp( χ−) we have det(σ(Bd)) ≥ C > 0. Since ∂xn
ϕd > 0 it follows that σ(Bd) is positive definite.

We now make use of transmission conditions (TCu) and write
(
γ1(ug)

Λ1γ0(ug)

)
=

(
−β kΛ−1

0 1

)

︸         ︷︷         ︸
Cg

(
γ1(ud)

Λ1γ0(ud)

)
+

(
G̃1

Λ1θϕ,χ−

)
,(2.52)

where β = (cd/cg)|xn=0+ , k = −i(∂xn
ϕg|xn=0+ + β ∂xn

ϕd |xn=0+ ) and G̃1 = −i∂xn
ϕgθϕ,χ− +

1
cg |xn=0+

G1 that satisfies

|G̃1|0 ≤ Ch
1
2 ‖v‖1 +C(|θϕ|0 + |Θϕ|0),(2.53)

by (2.48) and trace formula (2.32). We obtain

B g(ug) =

(
B̃g

(
γ1(ud)

Λ1γ0(ud)

)
,

(
γ1(ud)

Λ1γ0(ud)

))

0

+ U(γ1(ud), γ0(ud), θϕ,χ− , G̃1),

where σ(B̃g) = tσ(Cg)σ(Bg)σ(Cg) ∈ S 1
T , which gives

∣∣∣∣∣∣

(
B̃g

(
γ1(ud)

Λ1γ0(ud)

)
,

(
γ1(ud)

Λ1γ0(ud)

))

0

∣∣∣∣∣∣ ≤ C

(
|γ0(ud)|21 + |γ1(ud)|20

)
,(2.54)

and where we have

U(γ1(ud), γ0(ud), θϕ,χ− , G̃1) =

(
BgCg

(
γ1(ud)

Λ1γ0(ud)

)
,

(
G̃1

Λ1θϕ,χ−

))

0

+

(
Bg

(
G̃1

Λ1θϕ,χ−

)
,Cg

(
γ1(ud)

Λ1γ0(ud)

))

0

+

(
Bg

(
G̃1

Λ1θϕ,χ−

)
,

(
G̃1

Λ1θϕ,χ−

))

0

,

which from (2.53) satisfies

|U(γ1(ud), γ0(ud), θϕ,χ− , G̃1)| ≤ C

(
|γ0(ud)|21 + |γ1(ud)|20 + h‖v‖21 + |θϕ|21 + |Θϕ|

2
0

)
.(2.55)

For any K > 0, with α > 0 sufficiently large, we can enforce ασ(Bd) + σ(B̃g) ≥ K > 0. Hence, with

(2.54), (2.55) and Gårding’s inequality [Tay81, Mar02] we obtain

αRe B d(ud) + Re B g(ug) ≥ K

2

(
|γ0(ud)|21 + |γ1(ud)|20

)
−

(
h‖v‖21 + |θϕ|21 + |Θϕ|

2
0

)
,(2.56)

for K sufficiently large and for h sufficiently small. The transmission conditions (2.52) give

|γ0(ug)|21 + |γ1(ug)|20 ≤ C

(
|γ0(ud)|21 + |γ1(ud)|20 + |θϕ|21 + |Θϕ|

2
0
+ h‖v‖21

)
.(2.57)

Recalling that

Dxn
op( χ−v) = op( χ−)Dxn

v + [Dxn
, op( χ−)]︸           ︷︷           ︸
∈hΨ0

T

v,

with the linear combination α(2.49)d + (2.49)g and estimates (2.47), (2.51), (2.56) and (2.57) we obtain the

sought partial Carleman estimate, by choosing ε and h sufficiently small. �
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Remark 2.12. As an alternative proof of Proposition 2.11, we could also use the Calderón projector tech-

nique for Pd
ϕ. In supp(χ−) the two roots ρd,± of pd

ϕ have negative imaginary part. With the notation and

the argumentation of the proof of Proposition 2.9 above, the operators td
0

and td
1

vanish in xn > 0. The

counterpart of (2.30) is then

ud = EMgd + gd
1 + gd

2, for xn > 0.(2.58)

