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Abstract. We consider the problem of learning stochastic tree lan-
guages, i.e. probability distributions over a set of trees T (F), from a
sample of trees independently drawn according to an unknown target
P . We consider the case where the target is a rational stochastic tree
language, i.e. it can be computed by a rational tree series or, equiva-
lently, by a multiplicity tree automaton. In this paper, we provide two
contributions. First, we show that rational tree series admit a canonical
representation with parameters that can be efficiently estimated from
samples. Then, we give an inference algorithm that identifies the class of
rational stochastic tree languages in the limit with probability one.

1 Introduction

In this paper, we stand in the field of probabilistic grammatical inference and
we focus on the learning of stochastic tree languages. A stochastic tree language
is a probability distribution over the set of trees T (F) built on a ranked finite
alphabet F . Given a sample of trees independently drawn according to an un-
known stochastic language P , we aim at finding an estimate of P in a given class
of models such as probabilistic tree automata. Carrasco et al. have proposed to
learn deterministic stochastic tree automata [1]. Specific work for probabilistic
k-testable tree languages was presented in [2] and for learning stochastic gram-
mars in [3]. However, to our knowledge, no efficient inference algorithm capable
of identifying the whole class of probabilistic tree automata is known.

Here, we can make a parallel with results on stochastic languages on strings.
Indeed, there exists no efficient algorithm capable of identifying the whole class
of probabilistic automata on strings either and the main reason is that we can-
not define a canonical structure for these models. Most former results deal with
specific subclasses of the class of probabilistic automata. Recently, it has been
proposed to consider a larger class of models: the class Srat

R
of rational stochastic

languages [4]. In the field of strings, a rational stochastic language is a stochastic
language that can be computed by a multiplicity automaton, whose parame-
ters may be positive or negative. Rational stochastic languages have a minimal
canonical representation while such canonical representations do not exist for
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probabilistic automata. And it has been shown that the class of rational stochas-
tic languages can be inferred in the limit with probability 1 [5,6]. The aim of
this paper is to study an extension of these results to the case of trees.

A tree series is a mapping from T (F) to R. Rational tree series have been
studied in [7,8]. As far as we know, very few approaches have focused on the
learning of tree series but we can mention two papers that stand in a variant
of the MAT learning model of Angluin: [9] in a general case and [10] in a de-
terministic case. But, to the best of our knowledge, this is the first attempt for
learning rational stochastic tree languages. Note that the adaptation to trees
is not trivial. Prefixes and suffixes of a string are also strings. The equivalent
notions for trees are subtrees and contexts (a context c is a tree one leaf of which
acts as a variable, so that substituting a tree t to the variable yields a new tree
c[t]), which are not similar objects. In the case of words, it can be shown that
any rational series r has a canonical representation that can be built on derived
rational series of the form u̇r such that u̇r(v) = r(uv) for any string v. The
corresponding notion for trees could be rational series of the form ċr where c is
a context, which associates r(c[t]) with each tree t. However, it seems impossible
to build a canonical representation on them and we need to consider much more
sophisticated objects. Let R〈〈T (F)〉〉 be the vector space composed of all series
defined on T (F), let r ∈ T (F) be a tree rational series, let W be the subspace
of R〈〈T (F)〉〉 spanned by all the series of the form ċr.

The first result of this paper shows that a canonical representation of r can
be defined on the dual vector space W ∗ composed of all the linear forms defined
on W . We show that given an order on T (F), a canonical basis {t1, . . . , tn} -
whose elements naturally correspond to trees - can be defined for W ∗. This point
is important from a machine learning perspective. We show that such a basis
can be extracted from any sufficiently large sample of trees drawn according to
the target. This leads us to the inference part of our paper.

Our second contribution consists in proposing an inference algorithm which
identifies in the limit any rational stochastic tree language with probability one.
We show that there exists a sample size above which, the structure of the canon-
ical representation is identified with probability one. Moreover, we show that
the parameters output by the algorithm converge to the true parameters at a
convergence rate equal to O(|S|γ) for any γ ∈]− 1/2, 0[.

The paper is organized as follows. In Section 2, we introduce some prelimi-
naries on tree series. The canonical linear representation for rational tree series
is presented in Section 3. We propose our inference algorithm in Section 4. We
conclude by a discussion and a description of future work in Section 5.

2 Preliminaries

2.1 Formal Power Series on Trees

See [11] for references on trees. Let F = F0 ∪F1 ∪ · · · ∪Fp be a ranked alphabet
where the elements in Fm are the function symbols of arity m. Let T (F) be the



set of all the trees that can be constructed from F . Let us define the height of a
tree t by: height(t) = 0 if t ∈ F0 and height(t) = 1 + Max{height(ti)|i = 1..m}
if t = f(t1, . . . , tm). For any integer n, let us define Tn(F) (resp. T≤n(F)) the
set of trees whose height is equal to n (resp. ≤ n).

Let $ be a zero arity function symbol not in F0. A context is an element of
T (F ∪ {$}) such that the symbol $ appears exactly once. We denote by C(F)
the set of all the contexts that can be defined over F . Let t be a tree and let c
be a context, c[t] denotes the tree obtained by substituting the symbol $ in the
context c by the tree t. A subset A of T (F) is prefixial if for any c ∈ C(F) and
any t ∈ T (F), c[t] ∈ A⇒ t ∈ A.

