On b-perfect chordal graphs*

Frédéric Maffray ${ }^{\dagger} \quad$ Meriem Mechebbek ${ }^{\ddagger}$

November 26, 2007

Abstract

The b-chromatic number of a graph G is the largest integer k such that G has a coloring of the vertices in k color classes such that every color class contains a vertex that has a neighbour in all other color classes. We characterize the class of chordal graphs for which the bchromatic number is equal to the chromatic number for every induced subgraph.

1 Introduction

We deal here with finite undirected graphs. Given a graph G and an integer $k \geq 1$, a coloring of G with k colors is a mapping $c: V(G) \rightarrow\{1, \ldots, k\}$ such that any two adjacent vertices u, v in G satisfy $c(u) \neq c(v)$. For every vertex v, the integer $c(v)$ is called the color of v. The sets $c^{-1}(1), \ldots, c^{-1}(k)$ that are not empty are called the color classes of c. A b-coloring is a coloring such that every color class contains a vertex that has a neighbour in each color class other than its own, and we call any such vertex a b-vertex. The b-chromatic number $b(G)$ of a graph G is the largest integer k such that G admits a b-coloring with exactly k colors. The concept of b-coloring was introduced in $[6]$ and has been studied among others in $[2,4,7,8,9]$. Let $\omega(G)$ be the maximum size of a clique in a graph G, and let $\chi(G)$ be the chromatic number of G. It is easy to see that every coloring of G with $\chi(G)$ colors is a b-coloring, and so every graph satisfies $\chi(G) \leq b(G)$. Hoàng and Kouider [4] call a graph G b-perfect if every induced subgraph H of G satisfies $b(H)=\chi(H)$. Also a graph G is b-imperfect if it is not b-perfect, and minimally b-imperfect if it is b-imperfect and every proper subgraph

[^0]of G is b-perfect. Hoàng, Linhares Sales and Maffray [5] found a list \mathcal{F} of twenty-two minimally b-imperfect graphs shown in Figure 1, and posed the following conjecture.

Conjecture 1 ([5]). A graph is b-perfect if and only if it does not contain any member of \mathcal{F} as an induced subgraph.

Figure 1: Class $\mathcal{F}=\left\{F_{1}, \ldots, F_{22}\right\}$
Given a collection \mathcal{H} of graphs, a graph G is usually called \mathcal{H}-free if no induced subgraph of G is a member of \mathcal{H}. When \mathcal{H} consists of only one graph H, we may write H-free instead of $\{H\}$-free. We let P_{k} and C_{k} respectively denote the graph that consists of a path (resp. cycle) on k vertices. We use + to denote the disjoint union of graphs, and $n F$ is the graph which has n components all isomorphic to F. For example, $2 K_{2}$ is the graph with two
components of size 2 , and the first three graphs in \mathcal{F} are $P_{5}, P_{4}+P_{3}$ and $3 P_{3}$. We say that two vertices x, y in a graph G are twins if every vertex of $G \backslash\{x, y\}$ that is adjacent to any of x, y is adjacent to both. Note that two twins may be adjacent or not.

It is a routine matter to check that the graphs in class \mathcal{F} are b-imperfect and minimally so. More precisely, for $i=1,2,3$, we have $\chi\left(F_{i}\right)=2$ and $b\left(F_{i}\right)=3$, and F_{i} admits a b-coloring with 3 colors in which its three vertices of degree 3 have color $1,2,3$ respectively; and for $i=4, \ldots, 22$, we have $\chi\left(F_{i}\right)=3$ and $b\left(F_{i}\right)=4$.

We will prove the conjecture in the case of chordal graphs. Recall that a graph G is chordal $[3,10]$ if every cycle of length at least four in G has a chord (an edge between non-consecutive vertices of the cycle). We call hole any chordless cycle of length at least four. In these terms, a graph is chordal if and only if it is hole-free.

Theorem 1. Every \mathcal{F}-free chordal graph is b-perfect.
Proof of Theorem 1. Suppose that the theorem is false, and let G be a counterexample to the theorem for which $|V(G)|+|E(G)|$ is minimal. Recall that, since G is chordal, it satisfies $\chi(G)=\omega(G)$ (see [1,3]). Since G is a counterexample to the theorem, it admits a b-coloring c with $k \geq \chi(G)+1=$ $\omega(G)+1$ colors. For $i=1, \ldots, k$, let u_{i} be any b-vertex of color i, that is, a vertex that has a neighbour of each color other than i. Let $U=\left\{u_{1}, \ldots, u_{k}\right\}$. Note that, since $k>\omega(G)$, the set U does not induce a clique. As usual, we say that a vertex is simplicial if its neighbourhood induces a clique.

1.1. For $i=1, \ldots, k$, vertex u_{i} is not simplicial.

Proof. Suppose on the contrary and up to symmetry that u_{1} is simplicial. Since u_{1} is a b-vertex, it has a neighbour v_{i} of each color $i=2, \ldots, k$. Then the set $\left\{u_{1}, v_{2}, \ldots, v_{k}\right\}$ induces a clique of size $k>\omega(G)$, a contradiction. So Claim 1.1 holds.
1.2. G contains a $2 K_{2}$.