We then obtain (see (2.37))

‖ud‖1 ≤ C
(
‖Pd

ϕvd‖
0
+ h‖vd‖1 + h2|Dxn

vd |xn=0+ |0
)
.(2.59)

We take the trace at xn = 0+ of (2.58),

γ0(ud) = Gd
2 = (EMgd + gd

1 + gd
2)|xn=0+ ,

which, by the counterpart of (2.39), gives

h
1
2 |γ0(ud)|1 ≤ C

(
‖Pϕv‖

0
+ h‖v‖1 + h2|Dxn

v|xn=0+ |0
)
.(2.60)

From (2.58) we also have

Dxn
ud = Dxn

EMgd + Dxn
gd

1 + Dxn
gd

2, for xn > 0.

We take the trace at xn = 0+ and obtain

γ1(ud) = (Dxn
(EMgd + gd

1 + gd
2))|xn=0+ .

From the trace formula (2.32) we then have

|γ1(ud)|0 ≤ Ch−
1
2 ‖Dxn

(EMgd + gd
1 + gd

2)‖
1
≤ Ch−

1
2 ‖EMgd + gd

1 + gd
2‖2

and, by the counterpart of (2.39), this yields

h
1
2 |γ1(ud)|0 ≤ C

(
‖Pϕv‖

0
+ h‖v‖1 + h2|Dxn

v|xn=0+ |0
)
.(2.61)

From (2.60) and (2.61) and transmission condition (TCu), we obtain

h
1
2 |γ0(ug)|1 + h

1
2 |γ1(ug)|0 ≤ C

(
‖Pϕv‖

0
+ h‖v‖1 + h2|Dxn

v|xn=0+ |0 + h
1
2 |θϕ,χ− |1 + h

1
2 |Θϕ|0

)
.(2.62)

Finally with (2.59), (2.62), (2.51)g, and (2.49)g we can also achieve the result of Proposition 2.11.

2.5. Estimate around the region Z d. With a microlocal cut-off, we place ourselves in a neighborhood of

the region Z d, i.e., where |µd | is small, while staying in the region E g,+ away from the region Z g. Making

use of the techniques of Calderón projectors for P
g
ϕ and standard techniques to prove Carleman estimates

for Pd
ϕ, we obtain the following partial Carleman estimate.

Proposition 2.13. Let K be a compact subset of V. Let ϕ satisfy Assumption 2.1. Let χ0(x0, x, ξ0, ξ
′) ∈

S 0
T with a compact support w.r.t. (x0, x) contained in V and be such that in the support of χ0 we have

µg(x0, x, ξ0, ξ
′) ≥ C > 0 and

(cg∂xn
ϕg + cd∂xn

ϕd)2|xn=0+ − (cd)2µd |xn=0+ ≥ C′ > 0, in supp( χ0).(2.63)



CARLEMAN ESTIMATE FOR NON SMOOTH COEFFICIENTS 23

Then, there exist C > 0 and h1 > 0 such that

(2.64) h‖ op( χ0)v‖21 + h| op( χ0)v|xn=0+ |
2

1 + h| op( χ0)Dxn
v|xn=0+ |

2

0

≤ C
(
‖Pϕv‖2

0
+ h2‖v‖21 + h4|Dxn

v|xn=0+ |20 + h|θϕ|21 + h|Θϕ|20
)
,

for 0 < h ≤ h1, and for v = t(vg, vd), vd, vg ∈C ∞
c (Kd) and satisfying (TCϕ).

Proof. Condition (2.63) can be obtained from the properties of the weight function ϕ listed in Assump-

tion 2.1. In supp( χ0), we have

Im ρg,+ ≥ C > 0, Im ρg,− ≤ −C < 0.