A formal power tree series on T (F) is a mapping r : T (F) → R. The set of
all formal power series on T (F) is denoted by R〈〈T (F)〉〉. It is a vector space,
when provided with addition and multiplication by a scalar.

Let V be a finite dimensional vector space over R. We denote by L(V p;V )
the set of p-linear mappings from V p to V . Let L = ∪p≥0L(V p;V ). We denote
by V ∗ the dual space of V , i.e. the vector space composed of all the linear forms
defined on V .

Definition 1. A linear representation of T (F) is a couple (V, µ), where V is
a finite dimensional vector space over R, and where µ : F → L maps Fp into
L(V p;V ) for each p ≥ 0.

Thus for each f ∈ Fp, µ(f) : V p → V is p-linear. It can easily be shown that
µ extends uniquely to a morphism µ : T (F)→ V by the formula

µ(f(t1, . . . , tp)) = µ(f)(µ(t1), . . . , µ(tp)). (1)

The µ function can be extended to work over contexts. Let µ : C(F)→ L(V ;V )
be inductively by µ($)(v) = v and µ(f(t1, . . . , ti−1, c, ti+1, . . . , tn))(v) =
µ(f)(µ(t1), . . . , µ(ti−1), µ(c)(v), µ(ti+1), . . . , µ(tn)).

It can be shown that for any context c and any term t, µ(c)(µ(t)) = µ(c[t]).
Let (V, µ) be a linear representation of T (F) and let VT (F) be the vector

subspace of V spanned by µ(T (F)). It can be shown that (VT (F), µ) is also a
linear representation of T (F). Let A be a prefixial subset of T (F) and let VA

be the subspace of V spanned by µ(A). Suppose that for any integer m, any
f ∈ Fm and any t1, . . . , tm ∈ A, µ(f(t1, . . . , tm)) ∈ VA. Then, VA = VT (F). As
a consequence, a basis of VT (F) can be extracted from µ(A). Therefore, given a
linear representation (V, µ) of T (F), a basis of VT (F) can be computed within
polynomial time.

Definition 2. Let r be a formal series over T (F), r is a recognizable tree series
if there exists a triple (V, µ, λ), where (V, µ) is a linear representation of T (F),
and λ : V → R is a linear form, such that r(t) = λ(µ(t)) for all t in T (F).

We say that (V, µ, λ) is trimmed if (i) V = VT (F) and (ii) ∀v ∈ V \ {0},∃c ∈
C(F), λµ(c)(v) 6= 0.



Rational tree series have been studied in [7]. It has been shown that the
notions of recognizable tree series and rational tree series coincide. From now
on, we shall refer to them by using the term of rational tree series. Note also
that rational series on strings can be seen as particular cases of rational series
on trees and hence, counterexamples designed in the first field can be directly
exported in the second one.

Example 1. Let F = {a, b, g(·), f(·, ·)}, let V = R2 and let (e1, e2) be a basis of
V . We define µ, λ and r by:

µ(a) = 2e1/3, µ(b) = e2/2, µ(g)(e1) = e2/2, µ(g)(e2) = 0,

µ(f)(ei, ej) =

{
e1/3 if i = 1 and j = 2
0 otherwise

and
λ(e1) = 1, λ(e2) = 0 and r(t) = λµ(t) for any term t.

We have µ(f(a, b)) = µ(f)(µ(a), µ(b)) = e1/9 and
µ(f(a, g(a))) = µ(f)(µ(a), µ(g)(µ(a))) = 2e1/27.
Hence, r(a) = 2/3, r(b) = 0, r(f(a, b)) = 1/9, r(f(a, g(a))) = 2/27.

Definition 3. A multiplicity tree automaton (MA) over F is a tuple A =
(Q,F , τ, δ) where Q is a set of states, τ is a mapping from Q to R and δ is
a mapping from ∪m≥0Fm ×Qm ×Q to R.

A multiplicity automaton is a device that can be used to compute tree series.
They can be interpreted in a bottom-up or a top-down way, since δ(f, q1, . . . , qm, q) =
w can be rewritten as a bottom-up rule or a top-down rule:

f(q1, . . . , qm)
w
→ q or q

w
→ f(q1, . . . , qm).

A probabilistic tree automaton (PA) is an MA A = (Q,F , τ, δ) which satisfies
the following conditions:

– δ and τ take their values in [0, 1],
–

∑
q∈Q τ(q) = 1,

– for any q ∈ Q,
∑

f(q1,...,qm)
w
→q

w = 1.

Multiplicity automata and linear representations are two equivalent ways to
represent rational series. For example, let (V, µ, λ) be a linear representation of
the formal series r defined on T (F) and let B = (e1, . . . , en) be a basis of V .
A multiplicity automaton A = (Q,F , λ, δ) can be associated with (V, µ, λ,B) as
follows:

– Q = {e1, . . . , en},
– δ(f, ei1 , . . . , eim

, ej) = wj for any f ∈ Fm where µ(f)(ei1 , . . . , eim
) =

∑
j wjej .

Conversely, an equivalent linear representation can be associated with any mul-
tiplicity automaton.



Example 2. It can easily be shown that the linear representation described in
Example 1 is equivalent to the probabilistic automaton defined by: Q = {e1, e2},
τ(e1) = 1, τ(e2) = 0 and

δ = {e1
2/3
→ a, e1

1/3
→ f(e1, e2), e2

1/2
→ b, e2

1/2
→ g(e1)}.