Proof. Suppose that G contains no $2 K_{2}$. Since U is not a clique, we may assume up to symmetry that u_{1}, u_{2} are not adjacent. By Claim 1.1, vertex u_{1} has two neighbours v, v^{\prime} that are not adjacent, and vertex u_{2} has two neighbours w, w^{\prime} that are not adjacent. Suppose that u_{1} is adjacent to w. Then u_{1} is not adjacent to w^{\prime}, for otherwise $u_{1}, w, u_{2}, w^{\prime}$ induce a hole. One of v, v^{\prime} is not equal to w, say $v \neq w$. Also $v \neq w^{\prime}$ since u_{1} is adjacent to v and not to w^{\prime}. If v is not adjacent to u_{2}, then v is adjacent to w^{\prime}, for
otherwise $\left\{u_{1}, v, u_{2}, w^{\prime}\right\}$ induces a $2 K_{2}$; but then either $\left\{u_{1}, v, w^{\prime}, u_{2}, w\right\}$ or $\left\{u_{1}, v, u_{2}, w\right\}$ induce a hole. So v is adjacent to u_{2}. Then u_{2} is not adjacent to v^{\prime}, for otherwise $\left\{u_{1}, v, v^{\prime}, u_{2}\right\}$ induces a hole. Then v^{\prime} is adjacent to w^{\prime}, for otherwise $\left\{u_{1}, v^{\prime}, u_{2}, w^{\prime}\right\}$ induces a $2 K_{2}$. But then either $\left\{u_{1}, v^{\prime}, u_{2}, w, w^{\prime}\right\}$ (if v^{\prime}, w are not adjacent) or $\left\{v^{\prime}, u_{2}, w, w^{\prime}\right\}$ (if v^{\prime}, w are adjacent) induces a hole. Therefore u_{1} is not adjacent to w. Similarly, u_{1} is not adjacent to w^{\prime}, and u_{2} is not adjacent to any of v, v^{\prime}. Now v must be adjacent to w, for otherwise $\left\{u_{1}, v, u_{2}, w\right\}$ induces a $2 K_{2}$, and by symmetry, to w^{\prime} as well. But then $\left\{v, u_{2}, w, w^{\prime}\right\}$ induces a hole, a contradiction. So Claim 1.2 holds.

We say that a subgraph of G is big if it contains at least two vertices. Since G contains a $2 K_{2}$, it contains a set S that induces a subgraph with at least two big components and is maximal with this property. Let $R=$ $V(G) \backslash S$.
1.3. Every vertex of R has a neighbour in every big component of S.

Proof. Suppose on the contrary that some vertex x of R has no neighbour in some big component C of S. Then $S \cup\{x\}$ induces a subgraph with at least two big components (of which C is one), which contradicts the maximality of S. So Claim 1.3 holds.

1.4. R is a clique.

Proof. Suppose on the contrary that there are two non-adjacent vertices u, v in R. Consider two big components Z_{1}, Z_{2} of S. By Claim 1.3, for each $i=1,2, u$ has a neighbour u_{i} in Z_{i} and v has a neighbour v_{i} in Z_{i}. Since Z_{i} is connected, we may choose u_{i}, v_{i} and a path $u_{i} \cdots \cdots-v_{i}$ in Z_{i} such that this path is as short as possible (possibly $u_{i}=v_{i}$). So no interior vertex of this path is adjacent to u or v. But then the union of the two paths $u_{1} \cdots \cdots v_{1}$, $u_{2} \cdots-v_{2}$, plus u and v, forms a hole in G, a contradiction. So Claim 1.4 holds.
1.5. There is a big component Z of S such that every vertex of R is adjacent to every vertex of every big component of $S \backslash Z$.

Proof. Suppose the contrary, that is, there are two big components Z_{1}, Z_{2} of S and vertices x_{1}, x_{2} of R such that x_{1} has a non-neighbour in Z_{1} and x_{2} has a no-neighbour in Z_{2}. For each $i=1,2$, since Z_{i} is connected and by Claim 1.3, there are adjacent vertices y_{i}, z_{i} in Z_{i} such that x_{i} is adjacent to y_{i} and not to z_{i}. If $x_{1}=x_{2}$, then $z_{1}-y_{1}-x_{1}-y_{2}-z_{2}$ is a P_{5} in G, which contradicts that G is \mathcal{F}-free. So $x_{1} \neq x_{2}$, and by the same argument we
may assume that x_{1} is adjacent to all of Z_{2} and that x_{2} is adjacent to all of Z_{1}. By Claim 1.4, vertices x_{1}, x_{2} are adjacent. Then $\left\{x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, z_{2}\right\}$ induces an F_{4}, which contradicts that G is \mathcal{F}-free. So Claim 1.5 holds.