We set u = op( χ0)v. Then, Pϕu = g with g = op( χ0)Pϕv + [Pϕ, op( χ0)]v. In particular, we have

‖gg/d‖0 ≤ C
(
‖Pg/d

ϕ v
g/d‖

0
+ h‖vg/d‖1

)
.(2.65)

The transmission conditions satisfied by ud and ug are (TCu) –see the proof of Proposition 2.9– with θϕ,χ0 :=

op( χ0)θϕ|xn=0+ in place of θϕ,χ+ with G1 given here by

G1 = [cg(Dxn
+ i∂xn

ϕg), op( χ0)]vg|xn=0+ + [cd(Dxn
+ i∂xn

ϕd), op( χ0)]vd |xn=0+ + op( χ0)Θϕ|xn=0+ ,

and satisfying

|G1|0 ≤ Ch|v|xn=0+ |0 +C|Θϕ|0.(2.66)

We start by applying the method of Calderón projectors to the operator P
g
ϕ and to ug. We follow the same

notation as in the proof of Proposition 2.9. We thus obtain an estimate of the form of (2.37), namely,

‖ug‖1 ≤ C
(
‖Pg

ϕvg‖
0
+ h‖vg‖1 + h

1
2 (|γ1(ug)|0 + |γ0(ug)|1) + h2|Dxn

vg|xn=0+ |0
)
.(2.67)

where γ0(ug) = ug|xn=0+ and γ1(ug) = Dxn
ug|xn=0+ . We also have the following trace equation, of the same

form as (2.38),

γ0(ug) = op(ag)γ0(ug) + op(bg)γ1(ug) +G
g

2
,(2.68)

with ag ∈ S 0
T and bg ∈ S −1

T , with principal symbols

a
g

0
= −

(
χ1

ρg,−

ρg,+ − ρg,−

)∣∣∣∣∣∣
xn=0+

, b
g

−1
=

(
χ1

1

ρg,+ − ρg,−

)∣∣∣∣∣∣
xn=0+

,

where χ1(x0, x, ξ0, ξ
′) ∈ S 0

T , satisfies the same requirement as χ0, and is equal to one in a neighborhood of

supp( χ0). The function G
g

2
satisfies

|Gg

2
|
1
≤ Ch−

1
2

(
‖Pg

ϕvg‖
0
+ h‖vg‖1 + h2|Dxn

vg|xn=0+ |0
)
.(2.69)

We now use relation (2.68) in connection the transmission conditions (TCu). With (TCu), we write

op(bg)γ1(ug) = − op(bg)(β γ1(ud)) + op(bg)(kγ0(ud)) + op(bg)G̃1, γ0(ug) = γ0(ud) + θϕ,χ0 ,

where β = (cd/cg)|xn=0+ , k = −i(∂xn
ϕg|xn=0+ + β ∂xn

ϕd |xn=0+ ) and G̃1 = −i∂xn
ϕgθϕ,χ0 + 1

cg |xn=0+
G1 that satisfies

|G̃1|0 ≤ Ch|v|xn=0+ |0 +C(|θϕ|0 + |Θϕ|0),(2.70)
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by (2.66). From (2.68), we obtain

(Id− op(ag) − op(bg) ◦ k︸                        ︷︷                        ︸
:=op(κ)

) γ0(ud) = − op(bg)(β γ1(ud)) + op(bg)G̃1 + (op(ag) − Id)θϕ,χ0 +G
g

2
,

where k stands here for the associated multiplication operator.

Let χ2(x0, x, ξ0, ξ
′) ∈ S 0

T satisfy the same requirement as χ0, and be equal to one in a neighborhood of

supp( χ0) and be such that the symbol χ1 is equal to one in a neighborhood of supp( χ2). In supp( χ2), the

principal symbol of κ is given by

κ0|supp( χ2) =
ρg,+ − k

ρg,+ − ρg,− ∈ S 0
T .