2.2 Rational Stochastic Tree Languages

Definition 4. A stochastic tree language over T (F) is a tree series r ∈ K〈〈T (F)〉〉
such that for any t ∈ T (F), 0 ≤ r(t) ≤ 1 and

∑
t∈T (F) r(t) = 1.

Therefore, a rational stochastic tree language is a stochastic tree language
which admits a linear representation. Stochastic languages that can be com-
puted by a probabilistic automaton are rational. However, the converse is false:
there exists a rational stochastic tree language that cannot be computed by a
probabilistic automaton [4]. Moreover, it can be shown that the rational series
computed by a PA is not always a stochastic language. For example, it can easily

be shown that the PA defined by Q = {q}, τ(q) = 1, δ = {q
α
→ a, q

1−α
→ f(q, q)}

defines a stochastic language iff α ≥ 1/2. When α < 1/2,
∑

t∈T (F) r(t) < 1 [12].

Let P be a stochastic tree language over T (F). We consider infinite samples
S composed of trees independently drawn according to P . For any integer m, let
Sm be the sample composed of the m first elements of S. We denote by PSm

the
empirical distribution on T (F) associated with Sm. Let A = (Ai)i∈I be a family
of subsets of T (F). It can be shown [13,14] that for any confidence parameter δ
and any integer m, with a probability greater than 1− δ, for any i ∈ I,

|PSm
(Ai)− P (Ai)| ≤ C

√
d−log δ

4

m · (2)

where d is the Vapnik-Chervonenkis dimension of A and C is a universal con-
stant. In particular, with a probability greater than 1− δ, for any t ∈ T (F),

|PSm
(t)− P (t)| ≤ C

√
1−log δ

4

m · (3)

Let Ψ(d, ǫ, δ) = C2

ǫ2 (d− log δ
4 ). One can easily verify that if m ≥ Ψ(d, ǫ, δ), with

a probability greater than 1− δ, |PSm
(Ai)− P (Ai)| ≤ ǫ for any index i.

Borel-Cantelli Lemma states that if (Ak)k∈N is a family of events such that∑
k P (Ak) <∞, the probability that a finite number of events Ak occur is equal

to 1.
Check that for any α such that −1/2 < α < 0 and any β < −1, if we

define ǫk = kα and δk = kβ , then there exists K such that for all k ≥ K, we
have k ≥ Ψ(1, ǫk, δk). For such choices of α and β, we have limk→∞ ǫk = 0 and∑

k≥1 δk < ∞. Therefore, from Borel-Cantelli Lemma, it can easily be shown
that with probability 1, there exists K such that for any k ≥ K, for any t ∈ T (F),

|PSk
(t)− P (t)| ≤ ǫk· (4)



3 A Canonical Linear Representation for Rational Tree

Series

The main goal of the paper is to show that any rational stochastic tree language
P can be inferred in the limit from an infinite sample drawn according to P with
probability 1. The first step is to define the canonical linear representation of a
rational tree series r, whose components only depend on r.

3.1 Defining the Canonical Representation

Let c ∈ C(F). We define the (linear) mapping ċ : R〈〈T (F)〉〉 → R〈〈T (F)〉〉 by:

ċ(r)(t) = r(c[t]).

Lemma 1. Let (V, µ, λ) be a linear representation of the rational series r. For
any context c, ċr is rational and (V, µ(c) ◦ µ, λ) is a linear representation of ċr.

Proof. Indeed, for any term t, ċr(t) = r(c[t]) = λµ(c[t]) = λ(µ(c) ◦ µ)(t). ⊓⊔

Let r be a formal power series on T (F). Let us denote by Wr the vector
subspace of R〈〈T (F)〉〉 spanned by {ċr|c ∈ C(F)}.

Lemma 2. If r is rational, then the dimension of Wr is finite.

Proof. Let (V, µ, λ) be a linear representation of r. For any context c, λµ(c) ∈ V ∗.
Since the dimension of V ∗ is finite, there exist c1, . . . cn s. t. for any c ∈ C(F),
there exists α1, . . . , αn s.t. λµ(c) =

∑
i αiλµ(ci). Check that {ċ1r, . . . , ċnr} spans

Wr. ⊓⊔

Let W ∗
r be the dual space of Wr, i.e. the set of all linear forms defined over

Wr. For any t ∈ T (F), let t ∈W ∗
r be defined by: ∀s ∈Wr, t(s) = s(t).

Lemma 3. Let f(u1, . . . , ui, . . . , up), t1, . . . , tn ∈ T (F) and suppose that ui =∑n
j=1 αjtj for some index i. Then,

f(u1, . . . , ui, . . . , up) =
∑n

j=1 αjf(u1, . . . , tj , . . . , up).

Proof. Let ci be the context f(u1, . . . , $, . . . , un) where $ is at the i-th position.
For any s ∈Wr,

f(u1, . . . , ui, . . . , up)(s) = ui(ċis) =

n∑

j=1

αjtj(ċis) =

n∑

j=1

αjf(u1, . . . , tj , . . . , up)(s).⊓⊔

Suppose that the dimension of Wr is finite and let {c−1
1 r, . . . , c−1

n r} be a basis
of Wr. One can show that there exists n terms t1, . . . , tn such that the rank of
the matrix (c−1

i r(tj))1≤i,j≤n is n. Therefore, (t1, . . . , tn) is a basis of W ∗
r .

