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On b-perfect chordal graphs∗
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Abstract

The b-chromatic number of a graph G is the largest integer k such
that G has a coloring of the vertices in k color classes such that every
color class contains a vertex that has a neighbour in all other color
classes. We characterize the class of chordal graphs for which the b-
chromatic number is equal to the chromatic number for every induced
subgraph.

1 Introduction

We deal here with finite undirected graphs. Given a graph G and an integer
k ≥ 1, a coloring of G with k colors is a mapping c : V (G) → {1, . . . , k}
such that any two adjacent vertices u, v in G satisfy c(u) 6= c(v). For every
vertex v, the integer c(v) is called the color of v. The sets c−1(1), . . . , c−1(k)
that are not empty are called the color classes of c. A b-coloring is a coloring
such that every color class contains a vertex that has a neighbour in each
color class other than its own, and we call any such vertex a b-vertex. The
b-chromatic number b(G) of a graph G is the largest integer k such that G

admits a b-coloring with exactly k colors. The concept of b-coloring was
introduced in [6] and has been studied among others in [2, 4, 7, 8, 9]. Let
ω(G) be the maximum size of a clique in a graph G, and let χ(G) be the
chromatic number of G. It is easy to see that every coloring of G with χ(G)
colors is a b-coloring, and so every graph satisfies χ(G) ≤ b(G). Hoàng
and Kouider [4] call a graph G b-perfect if every induced subgraph H of G

satisfies b(H) = χ(H). Also a graph G is b-imperfect if it is not b-perfect,
and minimally b-imperfect if it is b-imperfect and every proper subgraph

∗This research was supported by Algerian-French program CMEP/Tassili 05 MDU 639.
†CNRS, Laboratoire G-SCOP, 46 avenue Félix Viallet, 38031 Grenoble Cedex, France.
‡USTHB, Laboratoire LAID3, BP32 El Alia, Bab Ezzouar 16111, Alger, Algeria.
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of G is b-perfect. Hoàng, Linhares Sales and Maffray [5] found a list F of
twenty-two minimally b-imperfect graphs shown in Figure 1, and posed the
following conjecture.

Conjecture 1 ([5]). A graph is b-perfect if and only if it does not contain

any member of F as an induced subgraph.
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Figure 1: Class F = {F1, . . . , F22}

Given a collection H of graphs, a graph G is usually called H-free if no
induced subgraph of G is a member of H. When H consists of only one graph
H, we may write H-free instead of {H}-free. We let Pk and Ck respectively
denote the graph that consists of a path (resp. cycle) on k vertices. We use
+ to denote the disjoint union of graphs, and nF is the graph which has n

components all isomorphic to F . For example, 2K2 is the graph with two
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components of size 2, and the first three graphs in F are P5, P4 + P3 and
3P3. We say that two vertices x, y in a graph G are twins if every vertex of
G \ {x, y} that is adjacent to any of x, y is adjacent to both. Note that two
twins may be adjacent or not.

It is a routine matter to check that the graphs in class F are b-imperfect
and minimally so. More precisely, for i = 1, 2, 3, we have χ(Fi) = 2 and
b(Fi) = 3, and Fi admits a b-coloring with 3 colors in which its three vertices
of degree 3 have color 1, 2, 3 respectively; and for i = 4, . . . , 22, we have
χ(Fi) = 3 and b(Fi) = 4.

We will prove the conjecture in the case of chordal graphs. Recall that
a graph G is chordal [3, 10] if every cycle of length at least four in G has a
chord (an edge between non-consecutive vertices of the cycle). We call hole

any chordless cycle of length at least four. In these terms, a graph is chordal
if and only if it is hole-free.

Theorem 1. Every F-free chordal graph is b-perfect.

Proof of Theorem 1. Suppose that the theorem is false, and let G be a
counterexample to the theorem for which |V (G)|+|E(G)| is minimal. Recall
that, since G is chordal, it satisfies χ(G) = ω(G) (see [1, 3]). Since G is a
counterexample to the theorem, it admits a b-coloring c with k ≥ χ(G)+1 =
ω(G) + 1 colors. For i = 1, . . . , k, let ui be any b-vertex of color i, that is, a
vertex that has a neighbour of each color other than i. Let U = {u1, . . . , uk}.
Note that, since k > ω(G), the set U does not induce a clique. As usual, we
say that a vertex is simplicial if its neighbourhood induces a clique.