In supp( χ2) we have Im ρg,+ ≥ C > 0 and Im(−k) ≥ 0 by Assumption 2.1, we see that κ is elliptic in

supp( χ2). Hence, there exists l ∈ S 0
T , with l =

∑M
j=0 h jl j, with l j ∈ S

− j

T and l0 = χ2/κ0, such that

op(lM) ◦ op(κ) = op( χ2) + hM+1RM ,

with RM ∈ Ψ−1−M
T , for M large. We thus obtain

γ0(ud) = − op(l) ◦ op(bg)(β γ1(ud)) +G3,(2.71)

with

G3 = op(l) ◦ op(bg) G̃1 + op(l) ◦ (op(ag) − Id) θϕ,χ0 + op(l) G
g

2
+ (Id− op( χ2))γ0(ud) − hM+1RMγ0(ud).

From the ψDO calculus, since supp(1 − χ2) ∩ supp( χ0) = ∅, we obtain

|G3|1 ≤ C
(
h−

1
2 ‖Pg

ϕvg‖
0
+ h

1
2 ‖v‖1 + h

3
2 |Dxn

vg|xn=0+ |0 + |θϕ,χ0 |
1
+ |Θϕ|0

)
,(2.72)

by (2.70) and (2.69) and making use of the trace formula (2.32). We thus have

|γ0(ud)|1 ≤ C
(
|γ1(ud)|0 + h−

1
2 ‖Pg

ϕvg‖
0
+ h

1
2 ‖v‖1 + h

3
2 |Dxn

vg|xn=0+ |0 + |θϕ,χ0 |
1
+ |Θϕ|0

)
.(2.73)

We now apply the Carleman method to the operator Pd
ϕ and to ud. By Assumption 2.1, and in particular

by (2.3), and by Lemma 2 in [LR95] we have

h‖ud‖21 + Re
(
hB d(ud) + h2

(
(Dnud + Ld

1ud)|xn=0+ , L
d
0ud |xn=0+

)
0

)
≤ C‖Pd

ϕud‖2
0
,(2.74)

for h sufficiently small, where Ld
1
, Ld

0
, and B d are as given in the proof of Proposition 2.11. For any ε > 0

we have

h2
∣∣∣∣
(
Dnud + Ld

1ud, Ld
0ud

)
0

∣∣∣∣ ≤ h2
(
|γ0(ud)|21 + |γ1(ud)|20

)
.(2.75)

With (2.71) we obtain

B d(ud) =
(
M∗ ◦ Bd ◦ M γ1(ud), γ1(ud)

)
0
+ U(γ1(ud),G3),

with

M =

(
1

−Λ1 ◦ op(l) ◦ op(bg) ◦ β

)
∈ Ψ0

T ,
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with β standing here for the associated multiplication operator, and where

U(γ1(ud),G3) =

(
Bd ◦ M γ1(ud),

(
0

Λ1G3

))

0

+

(
Bd

(
0

Λ1G3

)
,M γ1(ud)

)

0

+

(
Bd

(
0

Λ1G3

)
,

(
0

Λ1G3

))

0

.

With Young’s inequality we obtain

|U(γ1(ud),G3)| ≤ C
(
|γ1(ud)|0|G3|1 + |G3|21

)
(2.76)

≤ ε|γ1(ud)|20 +Cε

(
h−1‖Pg

ϕvg‖2
0
+ h‖v‖21 + h3|Dxn

vg|xn=0+ |20 + |θϕ,χ0 |2
1
+ |Θϕ|20

)
,

by (2.72).

In supp( χ0), the principal symbol of M∗ ◦ Bd ◦ M is in S 0
T and given by

Σ = σ(M∗ ◦ Bd ◦ M)

=

t(
1

−〈(ξ0, ξ
′)〉1l0b

g

−1
β

) (
2∂xn

ϕd 2qd
1
〈(ξ0, ξ

′)〉−1

2qd
1
〈(ξ0, ξ

′)〉−1 −2∂xn
ϕdqd

2
〈(ξ0, ξ

′)〉−2

) (
1

−〈(ξ0, ξ
′)〉1l0b

g

−1
β

) ∣∣∣∣∣∣
xn=0+

=
(
2∂xn

ϕd − 4qd
1β Re(l0b

g

−1
) − 2β2 |l0b

g

−1
|2∂xn

ϕdqd
2

)∣∣∣∣
xn=0+

.