Let Z be a big component of S as described in Claim 1.5. Let $T=S \backslash Z$. So T contains a big component of S. Put $U_{Z}=U \cap Z$ and $U_{T}=U \cap T$.
1.6. For every vertex $a \in R$ and every set $Y \subset Z$ that induces a connected subgraph and contains no neighbour of a, there exists a vertex of Z that is adjacent to all of $Y \cup\{a\}$.

Proof. Pick any vertex y in Y. Since Z is connected, and a has a neighbour in Z by Claim 1.3, there is a shortest path $z_{0}-z_{1} \cdots-z_{p}$ in Z such that z_{0} is adjacent to a and $z_{p}=y$. Let t be any vertex in a big component of T. By Claim 1.5, vertices a, t are adjacent. Then $p=1$, for otherwise $z_{2}-z_{1}-z_{0}-a-t$ is a P_{5}. Thus z_{0} is adjacent to both a, y. We show that z_{0} is adjacent to all of Y. In the opposite case, since Y is connected there are adjacent vertices $y^{\prime}, y^{\prime \prime}$ such that z_{0} is adjacent to y^{\prime} and not to $y^{\prime \prime}$; but then $y^{\prime \prime}-y^{\prime}-z_{0}-a-t$ is a P_{5}, a contradiction. So Claim 1.6 holds.
1.7. $|R| \leq \omega(G)-2$.

Proof. By the definition of S, the set T contains two adjacent vertices a, b. By Claim 1.4, $R \cup\{a, b\}$ is a clique. So Claim 1.7 holds.
1.8. $U_{Z} \neq \emptyset$.

Proof. Suppose on the contrary that Z contains no vertex of U. Consider the graph $G^{\prime}=G \backslash Z$. Clearly, G^{\prime} is a chordal and \mathcal{F}-free graph, and $\left|V\left(G^{\prime}\right)\right|+\left|E\left(G^{\prime}\right)\right|<|V(G)|+|E(G)|$. We show that c is a b-coloring of G^{\prime}. To establish this, consider vertex u_{i} for each $i=1, \ldots, k$ and consider any color $j \neq i$. If u_{i} is not in R, then u_{i} has the same neighbours in G and in G^{\prime}, so u_{i} is a b-vertex in G^{\prime}. Now suppose that u_{i} is in R. If u_{j} is in a component of S of cardinality 1 , then $N\left(u_{j}\right) \subseteq R$, so u_{j} is a simplicial vertex by Claim 1.4, which contradicts Claim 1.1. Thus u_{j} is in a big component of T. Then u_{j} is a neighbour of u_{i} by Claim 1.5 and the definition of Z. Thus every u_{i} is a b-vertex for c in G^{\prime}. But then G^{\prime} is a counterexample to the theorem, which contradicts the minimality of G. So Claim 1.8 holds.
1.9. T contains no P_{4} and no $2 P_{3}$.

Proof. Suppose on the contrary that T contains a set Q of vertices that induces a P_{4} or a $2 P_{3}$. Therefore Z contains no P_{3}, for otherwise taking
a P_{3} in Z plus Q would give an induced F_{2} or F_{3}. Since Z is connected and contains no P_{3}, it is a clique. By Claim 1.8 , we may assume that u_{1} is in Z. For $j=2, \ldots, k$, let v_{j} be a neighbour of u_{1} of color j. Since $\left\{u_{1}, v_{2}, \ldots, v_{k}\right\}$ is not a clique, we may assume that v_{2}, v_{3} are not adjacent. Since $N\left(u_{1}\right) \subset R \cup Z$ and both R, Z are cliques, we may assume that $v_{2} \in R$ and $v_{3} \in Z$. By Claim $1.7, R$ contains at most $k-3$ of the v_{j} 's; so we may assume that $v_{4} \in Z$. Now, if v_{2} is not adjacent to v_{4}, then $W \cup\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ induces an F_{8} or F_{9}; while if v_{2} is adjacent to v_{4} then the same set contains an induced F_{5}. So Claim 1.9 holds.
1.10. $U_{T} \neq \emptyset$.

Proof. Suppose on the contrary that T contains no vertex of U. Let G^{\prime} be the graph obtained from G by removing all edges whose two endvertices are in T. Graph G^{\prime} satisfies $\left|V\left(G^{\prime}\right)\right|+\left|E\left(G^{\prime}\right)\right|<|V(G)|+|E(G)|$ since we have removed at least one edge because T contains a big component of S. We will show that (a) c is a b-coloring of G^{\prime}, (b) G^{\prime} is a chordal graph, and (c) G^{\prime} is \mathcal{F}-free. These facts will imply that G^{\prime} is a counterexample to the theorem, which will contradict the minimality of G and complete the proof of the claim.

To prove (a), it suffices to observe that every vertex of U is a b-vertex for c in G^{\prime}, because the edges we have removed from G to obtain G^{\prime} are not incident with any vertex of U.