Let r be a rational series. We know that the dimension of Wr is finite. Let
t1, . . . , tn be n terms such that (t1, . . . , tn) is a basis of W ∗

r . We define a linear
representation (W ∗

r , ν, τ) of r as follows:



– for any f ∈ Fp, define ν(f) ∈ L((W ∗
r )p;W ∗

r ) by ν(f)(ti1 , . . . , tip
) = f(ti1 , . . . , tip

).
– τ ∈ (W ∗

r )∗ = Wr by τ(t) = r(t).

Lemma 4. For any term t ∈ T (F), ν(t) = t.

Proof. Let t = f(s1, . . . , sp) ∈ T (F) and let si =
∑n

j=1 αj
i ti. Using the previous

lemma, we have

ν(f)(s1, . . . , sp) =
∑

j1,...,jp

αj1
1 . . . αjp

p f(tj1 , . . . , tjp
) = f(s1, . . . , sp)

Remark that ν and τ do not depend on any basis chosen for W ∗
r .

Theorem 1. (W ∗
r , ν, τ) is a trimmed linear representation of r which is called

the canonical linear representation of r.

Proof. For any term t, τ(ν(t)) = τ(t) = r(t). Therefore, (W ∗
r , ν, τ) is a linear

representation of r. By construction, ν(T (F)) spans W ∗
r . Now, let w ∈W ∗

r \ {0}
and let {t1, . . . , tn} be a basis of W ∗

r . There exist α1, . . . , αn not all zero s.t.
w =

∑
αiti. Since {t1, . . . , tn} is linearly independent, there exists a context c

such that
∑

αiti(c) = τν(c)(w) 6= 0. Therefore, (W ∗
r , ν, τ) is trimmed. ⊓⊔

Given a total order ≤ on T (F), there exists a unique subset B of ν(T (F))
which is a basis of W ∗

r and such that for any s ∈ T (F), s ∈ B or {s} ∪ {t ∈
B|t ≤ s} is linearly dependent. We say that B is the canonical basis of W ∗

r (wrt
≤).

3.2 Building the Canonical Representation

Given an n-dimensional trimmed linear representation (V, µ, λ) for r, it is pos-
sible to build the canonical representation of r in time polynomial in np where
p is the maximal arity of symbols in F . The proof of this result relies on the
following lemma:

Lemma 5. Let (V, µ, λ) be an n-dimensional trimmed linear representation (V, µ, λ)
for r and let t1, . . . , tm ∈ T (F). Then, {t1, . . . , tm} is linearly independent iff
{µ(t1), . . . , µ(tm)} is linearly independent.

Proof. Suppose that {µ(t1), . . . , µ(tm)} is linearly independent in V and let
α1, . . . , αm be such that

∑
αm

i=1ti = 0. For any context c,
∑

i αiti(c) =
∑

i r(c[ti]) =
λµ(c)(

∑
i αiµ(ti)) = 0. Therefore,

∑
i αiµ(ti) = 0 since (V, µ, λ) is trimmed and

αi = 0 for i = 1, . . . , n since {µ(t1), . . . , µ(tm)} is linearly independent: hence,
{t1, . . . , tm} is linearly independent.

Suppose that {µ(t1), . . . , µ(tm)} is linearly dependent and let
∑

i αm
i=1µ(ti) =

0 where the αi are not all zero. For any context c,
∑

i

αiti(c) =
∑

i

αir(c[ti]) =
∑

i

αiλµ(c[ti]) = λµ(c)(
∑

i

αiµ(ti)) = 0.

Therefore,
∑m

i=1 αiti = 0. ⊓⊔



Data : A trimmed linear representation (V, µ, λ) for r

Result : A basis B of W ∗
r

begin

B ← ∅; is a basis ← False;
while not is a basis do

is a basis ← True;
for every f ∈ F do

let p = arity(f);
for t1, . . . , tp ∈ B do

if B ∪ f(t1, . . . , tp) is linearly independent then

B = B ∪ f(t1, . . . , tp); is a basis ← False;

end

Algorithm 1: Building a canonical linear representation of r

Proposition 1. Given an n-dimensional trimmed linear representation (V, µ, λ)
for the rational series r, a basis for W ∗

r can be computed in time polynomial in
np.

Proof. One can verify that Algorithm 1 computes a basis of W ∗
r . ⊓⊔

One can remark that the linear representation is only used to check whether
B∪f(t1, . . . , tp) is linearly independent. Therefore, the linear representation can

be replaced by an oracle that says whether B ∪ f(t1, . . . , tp) is linearly indepen-
dent. Such an oracle could be achieved, in a variant of the MAT learning model
of Angluin, by using a membership oracle which would compute r(t) for any tree
t and an equivalence oracle which would say whether the current representation
computes r, and would provide a counterexample (t, r(t)) otherwise. See [9,10]
for related work.

Example 3. Let us consider the previous example.

– a 6= 0 since a($) = 2/3.
– {a, b} is linearly independent since a(f(a, $)) = 0 and b(f(a, $)) = 1/9.
– We have f(a, a) = g(b) = f(b, a) = f(b, b) = 0.
– We have also g(a) = 2b/3 and f(a, b) = a/6.

Therefore, {a, b} is a basis of the canonical linear representation of r.

4 Inference of Rational Tree Series in the Limit

In this section, we show how to identify in the limit a canonical linear represen-
tation of a rational stochastic tree language P from an infinite sample S of trees
independently drawn according to P .