In supp( χ0) we have

|l0b
g

−1
|−2|xn=0+ =

∣∣∣ρg,+|xn=0+ − k
∣∣∣2 =

(
(Re ρg,+)2 + (Im ρg,+ + ∂xn

ϕg + β ∂xn
ϕd)2

)∣∣∣∣
xn=0+

,(2.77)

Re(l0b
g

−1
) |l0b

g

−1
|−2|xn=0+ = Re ρg,+|xn=0+ .

We then obtain

Σ = 2β2 |l0b
g

−1
|2∂xn

ϕd
(
β−2 |l0b

g

−1
|−2 − 2qd

1β
−1(∂xn

ϕd)−1 Re ρg,+ − qd
2

)∣∣∣∣
xn=0+

= 2β2 |l0b
g

−1
|2∂xn

ϕd
(
β−2

(
|l0b

g

−1
|−2 − (Re ρg,+)2

)
− µd +

(
qd

1(∂xn
ϕd)−1 − β−1 Re ρg,+

)2
)∣∣∣∣∣

xn=0+

≥ 2β2 |l0b
g

−1
|2∂xn

ϕd
(
β−2(∂xn

ϕg + β ∂xn
ϕd)2 − µd

)∣∣∣∣
xn=0+

≥ C > 0,

by (2.63) and since

|l0b
g

−1
|2|xn=0+ ≥ C > 0, |l0b

g

−1
|−2|xn=0+ − (Re ρg,+)2|xn=0+ ≥ (∂xn

ϕg + β ∂xn
ϕd)2|xn=0+ ,

as |ρg,+| remains bounded in supp( χ0) and by (2.77). Hence, Gårding’s inequality yields [Tay81, Mar02]

Re
(
M∗ ◦ Bd ◦ M γ1(ud), γ1(ud)

)
0
≥ C|γ1(ud)|20,(2.78)

for h sufficiently small and C > 0.

Combining (2.74), with (2.65), (2.73), (2.75), (2.76) and (2.78), for and f and ε sufficiently small we

obtain

h‖ud‖21 + h|γ1(ud)|20 + h|γ0(ud)|21 ≤ C
(
‖Pϕv‖2

0
+ h2‖v‖21 + h4|Dxn

vg|xn=0+ |20 + h|θϕ|21 + h|Θϕ|20
)
.(2.79)

Note that the transmission conditions (TCu) give

|γ0(ug)|21 + |γ1(ug)|20 ≤ C

(
|γ0(ud)|21 + |γ1(ud)|20 + |θϕ|21 + |Θϕ|

2
0
+ h‖v‖21

)
.
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Recalling that

Dxn
op( χ0v) = op( χ0)Dxn

v + [Dxn
, op( χ0)]︸          ︷︷          ︸
∈hΨ0

T

v,

we see that an appropriate linear combination of (2.67) and (2.79) then yields the sought partial Carleman

estimate for h sufficiently small. �

2.6. Proof of Theorem 2.2. We choose χ+, χ− and χ0 with values in [0, 1] that satisfy the properties listed

in Propositions 2.9, 2.11 and 2.13 respectively and furthermore χ+ + χ− + χ0 = 1 in a neighborhood of

K × Rn, which can be achieved by Proposition 2.7.