To prove (b), observe that in G^{\prime} all vertices of T are simplicial (because their neighbourhood is in R) and thus cannot lie in a hole of G^{\prime}. Moreover, $G^{\prime} \backslash T=G \backslash T$. So G^{\prime} contains no hole and is chordal.

Now we prove (c). Suppose on the contrary that G^{\prime} contains a member F of \mathcal{F}. Note that G^{\prime} does not contain F_{i} for $i=10, \ldots, 22$, because every such F_{i} contains a hole of length 4 or 5 , while G^{\prime} is chordal. Thus F must be one of F_{1}, \ldots, F_{9}. Graph F must contain two vertices of T that are adjacent in G, for otherwise F would be an induced subgraph of G. Let x, y be two vertices of T in F that are adjacent in G. So x, y lie in the same big component of T, and it follows from Claim 1.5 that the neighbourhood of each of them in G^{\prime} is R. In particular, in F they are non-adjacent twins. This immediately implies that F cannot be F_{1}, F_{4} or F_{8} since such graphs do not have twins. Thus F must be one of $F_{2}, F_{3}, F_{5}, F_{6}, F_{7}, F_{9}$. Note that, in each of these six cases, there is up to symmetry only one pair of non-adjacent twins.

Suppose that F is either F_{2} or F_{3}. So F has vertices $x, y, a, z_{1}, \ldots, z_{p}$, edges $x a, y a$, and either (if F is F_{2}) $p=4$ and $\left\{z_{1}, \ldots, z_{4}\right\}$ induces a P_{4}, or (if F is $\left.F_{3}\right) p=6$ and $\left\{z_{1}, \ldots, z_{6}\right\}$ induces a $2 P_{3}$ with edges $z_{1} z_{2}, z_{2} z_{3}, z_{4} z_{5}, z_{5} z_{6}$.

As observed above, we may assume that $x, y \in T$ and consequently $a \in R$; then vertices z_{1}, \ldots, z_{p} are in a big component of S, and, by Claim 1.5, they cannot be in T, so they are in Z. Let $p=4$. By Claim $1.6, Z$ contains a vertex z that is adjacent in G to a, z_{1}, \ldots, z_{4}. Then $\left\{z, z_{1}, \ldots, z_{4}, a, x, y\right\}$ induces an F_{8} in G, a contradiction. Now let $p=6$. By Claim 1.6, Z contains a vertex z that is adjacent in G to a, z_{1}, z_{2}, z_{3} and a vertex z^{\prime} that is adjacent in G to a, z_{4}, z_{5}, z_{6}. If $z \neq z^{\prime}$, then $\left\{z, z^{\prime}, z_{1}, \ldots, z_{6}\right\}$ induces an F_{6} or F_{7} in G, a contradiction. So $z=z^{\prime}$. But then $\left\{z, z_{1}, \ldots, z_{6}, a, x, y\right\}$ induces an F_{9} in G, a contradiction.

Suppose that F is either F_{5} or F_{9}. So F has vertices $x, y, a, b, z_{1}, \ldots, z_{p}$, edges $x a, x b, y a, y b, a b, a z_{1}, z_{1} z_{2}, z_{1} z_{3}, z_{2} z_{3}$ and either (if F is F_{5}) $p=3$ and $a z_{2}$ is an edge, or (if F is F_{9}) $p=6$ and vertices z_{4}, z_{5}, z_{6} induce a P_{3} and are adjacent to a. As observed above, we may assume that $x, y \in T$ and consequently $a, b \in R$, and so $z_{1}, \ldots, z_{p} \in Z$. By Claim $1.6, Z$ contains a vertex z that is adjacent in G to b, z_{1}, z_{2}, z_{3}. Then z is adjacent to a, for otherwise $\left\{z, a, b, z_{1}\right\}$ induces a hole in G. But then $\left\{z, a, b, z_{1}, z_{3}, x\right\}$ induces an F_{4} in G, a contradiction.

Finally suppose that F is either F_{6} or F_{7}. So F has vertices x, y, a, b, z_{1}, \ldots, z_{4} and edges $x a, x b, y a, y b, a b, z_{1} z_{2}, z_{1} z_{3}, z_{1} z_{4}, z_{2} z_{3}, z_{2} z_{4}$ and possibly (if F is F_{7}) the edge $a z_{1}$. As observed above, we may assume that $x, y \in T$ and consequently $a, b \in R$ and $z_{1}, \ldots, z_{4} \in Z$. By Claim $1.6, Z$ contains a vertex z that is adjacent in G to a, z_{2}, z_{3}, z_{4}. Vertex z is also adjacent to z_{1}, for otherwise $\left\{z, z_{1}, z_{3}, z_{4}\right\}$ induces a hole. By Claim $1.6, Z$ contains a vertex z^{\prime} that is adjacent in G to b, z_{1}, \ldots, z_{4}. If none of z, z^{\prime} is adjacent to both a, b, then either $\left\{z, z^{\prime}, a, b\right\}$ or $\left\{z, z^{\prime}, a, b, z_{2}\right\}$ induces a hole. So we may assume, up to symmetry, that z is adjacent to both a, b. But then $\left\{z, a, b, x, z_{2}, z_{3}, z_{4}\right\}$ induces an F_{5} in G, a contradiction. Thus Claim 1.10 holds.
1.11. U_{T} is a clique.