Let (W ∗, ν, τ) be the canonical linear representation of the target. Given a
total order ≤ on T (F) satisfying height(t) < height(t′)⇒ t ≤ t′, the aim of the
algorithm is to identify the canonical basis B = {t1, . . . , tn} of W ∗ associated
with ≤. Let tmax be the maximal element of {t1, . . . , tn}. Let S be an infinite
sample independently drawn according to P and let Sm be the sample composed
of the m first elements of S. We have to show that with probability one, there
exists an integer N such that for any m ≥ N , the following properties can be
identified from Sm:

– B = {t1, . . . , tn} is linearly independent,
– for any t ≤ tmax, B ∪ {t} is linearly dependent,
– for any f ∈ F and any 1 ≤ i1, . . . , ip ≤ n, B ∪ {f(ti1 , . . . , tip

)} is linearly
dependent, where p is the arity of f .

Given these relations, a linear representation (W ∗, νm, τm) can be computed.
Then, we have to show that the (multi-) linear mappings νm(f) for any f ∈ F
and τm converge to the correct ones.

Since we are working on finite samples Sm, we cannot consider exact lin-
ear dependencies. Let T be a finite subset of T (F), let Sm be a finite sample
composed of m trees independently drawn from the target, let t ∈ T (F), let
{xs|s ∈ T} be a set of variables and let ǫ > 0. We denote by I(T, t, Sm, ǫ) the
following set of inequalities :

I(T, t, Sm, ǫ) = {|t(ċPS)−
∑

s∈T

xss(ċPS)| ≤ ǫ|c ∈ C(Sm)}

where PS is the empirical distribution on Sm and where C(S) = {c ∈ C(F)|∃t ∈
T (F) s.t. c[t] ∈ Sm} .

Let S be an infinite sample of the target P . Suppose that {t} ∪ {s|s ∈ T} is
linearly independent. We show that, with probability 1, there exists ǫ > 0 and a
sample size from which I(T, t, Sm, ǫ) has no solution.

Lemma 6. Let P be a stochastic language and let {t0, t1, . . . , tn} be a set of trees
such that {t0, t1, . . . , tn} is linearly independent. Then, with probability one, for
any infinite sample S of P , there exists a positive number ǫ and an integer M
such that for every m ≥M , I({t1, . . . , tn}, t0, Sm, ǫ) has no solution.

Proof. Let S be an infinite sample of P . Suppose that for every ǫ > 0 and every
integer M , there exists m ≥M such that I({t1, . . . , tn}, t0, Sm, ǫ) has a solution.
Then, for any integer k, there exists mk ≥ k such that I({t1, . . . , tn}, t0, Smk

, 1/k)
has a solution (α1,k, . . . , αn,k).

Let ρk = Max{1, |α1,k|, . . . , |αn,k|}, γ0,k = 1/ρk and γi,k = −αi,k/ρk for
1 ≤ i ≤ n. For every k, Max{|γi,k| : 0 ≤ i ≤ n} = 1. Check that for any context

c: ∀k ≥ 0,
∣∣∣
∑n

i=0 γi,kti(ċPSmk
)
∣∣∣ ≤ 1

ρkk ≤
1
k .

There exists a subsequence (α1,φ(k), . . . , αn,φ(k)) of (α1,k, . . . , αn,k) such that
(γ0,φ(k), . . . , γn,φ(k)) converges to (γ0, . . . , γn). We show below that we should



have
∑n

i=0 γiti(ċP ) = 0 for every context c, which is contradictory with the
independence assumption since Max{γi : 0 ≤ i ≤ n} = 1 and hence, some γi is
not zero.

Let c ∈ C(F). With probability 1, there exists an integer k0 such that c ∈
C(Smk

) for any k ≥ k0. For such a k, we can write
γiti(ċP ) = (γiti(ċP )−γiti(ċPSmk

))+(γi−γi,φ(k))ti(ċPSmk
)+γi,φ(k)ti(ċPSmk

)

and therefore
∣∣∑n

i=0 γiti(ċP )
∣∣ ≤

∑n
i=0 |ti(ċP−ċPSmk

)|+
∑n

i=0 |γi−γi,φ(k)|+
1
k

which converges to 0 when k tends to infinity.
⊓⊔

Let S be an infinite sample of the target P . Suppose that t =
∑

s∈T αss. We
show that, with probability 1, for any γ ∈] − 1/2, 0[, there exists a sample size
M from which, I(T, t, Sm, mγ) has a solution for any m ≥M .

Lemma 7. Let P be a stochastic language and let t0, t1, . . . , tn be a set of trees
such that there exist α1, . . . , αn ∈ R such that t0 =

∑n
i=1 αiti. Then, for any

γ ∈] − 1/2, 0[, with probability one, for any infinite sample S of P , there exists
K s.t. I({t1, . . . , tn}, t0, Sk, kγ) has a solution for every k ≥ K.

Proof. Let S an infinite sample of P . Let α0 = 1 and let R = Max{|αi| : 0 ≤
i ≤ n}. With probability one, there exists K1 s.t. ∀k ≥ K1, k ≥ Ψ(1, [kγ(n +
1)R]−1, [(n + 1)k2]−1) (see definition of Ψ in Section 2). Let k ≥ K1, for any
c ∈ C(F),

|t0(ċPSk
)−

n∑

i=1

αiti(ċPSk
)| ≤ |t0(ċPSk

)− t0(ċP )|+

n∑

i=1

|αi||ti(ċPSk
)− ti(ċP )|.