We recall that v = eΦ/hw. Since 1 − χ+ + χ− + χ0 = 0 in a neighborhood of supp(w), we have

|Dxn
v|xn=0+ |0 ≤ | op( χ+)Dxn

v|xn=0+ |0 + | op( χ−)Dxn
v|xn=0+ |0 + | op( χ0)Dxn

v|xn=0+ |0 +Ch|Dxn
v|xn=0+ |0,

|v|xn=0+ |1 ≤ | op( χ+)v|xn=0+ |1 + | op( χ−)v|xn=0+ |1 + | op( χ0)v|xn=0+ |1 +Ch|v|xn=0+ |1,

and

‖v‖1 ≤ ‖ op( χ+)v‖1 + ‖ op( χ−)v‖1 + ‖ op( χ0)v‖1 +Ch‖v‖1.

These three inequalities together with (2.19), (2.46), and (2.64) then yield

h‖v‖21 + h|v|xn=0+ |21 + h|Dxn
v|xn=0+ |20 ≤ C

(
‖Pϕv‖2

0
+ h|θϕ|21 + h|Θϕ|20

)
,

for h sufficiently small. Observing now that we have

‖eΦ/hDx j
w‖

0
≤ ‖Dx j

(
eΦ/hw

)
‖

0
+ ‖∂x j

Φ eΦ/hw‖
0
,

and similar inequalities for the norms at the interface {xn = 0+}, and recalling the forms of θϕ and Θϕ in

(2.11), we can conclude the proof of Theorem 2.2. �

3. A   

In this section, we prove an interpolation inequality from the Carleman estimate proven in the previous

section. This will then yield the controllability result of Theorem 1.1.

With α ∈ (0, X0/2), we set X = (0, X0) ×Ω, Y = (α, X0 − α) ×Ω.

Theorem 3.1. There exist C ≥ 0 and δ ∈ (0, 1) such that for u ∈ H1(X) that satisfies (TC) and

u|(0,X0)×Ω1
∈ H2((0, X0),H2(Ω1)) and u|(0,X0)×Ω2

∈ H2((0, X0),H2(Ω2)),

u(x0, x)|x∈∂Ω = 0, x0 ∈ (0, X0), and u(0, x) = 0, x ∈ Ω,

we have

‖u‖H1(Y) ≤ C‖u‖δ
H1(X)

(
‖Au‖L2(X) + ‖∂x0

u(0, x)‖L2(ω)

)1−δ
.(3.1)
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V

xn

W

x0, x
′

(z0, z)(y0, y
′, 0)

Figure 2: Level sets for the weight functions ψ and ϕ = eλψ in local normal geodesic coordinates. The

Carleman estimate of Theorem 2.2 can be applied in a region V close to (y0, y
′, 0) (represented with a

dashed line).

Before we sketch the proof of Theorem 3.1 we first indicate how the result of Theorem 1.1 follows.

Let φ j, j ∈ N, be the eigenfunctions of the operator L on Ω, with Dirichlet boundary conditions, and let

the associated eigenvalues be µ j, j ∈ N, such that 0 < µ1 ≤ µ2 ≤ · · · ≤ µk ≤ . . . . We let µ > 0 and we

apply the interpolation inequality (3.1) to the function w(x0, x) =
∑
µ j≤µ a j

sinh(
√
µ j x0)

√
µ j

φ j(x), for (a j) j∈N ⊂ C.

This yields Theorem 1.2, following for instance the proof given in [LZ98, Proof of Theorem 3]. This in

turn yields Theorem 1.1 by the control construction method introduced in [LR95] (see also [LZ98, Section

5, Proposition 2] or [Mil06, Proof of Theorem 2.4 in Section 4.2]). As a consequence of Theorem 1.1, we

have the following observability result.

Corollary 3.2. There exists a constant Cobs ≥ 0 such that the solution y to


−∂ty − Ly = 0 in Q,

q = 0 on (0,T ) × ∂Ω,
q(T ) = qT in Ω,

with qT ∈ L2(Ω) satisfies ‖q(0)‖2
L2(Ω)

≤ Cobs‖q‖2L2((0,T )×ω)
.