Proof. Suppose on the contrary that u_{1}, u_{2} are non adjacent vertices of U_{T}. By Claim 1.1, vertex u_{1} has two neighbours v, v^{\prime} that are not adjacent, and vertex u_{2} has two neighbours w, w^{\prime} that are not adjacent. By Claims 1.4 and 1.5 we have $v, v^{\prime}, w, w^{\prime} \in T$. If u_{1} is adjacent to w, then $\left\{u_{1}, w, u_{2}, w^{\prime}\right\}$ induces a P_{4} or a hole, which contradicts Claim 1.9 or the chordality of G. So u_{1} is not adjacent to w, and by symmetry it is not adjacent to w^{\prime}, and u_{2} is not adjacent to any of v, v^{\prime}. If v is adjacent to w, then $\left\{v, u_{1}, v^{\prime}, w\right\}$ induce a P_{4} or a hole, a contradiction. So v is not adjacent to w, and by symmetry it is not adjacent to w^{\prime}, and v^{\prime} is not adjacent to any of w, w^{\prime}.

But now $\left\{u_{1}, v, v^{\prime}, u_{2}, w, w^{\prime}\right\}$ induces a $2 P_{3}$, which contradicts Claim 1.9. So Claim 1.11 holds.

By Claim 1.10, there is a vertex u of U in T. By Claim 1.1, vertex u has two neighbours t, t^{\prime} that are not adjacent. By Claims 1.4 and 1.5 , we have $t, t^{\prime} \in T$. In other words, there is a $P_{3} t-u-t^{\prime}$ in T.
1.12. Z contains no P_{4} and no $2 P_{3}$.

Proof. In the opposite case, a P_{4} or $2 P_{3}$ from Z plus the $P_{3} t-u-t^{\prime}$ from T form an induced F_{2} or F_{3} in G, a contradiction. So Claim 1.12 holds.
1.13. U_{Z} is a clique.

Proof. Suppose on the contrary that u_{1}, u_{2} are non adjacent vertices of U_{Z}. Since Z is connected, it contains a path from u_{1} to u_{2}, and since, by Claim 1.12, Z contains no P_{4}, such a path has length 2 , that is, Z contains a vertex x adjacent to both u_{1}, u_{2}. Suppose that some neighbour $y \neq x$ of u_{1} is not adjacent to x. Then y is also not adjacent to u_{2}, for otherwise $\left\{y, u_{1}, x, u_{2}\right\}$ would induce a hole; and so $y-u_{1}-x-u_{2}$ is a P_{4}. If $y \in Z$ this contradicts Claim 1.12, and if $y \in R$ then $u_{2}-x-u_{1}-y-t$ is a P_{5}, another contradiction. Therefore, x is adjacent to every neighbour of u_{1} different from x, and similarly it is adjacent to every neighbour of u_{2} different from x. By Claim 1.1, u_{1} has neighbours v, v^{\prime} that are not adjacent. Suppose that one of v, v^{\prime}, say v, is in R. Then, since R is a clique, v^{\prime} is in Z, and, by the preceding argument, we have $x \neq v^{\prime}$ and x is adjacent to v, v^{\prime}. But then $\left\{v, u_{1}, v^{\prime}, x, t, u, t^{\prime}\right\}$ induces an F_{5}, a contradiction. Thus v, v^{\prime} are both in Z. Likewise, u_{2} has neighbours w, w^{\prime} that are not adjacent, and they are both in Z. If u_{2} is adjacent to v, then $u_{2}, v, u_{1}, v^{\prime}$ induce either a P_{4} or a hole, a contradiction. Thus u_{2} is not adjacent to v, and similarly not to v^{\prime}, and u_{1} is not adjacent to any of w, w^{\prime}. Then v is not adjacent to w, for otherwise $u_{1}-v-w-u_{2}$ is a P_{4}. Similarly, v is not adjacent to w^{\prime}, and v^{\prime} is not adjacent to any of w, w^{\prime}. But now $\left\{u, t, t^{\prime}, u_{1}, v, v^{\prime}, u_{2}, w, w^{\prime}\right\}$ induces a $3 P_{3}$ in G, a contradiction. So Claim 1.13 holds.