From the definition of Ψ , with probability greater than 1 − 1
k2 , for any i =

0, . . . , n and any context c, |ti(ċPSk
)− ti(ċP )| ≤ [k−γ(n + 1)R]−1 and therefore

|t0(ċPSk
)−

∑n
i=1 αiti(ċPSk

)| ≤ kγ . For any integer k ≥ K1, let Ek be the event:
|t0(ċPSk

)−
∑n

i=1 αiti(ċPSk
)| > kγ . Since Pr(Ek) < 1/k2, from the Borel-Cantelli

Lemma, the probability that a finite number of Ek occurs is 1.
Therefore, with probability 1, there exists an integer K such that for any

k ≥ K, I({t1, . . . , tn}, t0, Sk, kγ) has a solution. ⊓⊔

In the next lemma, we focus on the convergence of the parameters found
when resolving an inequation system.

Lemma 8. Let P ∈ S(T (F)), let t0, t1, . . . , tn such that {t1, . . . , tn} is linearly
independent and let α1, . . . , αn ∈ R be such that t0 =

∑n
i=1 αiti. Then, for any

γ ∈]−1/2, 0[, with probability one, for any infinite sample S of P , there exists an
integer K such that ∀k ≥ K, any solution α̂1, . . . , α̂n of I({t1, . . . , tn}, t0, Sk, kγ)
satisfies |α̂i − αi| < O(kγ) for 1 ≤ i ≤ n.

Proof. Let c1, . . . , cn ∈ C(F) be such that the square matrix M defined by
M [i, j] = tj(ċiP ) for 1 ≤ i, j ≤ n is invertible. Let A = (α1, . . . , αn)t, U =
(t0(ċ1P ), . . . , t0(ċnP ))t. We have M × A = U . Let S be an infinite sample of



P , let k ∈ N and let α̂1, . . . , α̂n be a solution of I({t1, . . . , tn}, t0, Sk, kγ). Let
Mk be the square matrix defined by Mk[i, j] = tj(ċiPSk

) for 1 ≤ i, j ≤ n, let
Ak = (α̂1, . . . , α̂n)t and Uk = (t0(ċ1PSk

), . . . , t0(ċnPSk
))t. We have

‖MkAk − Uk‖
2 =

n∑

i=1

[t0(ċiPSk
)−

n∑

j=1

α̂jtj(ċiPSk
)]2 ≤ nk2γ .

Check that A−Ak = M−1(MA− U + U − Uk + Uk −MkAk + MkAk −MAk)
and therefore, for any 1 ≤ i ≤ n

|αi − α̂i| ≤ ‖A−Ak‖ ≤ ‖M
−1‖(‖U0 − Uk‖+ n1/2kγ + ‖Mk −M‖‖Ak‖).

Now, by using Equation 4 and Borel-Cantelli Lemma as in the proof of Lemma 7,
with probability 1, there exists K such that for all k ≥ K, ‖U0 − Uk‖ < O(kγ)
and ‖Mk −M‖ < O(kγ). Therefore, for all k ≥ K, any solution α̂1, . . . , α̂n of
I({t1, . . . , tn}, t0, Sk, kγ) satisfies |α̂i − αi| < O(kγ) for 1 ≤ i ≤ n. ⊓⊔

The learning algorithm is presented in Algorithm 2 and works as follows.
We suppose that a total order is defined over T (F) such that height(t) <
height(t′) ⇒ t ≤ t′. To begin with, we extract the first constant symbol a0

of the learning sample and we put it in the basis set B. We define the frontier
set (FS) to be composed of all the trees of the form f(a0, . . . , a0). Note that
FS contains all the constant symbols different from a0. Then, the algorithm
processes the frontier set while it is not empty. For each tree t in this set, we
check if it can approximately be expressed according to a linear combination of
the elements of the current basis. If the answer is no, we add t to the basis and
we enlarge the frontier set by adding all the trees of the form f(t1, . . . , tm) where
every ti ∈ B. Otherwise, we use the linear relation obtained from the inequation
system to complete the definition of µ.

We can now present the theorem of convergence in the limit.

Theorem 2. Let P be a rational stochastic tree language defined on T (F), let
(V, µ, λ) be the canonical linear representation of P , let B = {t1, . . . , tn} the
canonical basis of V (associated with some known total order on T (F)) and
let γ ∈] − 1/2, 0[. Then, with probability one, for any infinite sample S of P ,
there exists an integer K such that for any k ≥ K, Algo(Sk, γ) identifies B.
Moreover, let (V, µk, λk) be the linear representation output by the algorithm.
There exists a constant C such that |µk(f)(ti1 , . . . , tin

) − µ(f)(ti1 , . . . , tin
)| ≤

Ckγ and |λk(ti)− λ(ti)| ≤ Ckγ for any f ∈ F and any elements ti, tij
of B.

Proof. Lemmas 6 and 7 prove that the basis B will be identified from some step
with probability one. Lemma 8 can then be used to prove the last part of the
theorem. ⊓⊔

When P is a rational stochastic tree language which takes its values in the
set of rational numbers Q, the algorithm can be completed to exactly identify it.
The proof is based on the representation of real numbers by continuous fractions.
See [15] for a survey on continuous fractions and [16] for a similar application.