Remark 3.3. With the technique used in [FI96], i.e., enlarging Ω in the neighborhood of part of ∂Ω, we

obtain a similar controllability (resp. observability) result for a localized boundary control (resp. observa-

tion).

3.1. Proof of the interpolation inequality. We first prove a local version of the interpolation inequality in

a small neighborhood of a point (y0, y
′, 0) of the interface (0, X0) × S .
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We place ourselves in normal geodesic coordinates, as in Section 2, in a neighborhood W of (y0, y, 0) and

first construct a weight function ψ in W. We start by defining the following anisotropic distance in Rn+1:

distα((a0, a), (b0, b
′)) =

(
α‖(a0, a

′) − (b0, b
′)‖2 + |an − bn|2

) 1
2
, α > 0.

Let (z0, z) = (y0, y
′, zn) be a point in W away from the interface. We suppose (z0, z) ∈ Wd, i.e., zn > 0 (for

consistency with Section 2). For γ > 0, we set

ψ(x0, x) =


− distα((x0, x), (z0, z)) if xn ≥ 0,

− distα((x0, x
′, γxn), (z0, z)) if xn < 0.

We note that ψ is continuous across the interface {xn = 0} and that

∂xn
ψ(x0, x) = (xn − zn)(ψ(x0, x))−1 if xn ≥ 0, and ∂xn

ψ(x0, x) = γ(γxn − zn)(ψ(x0, x))−1 if xn ≤ 0,

which yields ∂xn
ψ|xn=0− = γ∂xn

ψ|xn=0+ . We also have

∂x j
ψ(x0, x

′, 0) = α(x j − z j)(ψ(x0, x
′, 0))−1, j = 0, . . . , n − 1.

Note that |x j − z j| is bounded in W and that we can choose the parameter α sufficiently small to have

|∂x j
ψ|xn=0|, j = 0, . . . , n − 1 small as compared to |∂xn

ψ|xn=0+ |. We thus choose α and γ sufficiently small to

have ψ satisfying the properties1 listed in Assumption 2.1 in a sufficiently small neighborhood V of (y0, y),

V ⊂ W, apart from the sub-ellipticity condition (2.3). Clearly (z0, z) < V . Level sets for the function ψ are

represented in Figure 2.

We now note that the weight function ϕ = eλψ, λ > 0, also satisfies those conditions, possibly with

different constants, from the homogeneity of the formulae in Assumption 2.1 w.r.t. to the weight function.

The proof of Lemma 3 in [LR95, Section 3.B] then yields that ϕ furthermore satisfies the sub-ellipticity

condition (2.3) for λ sufficiently large (see also Theorem 8.6.3 in [Hör63, Chapter 8] and Proposition 28.3.3

in [Hör85a, Chapter 28]). The local Carleman estimate of Theorem 2.2 then follows, with the weight

function ϕ, for a possibly reduced neighborhood that we still denote by V (see Proposition 2.7).

We choose 0 < s1 < s′
1

and 0 < σ < σ′ such that

U′ = {(x, x0); ‖(x0, x
′) − (y0, y

′)‖ < s′1, |xn| < σ′} ⊂ V.

We also set

U = {(x, x0); ‖(x0, x
′) − (y0, y

′)‖ < s1, |xn| < σ}.

We now choose r1 < r′
1
< r2 < ψ(y0, y) < r′

2
< r3 < r′

3
, such that

C1 = {(x0, x) ∈ Rn+1; ψ(x0, x) = r1} and C′3 = {(x0, x) ∈ Rn+1; ψ(x0, x) = r′3}

satisfy C1 ∩ Rn+1
− ⊂ U, C1 ∩ Rn+1

+ ∩ U , ∅, which is equivalent to having

−(αs2
1 + z2

n)
1
2 < r1,

and finally C′
3
∩ U′ ⊂ {xn ≤ σ}. We illustrate these choices in Figure 3. We set R j = eλr j , R′

j
= eλr′

j ,

j = 1, 2, 3.