Let C_{T} be the set of colors that appear in U_{T}. By Claim 1.10, we have $\left|C_{T}\right|=\left|U_{T}\right| \geq 1$. Let C_{Z} be the set of colors that do not appear in $R \cup U_{T}$. By Claim 1.1, a member of U must be in a big component of T, and so, by Claims 1.4, 1.5 and $1.11, R \cup U_{T}$ is a clique; thus $\left|C_{Z}\right| \geq 1$. Consider any color $j \in C_{Z}$. By the definition of U, every member of U_{T} must have a neighbour of color j, and by the definition of C_{Z}, any such neighbour
must be in T. Let w_{j} be one vertex of color j that is adjacent to the most members of U_{T}. So $w_{j} \in T$. Suppose that w_{j} has a non-neighbour u^{\prime} in U_{T}. Let w_{j}^{\prime} be a neighbour of u^{\prime} of color j. So $w_{j}^{\prime} \in T$. Since u^{\prime} is adjacent to w_{j}^{\prime} and not to w_{j}, the choice of w_{j} implies the existence of a vertex $u^{\prime \prime}$ of U_{T} that is adjacent to w_{j} and not to w_{j}^{\prime}. But then $w_{j}-u^{\prime \prime}-u^{\prime}-w_{j}^{\prime}$ is a P_{4}, which contradicts Claim 1.9. Thus w_{j} is adjacent to all of U_{T}. Now $R \cup U_{T} \cup\left\{w_{j}\right\}$ is a clique, which implies $\left|C_{Z}\right| \geq 2$. Let $W=\left\{w_{j} \mid j \in C_{Z}\right\}$. Note that W is not a clique, for otherwise $R \cup U_{T} \cup W$ would be a clique of size k (because it contains a vertex of each color).

For each color $j \in C_{Z}$, the definition of C_{Z} implies that u_{j} is in Z. So

$$
\left|U_{Z}\right| \geq\left|C_{Z}\right| \geq 2
$$

Consider any color $h \in C_{T}$. By the definition of U, every member of U_{Z} must have a neighbour of color h, and by the definition of C_{T} and by Claim 1.5, any such neighbour must be in Z. Let y_{h} be one vertex of color h that is adjacent to the most members of U_{Z}. So $y_{h} \in Z$. Suppose that y_{h} has a non-neighbour u^{\prime} in U_{Z}. Let y_{h}^{\prime} be a neighbour of u^{\prime} of color h. So $y_{h}^{\prime} \in Z$. Since u^{\prime} is adjacent to y_{h}^{\prime} and not to y_{h}, the choice of y_{h} implies the existence of a vertex $u^{\prime \prime}$ of U_{Z} that is adjacent to y_{h} and not to y_{h}^{\prime}. But then $y_{h}-u^{\prime \prime}-$ $u^{\prime}-y_{h}^{\prime}$ is a P_{4}, which contradicts Claim 1.12. Thus y_{h} is adjacent to all of U_{Z}. Let $Y=\left\{y_{h} \mid h \in C_{T}\right\}$. So $|Y|=\left|C_{T}\right|$. Suppose that Y is not a clique. So there are non-adjacent vertices y_{g}, y_{h} in Y. Thus $\left|C_{T}\right| \geq 2$, and we have $u_{g}, u_{h} \in U_{T}$. Recall that W is not a clique, so it contains two non-adjacent vertices w_{i}, w_{j}, and by the definition of W we have $u_{i}, u_{j} \in U_{T}$. But then $\left\{y_{g}, y_{h}, u_{i}, u_{j}, w_{i}, w_{j}, u_{g}, u_{h}\right\}$ induces an F_{6}, a contradiction. Thus Y is a clique, and so

$$
Y \cup U_{Z} \text { is a clique of size at least }\left|C_{T}\right|+\left|C_{Z}\right| \geq 3 .
$$

Let R_{1} be the set of vertices of R that have at most one neighbour in $Y \cup U_{Z}$, and let $R_{2}=R \backslash R_{1}$. If some vertex $a \in R_{2}$ has a non-neighbour v in $Y \cup U_{Z}$, then, since a has two neighbours z, z^{\prime} in $Y \cup U_{Z}$, we see that $\left\{a, z, z^{\prime}, v, t, u, t^{\prime}\right\}$ induces an F_{5}, a contradiction (recall that $t-u-t^{\prime}$ is a P_{3} in T). Thus every vertex of R_{2} is adjacent to every vertex of $Y \cup U_{Z}$. This implies $R_{1} \neq \emptyset$, for otherwise $R \cup Y \cup U_{Z}$ would be a clique of size k (because it contains a vertex of each color).