Data : S a finite sample of k trees, γ ∈]− 1/2, 0[

Result : a linear representation (V, λ, µ)

begin

a0 ← min(F0 ∩ Subtrees(S));
B ← {a0}; µ(a0)← a0; λa0

← Ps(a0);
FS ←

S

f∈Fp,p≥0
{f(tj1 , . . . , tjp)|tij ∈ B}; FS ← FS\{a0};

while FS 6= ∅ do

t← min(FS); FS ← FS\{t};
if I(B, t, S, kγ) has no solution then

B ← B ∪ {t}; µ(t)← t; λt ← PS(t);
FS ← FS

S

f∈Fp,p≥1
{f(tj1 , . . . , tjp)|tji ∈ B};

else

Let (αti)ti∈B a solution of I; µ(t)←
P

ti∈B αtiti;

end

Algorithm 2: Learning algorithm Algo(S,γ)

Let (ǫn) be a sequence of non negative real numbers which converges to 0, let
x ∈ Q, let (yn) be a sequence of elements of Q such that |x−yn| ≤ ǫn for all but
finitely many n. It can be shown that there exists an integer N such that, for any

n ≥ N , x is the unique rational number p
q which satisfies

∣∣∣yn −
p
q

∣∣∣ ≤ ǫn ≤
1
q2 .

Moreover, the unique solution of these inequalities can be computed from yn.
Let P be a rational stochastic tree language which takes its values in Q,

let γ ∈] − 1/2, 0[, let S be an infinite sample of P and let (V, µk, λk) the lin-
ear representation output by the algorithm on input (Sk, γ). Let (V, µ′

k, λ′
k)

be the representation derived from (V, µk, λk) by replacing every parameter

αk = µk(f(ti1 , . . . , tin
)) or αk = λk(ti) with a solution p

q of
∣∣∣αk −

p
q

∣∣∣ ≤ kγ/2 ≤ 1
q2

and let Algo′ be the corresponding algorithm.

Theorem 3. Let P be a rational stochastic tree language which takes its values
in Q, let γ ∈] − 1/2, 0[, and let (V, µ, λ) be its canonical linear representation.
Then, with probability one, for any infinite sample S of P , there exists an integer
K such that ∀k ≥ K, Algo′(Sk, γ) returns (V, µ, λ).

Proof. From the previous theorem, for every parameter α of (V, µ, λ), the corre-
sponding parameter αk in (V, µk, λk) satisfies |α−αk| ≤ Ckγ for some constant
C, from some step k, with probability one. Therefore, if k is sufficiently large,
we have |α− αk| ≤ kγ/2 and there exists an integer K such that α = p/q is the

unique solution of
∣∣∣α− p

q

∣∣∣ ≤ kγ/2 ≤ 1
q2 . Therefore, the parameter corresponding

to α in the linear representation output by Algo′(Sk, γ) is α itself. ⊓⊔

Example 4. To illustrate the principle of our algorithm. Consider the following
learning sample made up of 20 trees (the number of occurrences of each term is
indicated inside brackets):



{a[13], f(a, b)[4], f(a, g(a))[1], f(a, g(f(a, g(a))))[1], f(f(f(a, g(a)), b), b)[1]}.
In a first step the algorithm puts a in the basis and sets µ(a) = a.
Next, the algorithm considers the constant symbol b. To check if b should

belong to the basis, the algorithm constructs a set of inequations with the con-
texts definable in the learning set. For sake of simplicity, we will not consider all
the contexts, but only 3 of them c0 = $, c1 = f($, b), c2 = f(a, $). We obtain
the following inequation system:

|b(ċ0pS)−Xaa(ċ0pS)| = |pS(c0[b])−XapS(c0[a])| = |0−Xa
13
20 | ≤ ǫ

|b(ċ1pS)−Xaa(ċ1pS)| = |pS(c1[b])−XapS(c1[a])| = | 4
20 −Xa0| ≤ ǫ

|b(ċ2pS)−Xaa(ċ2pS)| = |pS(c2[b])−XapS(c2[a])| = |0−Xa
4
20 | ≤ ǫ

If we set ǫ to 0.1, the systems admits no solution and then b is added to the
basis with λb = 0.

The algorithm examines the terms f(a, a), g(a), f(a, b), f(b, a), f(b, b), g(b).
Since, the values of pS according to the 3 contexts is null for f(a, a) f(b, a),
f(b, b) and g(b) we do not show the inequation systems.

For g(a) the system obtained is:

|g(a)(ċ0pS)−Xaa(ċ0pS)−Xbb(ċ0pS)| = |0−Xa
13
20 −Xa0| ≤ ǫ

|g(a)(ċ1pS)−Xaa(ċ1pS)−Xbb(ċ1pS)| = |0−Xa
4
20 −Xb| ≤ ǫ

|g(a)(ċ2pS)−Xaa(ċ2pS)−Xbb(ċ2pS)| = | 1
20 −Xa0−Xb

4
20 | ≤ ǫ

Xa = 0 and Xb = 1
4 is a solution of the system, then the algorithm sets µ(g)(a) =

1
4b.