1depending on the case (1,2, or 3) satisfied by the considered point (y0, y).
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V1

W2

V3

V2

W3

xn

σ′
σ

U

U′s1

s′
1

x0, x
′

r1
r′1 r2

r′2 r3
r′3

Figure 3: Neighborhoods around the point of interest for the proof of the interpolation inequality.

Following [LR95], we introduce

V j := {(x0, x) ∈ U′; r j < ψ(x0, x) < r′j}, j = 1, 2, 3.

and we further set

V1′→3 := {(x0, x) ∈ U; r′1 < ψ(x0, x) < r3}, V ′1→3′ := {(x0, x) ∈ U′; r1 < ψ(x0, x) < r′3}

W3 = V3 ∪ (V ′1→3′ \ U).

The region W3 is represented shaded and stripped in Figure 3. With the choices we have made above, the

region W3 is contained in Rn+1
+ and is finitely away from the interface S = {xn = 0}. We also choose

W2 ⊂ V2 such that W2 ⋐ U. The region W2 contains (y0, y
′, 0) and is represented shaded in Figure 3.

We choose ζ ∈C ∞
c (Rn+1) such that ζ is equal to one on V1′→3 and vanishes outside V ′

1→3′ . Then ∇x0,xζ

vanishes outside V ′
1→3′ \ V1′→3 which is the stripped region in Figure 3. For u ∈ H1(W) that satisfies (TC),

we set w = ζu. Then w satisfies the following transmission conditions

∀x0, x
′, w|xn=0− = w|xn=0+ c∂xn

w|xn=0− = c∂xn
w|xn=0+ + Θ,

where Θ = (c|xn=0+ − c|xn=0− )(u ∂xn
ζ)|xn=0. Note that Θ is supported in {xn = 0} ∩ V1.

From the Carleman estimate of Theorem 2.2, after division by h3, we have

h−2‖eϕ/hw‖20 + ‖eϕ/h∇x0,xw‖20 ≤ C

(
h1‖eϕ/hAu‖20 + h1‖eϕ/h[A, ζ]u‖20 + |eϕ/hΘ|

2

0

)
, 0 < h ≤ h0.

Note that [A, ζ] of order one and supported in V ′
1→3′ \ V1′→3. We thus have

‖eϕ/h[A, ζ]u‖0 ≤ CeR′
3
/h‖u‖H1(W3) +CeR′

1
/h‖u‖H1(V1) ≤ CeR′

3
/h‖u‖H1(W3) +CeR′

1
/h‖u‖H1(W).
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We also have

|eϕ/hΘ|0 ≤ CeR′
1
/h‖u‖H1(W),

by the trace formula. We thus obtain

eR2/h‖u‖H1(W2) ≤ CeR′
1
/h‖u‖H1(W) +CeR′

3
/h

(
‖u‖H1(W3) + ‖Au‖L2(W)

)
, 0 < h ≤ h0.(3.2)

Optimizing w.r.t. to h as in [Rob95] we obtain µ0 ∈ (0, 1) such that the local interpolation inequality

‖u‖H1(W2) ≤ C‖u‖1−µ
H1(W)

(
‖u‖H1(W3) + ‖Au‖L2(W)

)µ
(3.3)

holds for 0 < µ ≤ µ0. This inequality can be read as the “observation” of the H1 norm of u in the

neighborhood of any point of the interface by the H1 norm of u in a neighborhood away from the interface

and the L2 norm of Au

Remark 3.4. As pointed above the region W3 is contained in Rn+1
+ . The case W3 ⊂ Rn+1

− can naturally be

obtained by changing xn into −xn in W.

Now that we have obtained such a local interpolation inequality at the interface, we can apply the pro-

cedure described in [LR95, pages 353–356] and prove the sought global interpolation inequality (3.1). See

[LZ98, Proof of Theorem 3] to obtain the term ‖∂x0
u(0, x)‖L2(ω) in the r.h.s. of (3.1). This concludes the

proof of Theorem 3.1.
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