Consider any color ℓ that appears in R_{1}, and let a_{ℓ} be the vertex of R_{1} of color ℓ. By the definition of U and R_{1}, every vertex of U_{Z}, except
possibly one, must have a neighbour of color ℓ in Z. Let x_{ℓ} be one vertex of Z of color ℓ that is adjacent to the most members of U_{Z}. By the same argument as above concerning y_{h}, using the fact that Z contains no P_{4}, we obtain that x_{ℓ} is adjacent to every vertex of U_{Z} that has a neighbour of color ℓ in Z. Now we show that x_{ℓ} is adjacent to all of $Y \cup U_{Z}$. Suppose on the contrary that x_{ℓ} has a non-neighbour v in $Y \cup U_{Z}$. If x_{ℓ} has two neighbours z, z^{\prime} in $Y \cup U_{Z}$, then either $t-a_{\ell}-v-z-x_{\ell}$ is a P_{5} (if a_{ℓ} is adjacent to v), or $\left\{v, z, z^{\prime}, x_{\ell}, a_{\ell}, t, u, t^{\prime}\right\}$ induces an F_{6} or F_{7}, a contradiction. So x_{ℓ} has only one neighbour z in $Y \cup U_{Z}$. By the definition of x_{ℓ}, this implies that $U_{Z}=\left\{z, z^{\prime}\right\}$ where z^{\prime} has no neighbour of color ℓ in T. Since z^{\prime} is in U, it must have a neighbour of color ℓ, and this can only be a_{ℓ}. But then $x_{\ell^{-}-z-z^{\prime}-a_{\ell}-t}$ is a P_{5}, a contradiction. Thus x_{ℓ} is adjacent to all of $Y \cup U_{Z}$. Now we show that x_{ℓ} is adjacent to all of R_{2}. For suppose that x_{ℓ} is not adjacent to some vertex a of R_{2}. Let z, z^{\prime} be any two vertices in $Y \cup U_{Z}$. Then $\left\{x_{\ell}, z, z^{\prime}, a, t, u, t^{\prime}\right\}$ induces an F_{5}, a contradiction. In summary, x_{ℓ} is adjacent to all of $Y \cup U_{Z} \cup R_{2}$.

Let $X=\left\{x_{\ell} \mid\right.$ color ℓ appear in $\left.R_{1}\right\}$. So $X \neq \emptyset$. Suppose that there are two non-adjacent vertices x_{ℓ}, x_{m} in X. Let a_{ℓ} be a vertex of color ℓ in R_{1}. Let z, z^{\prime} be any two vertices in $Y \cup U_{Z}$. Then a_{ℓ} is adjacent to x_{m}, for otherwise $\left\{x_{\ell}, x_{m}, z, z^{\prime}, a_{\ell}, t, u, t^{\prime}\right\}$ induces an F_{6} or F_{7}. Then a_{ℓ} is adjacent to z^{\prime}, for otherwise $x_{\ell}-z^{\prime}-x_{m}-a_{\ell}-t$ is a P_{5}. But then $\left\{x_{m}, z, z^{\prime}, a_{\ell}, t, u, t^{\prime}\right\}$ induces an F_{5}, a contradiction. Therefore X is a clique. But now, $X \cup Y \cup U_{Z} \cup R_{2}$ is a clique of size k (because it contains a vertex of each color), a contradiction. This completes the proof of the theorem.

Theorem 1 can be generalized slightly as follows.
Theorem 2. Every \mathcal{F}-free C_{4}-free graph is b-perfect.
Proof. Let G be an \mathcal{F}-free C_{4}-free graph. Since G contains no P_{5}, it contains no hole C_{k} with $k \geq 6$. We prove that $b(G)=\chi(G)$ by induction on the number of C_{5} 's contained in G. If G contains no C_{5}, then it is chordal and the result follows from Theorem 1. So we may now assume that G contains a C_{5}. Let z_{1}, \ldots, z_{5} be five vertices such that, for $i=1, \ldots, 5$ modulo 5 , vertex z_{i} is adjacent to z_{i+1} and not to z_{i+2}. Let $Z=\left\{z_{1}, \ldots, z_{5}\right\}$. Let x be a vertex of $G \backslash Z$ that has a neighbour in Z. If x also has a non-neighbour in Z, then it is easy to see that $Z \cup\{x\}$ contains a set that induces either a P_{5}, or a C_{4}, or an F_{16}, a contradiction. Thus x is adjacent to all of Z. Let X be the set of vertices that are adjacent to Z. Note that X is a clique, for if it contained two non-adjacent vertices x, y, then $\left\{x, y, z_{1}, z_{3}\right\}$ would induce
a C_{4}. Suppose that G admits a b-coloring c with $k>\chi(G)$ colors. We may assume that the colors of c that appear in Z are $1, \ldots, \ell$, with $3 \leq \ell \leq 5$. So only the colors $\ell+1, \ldots, k$ may appear in X.

If $\ell=3$, let G^{\prime} be the graph obtained from $G \backslash Z$ by adding three new vertices a_{1}, a_{2}, a_{3} that are pairwise adjacent and all adjacent to all of X. If $\ell=4$ or 5 , let G^{\prime} be the graph obtained from $G \backslash Z$ by adding ℓ new vertices a_{1}, \ldots, a_{ℓ} that are pairwise not adjacent and all adjacent to all of X. In either case, since X is a clique the new vertices a_{1}, \ldots, a_{l} are simplicial, so they cannot belong to any hole, and so G^{\prime} has strictly fewer C_{5} 's than G.
2.1. $b\left(G^{\prime}\right) \geq b(G)$.