For f(a, b), the inequation system is:

|f(a, b)(ċ0pS)−Xaa(ċ0pS)−Xbb(ċ0pS)| = | 4
20 −Xa

13
20 −Xa0| ≤ ǫ

|f(a, b)(ċ1pS)−Xaa(ċ1pS)−Xbb(ċ1pS)| = |0−Xa
4
20 −Xb0| ≤ ǫ

|f(a, b)(ċ2pS)−Xaa(ċ2pS)−Xbb(ċ2pS)| = |0−Xa0−Xb
4
20 | ≤ ǫ

Xa = 4
13 and Xb = 0 is a solution of the system, then the algorithm sets

µ(f)(a, b) = 4
13a. The representation obtained is finally:

µ(a) = a, µ(b) = b, µ(g)(a) = 1
4b, µ(f)(a, b) = 4

13a, λa = 13
20 , λb = 0.

5 Discussion, Future Work and Conclusion

We have proved a theoretical result: rational stochastic tree languages are iden-
tifiable in the limit with probability one. The inference algorithm we use runs
within polynomial time and approximates the parameters of the model with
usual statistical rates of convergence. How can it be used in practical cases? Can
it be improved?

First of all, the algorithm highly relies on an inequation system which aims
at detecting linear combinations

I(T, t, Sn, ǫ) = {|t(ċPSn
)−

∑

s∈T

xss(ċPSn
)| ≤ ǫ|c ∈ C(Sn)}.



However, this system uses contexts which can be poorly represented in current
samples. We can overcome this drawback by using generalized contexts, i.e. con-
texts containing several variables.

Let $0, $1, . . . , $k be zero arity function symbols not in F0. A generalized
context is an element of T (F ∪ {$0, $1, . . . , $k}) such that $0 appears exactly
once and each other new symbol appears at most once. Now, for any stochastic
languages P and any generalized context c, we define

t(ċP ) = ċP (t) =
∑

t1,...,tk∈T (F)

P (c[$0 ← t, $1 ← t1, . . . , $k ← tk]).

We can then replace the inequation system I(T, t, Sn, ǫ) with

I(T, t, Sn, ǫ) = {|t(ċPSn
)−

∑

s∈T

xss(ċPSn
)| ≤ ǫ|c ∈ Cg

k(Sn)}

where Cg
k(Sn) is the set of generalized context with k variables occurring in Sn.

If the number of new variables in not bounded, the VC-dimension of the set
of generalized contexts is unbounded. However, it can easily be shown that the
VC-dimension of the set of generalized contexts with k variables is bounded by
2k+1. Therefore, we can adjust the number of variables to the size of the current
learning sample in the inference algorithm in order to avoid overfitting.

Next, the rational series r output by the inference algorithm is not a stochas-
tic language. Moreover, it may happen that the sum

∑
t∈T (F) r(t) diverges. We

conjecture that as soon as the size of the learning sample is large enough,
with a high probability, the sum

∑
t∈T (F) r(t) is absolutely convergent, i.e.∑

t∈T (F) |r(t)| converges. Moreover, let (V, µ, λ) be the canonical linear repre-

sentation of a rational tree series r and let B = {t1, . . . , tn} be a basis of V .
For any tree t and any index i, let αt

i be such that t =
∑n

i=1 αt
iti. We have

r(t) =
∑n

i=1 αt
ir(ti). We also conjecture that

∑
t∈T (F) αt

i is absolutely conver-

gent for any index i so that, si =
∑

t∈T (F) αt
i is defined without ambiguity. One

can show that si can be efficiently estimated.
Given these properties, it is possible to normalize the linear representation

output by the algorithm in such a way that it computes a series r satisfying∑
t∈T (F) |r(t)| <∞ and

∑
t∈T (F) r(t) = 1. Let (V, µN , λN ) be defined by

– ∀f ∈ F , [µN (f)(tj1 , . . . , tjp
)]i = [µ(f)(tj1 , . . . , tjp

)]i · π
p
k=1sjk

/si.
– λN (ti) = λ(ti)× si for any element of λN .

It can easily be shown that (V, µN , λN ) computes r and that∑
tj1

,...,tjp∈B [µN (f(tj1 , . . . , tjp
))]i = 1.

We can then adjust the linear form λ by multiplying each of its coordinates by
a constant in order to get a series r which sums to 1.

However, it may happen that the series r takes negative values. We call such
a series, a pseudo-stochastic language. From these languages, we can extract
a probability distribution Pr such that Pr(t) = 0 if r(t) < 0 and otherwise



Pr(t) = btr(t) with a normalization that compensates the loss of the negative
values. We may compute this distribution iteratively when developing a tree.
Suppose that at a given step, we are building a tree with some leaves labeled by
states. We choose to develop a new branch from any of these states. We consider
all the transitions leaving from the considered state grouped by symbols. If all
the possible expansions with a given symbol lead to a negative value, then we
omit this symbol and we renormalized the probabilities of the other expansions.
Note that when r defines a stochastic language, Pr = r since there will be no
negative values. See [6] for a more detailed description of this point, in the case
of pseudo-stochastic languages defined on strings.

To conclude, we have studied in this paper the inference of a stochastic tree
language P from a sample of trees independently drawn according to P . We
have proposed to work in the class of rational stochastic tree languages that
are stochastic languages computed by rational tree series. We have presented
two contributions. First, we have shown that rational tree series admit a canon-
ical linear representation. Then, we have proposed an inference algorithm which
identifies in the limit the class of rational stochastic tree languages. Our future
work will concern improvements of our approach in practical cases as evoked in
the previous discussion.
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