Proof. Let c^{\prime} be the coloring of the vertices of G^{\prime} defined by $c^{\prime}(x)=c(x)$ if x is a vertex of $G \backslash Z$ and $c^{\prime}\left(a_{i}\right)=i$ for $i=1, \ldots, \ell$. Clearly, c^{\prime} is a coloring with k colors. For each $i=1, \ldots, k$, let u_{i} be a b-vertex of color i for c in G. Suppose that u_{i} is in $G \backslash Z$. Consider a neighbour v_{j} of u_{i} of color j in G for any $j \neq i$. Then either v_{j} is in $G \backslash Z=G^{\prime} \backslash Z$, and in this case v_{j} is a neighbour of u_{i} of color j in G^{\prime}; or v_{j} is in Z, and in this case $j \in\{1, \ldots, \ell\}$ and a_{j} is a neighbour of u_{i} of color j in G^{\prime}. So u_{i} is a b-vertex for G^{\prime}. Now suppose that u_{i} is in Z. Then u_{i} must have a neighbour of every color $1, \ldots, \ell$ different from i, and since such colors do not appear in X, they must appear in Z, and so $\ell=3$ and all colors $4, \ldots, k$ appear in X. Then a_{i} is a b-vertex of color i in G^{\prime}. Thus c^{\prime} has a b-vertex of every color $i=1, \ldots, k$. So Claim 2.1 holds.
2.2. $\chi\left(G^{\prime}\right) \leq \chi(G)$.

Proof. Consider any coloring γ of G with $\chi(G)$. We may assume that the colors of γ that appear in Z are $1, \ldots, h$, with $3 \leq h \leq 5$. Let γ^{\prime} be defined as follows. For $x \in G \backslash Z$, set $\gamma^{\prime}(x)=\gamma(x)$. If $\ell=3$, set $\gamma^{\prime}\left(a_{i}\right)=i$ for $i=1,2,3$. If $\ell=4$ or 5 , set $\gamma^{\prime}\left(a_{i}\right)=1$ for $i=1, \ldots, \ell$. In either case, γ^{\prime} is a coloring of G^{\prime} with at most $\chi(G)$ colors. So Claim 2.2 holds.

2.3. G^{\prime} is \mathcal{F}-free and C_{4}-free.

Proof. Suppose on the contrary that G^{\prime} contains a subgraph F which is either a member of \mathcal{F} or a C_{4}. Let $A=\left\{a_{1}, \ldots, a_{\ell}\right\}$. If F contains at most two vertices of A, then, since Z has two adjacent vertices and also two nonadjacent vertices, we can replace the vertices of $F \cap A$ by an appropriate choice of vertices of Z and we find a subgraph of G that is isomorphic to F, a contradiction. So F must contain at least three vertices of A. Note that in F, the neighbourhood of any of these vertices is equal to $F \cap X$, i.e., they
are pairwise twins. But this is impossible, because no member of $\mathcal{F} \cup\left\{C_{4}\right\}$ has three vertices that are pairwise twins. Thus Claim 2.3 holds.

By Claims 2.1-2.3, G^{\prime} is an \mathcal{F}-free, C_{4}-free graph with $b\left(G^{\prime}\right) \geq b(G)>$ $\chi(G) \geq \chi\left(G^{\prime}\right)$ and G^{\prime} has strictly fewer C_{5}^{\prime} 's than G, a contradiction. This completes the proof of Theorem 2 .

References

[1] C. Berge. Graphs. North Holland, 1985.
[2] T. Faik. La b-continuité des b-colorations: complexité, propriétés structurelles et algorithmes. PhD thesis, Univ. Orsay, France, 2005.
[3] M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs., Annals of Discrete Mathematics 57, 2nd Edition, North Holland, 2004.
[4] C.T. Hoàng, M. Kouider. On the b-dominating coloring of graphs. Discrete Applied Mathematics 152 (2005) 176-186.
[5] C.T. Hoàng, C. Linhares Sales, F. Maffray. On minimally b-imperfect graphs. Manuscript, 2006.
[6] R.W. Irving, D.F. Manlove. The b-chromatic number of graphs. Discrete Applied Mathematics 91 (1999) 127-141.
[7] M. Kouider, M. Mahéo. Some bounds for the b-chromatic number of a graph. Discrete Mathematics 256 (2002) 267-277.
[8] M. Kouider, M. Zaker. Bounds for the b-chromatic number of some families of graphs. Discrete Mathematics 306 (2006) 617-623.
[9] J. Kratochvíl, Zs. Tuza, M. Voigt. On the b-chromatic number of graphs. Lecture Notes in Computer Science 2573, Graph-Theoretic Concepts in Computer Science: 28th International Workshop, WG 2002, p. 310-320.
[10] J. Ramírez-Alfonsín, B. Reed. Perfect Graphs. Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley, 2001.

[^0]: *This research was supported by Algerian-French program CMEP/Tassili 05 MDU 639.
 ${ }^{\dagger}$ CNRS, Laboratoire G-SCOP, 46 avenue Félix Viallet, 38031 Grenoble Cedex, France.
 ${ }^{\ddagger}$ USTHB, Laboratoire LAID3, BP32 El Alia, Bab Ezzouar 16111, Alger, Algeria.