1.1. For i = 1, . . . , k, vertex ui is not simplicial.

Proof. Suppose on the contrary and up to symmetry that u1 is simplicial.
Since u1 is a b-vertex, it has a neighbour vi of each color i = 2, . . . , k. Then
the set {u1, v2, . . . , vk} induces a clique of size k > ω(G), a contradiction.
So Claim 1.1 holds.

1.2. G contains a 2K2.

Proof. Suppose that G contains no 2K2. Since U is not a clique, we may
assume up to symmetry that u1, u2 are not adjacent. By Claim 1.1, vertex
u1 has two neighbours v, v′ that are not adjacent, and vertex u2 has two
neighbours w,w′ that are not adjacent. Suppose that u1 is adjacent to w.
Then u1 is not adjacent to w′, for otherwise u1, w, u2, w

′ induce a hole. One
of v, v′ is not equal to w, say v 6= w. Also v 6= w′ since u1 is adjacent to
v and not to w′. If v is not adjacent to u2, then v is adjacent to w′, for
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otherwise {u1, v, u2, w
′} induces a 2K2; but then either {u1, v, w′, u2, w} or

{u1, v, u2, w} induce a hole. So v is adjacent to u2. Then u2 is not adjacent to
v′, for otherwise {u1, v, v′, u2} induces a hole. Then v′ is adjacent to w′, for
otherwise {u1, v

′, u2, w
′} induces a 2K2. But then either {u1, v

′, u2, w,w′}
(if v′, w are not adjacent) or {v′, u2, w,w′} (if v′, w are adjacent) induces a
hole. Therefore u1 is not adjacent to w. Similarly, u1 is not adjacent to w′,
and u2 is not adjacent to any of v, v′. Now v must be adjacent to w, for
otherwise {u1, v, u2, w} induces a 2K2, and by symmetry, to w′ as well. But
then {v, u2, w,w′} induces a hole, a contradiction. So Claim 1.2 holds.

We say that a subgraph of G is big if it contains at least two vertices.
Since G contains a 2K2, it contains a set S that induces a subgraph with
at least two big components and is maximal with this property. Let R =
V (G) \ S.

1.3. Every vertex of R has a neighbour in every big component of S.

Proof. Suppose on the contrary that some vertex x of R has no neighbour in
some big component C of S. Then S ∪{x} induces a subgraph with at least
two big components (of which C is one), which contradicts the maximality
of S. So Claim 1.3 holds.

1.4. R is a clique.

Proof. Suppose on the contrary that there are two non-adjacent vertices
u, v in R. Consider two big components Z1, Z2 of S. By Claim 1.3, for each
i = 1, 2, u has a neighbour ui in Zi and v has a neighbour vi in Zi. Since Zi

is connected, we may choose ui, vi and a path ui-· · · -vi in Zi such that this
path is as short as possible (possibly ui = vi). So no interior vertex of this
path is adjacent to u or v. But then the union of the two paths u1-· · · -v1,
u2-· · · -v2, plus u and v, forms a hole in G, a contradiction. So Claim 1.4
holds.

1.5. There is a big component Z of S such that every vertex of R is

adjacent to every vertex of every big component of S \ Z.

Proof. Suppose the contrary, that is, there are two big components Z1, Z2

of S and vertices x1, x2 of R such that x1 has a non-neighbour in Z1 and
x2 has a no-neighbour in Z2. For each i = 1, 2, since Zi is connected and
by Claim 1.3, there are adjacent vertices yi, zi in Zi such that xi is adjacent
to yi and not to zi. If x1 = x2, then z1-y1-x1-y2-z2 is a P5 in G, which
contradicts that G is F-free. So x1 6= x2, and by the same argument we
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may assume that x1 is adjacent to all of Z2 and that x2 is adjacent to all of
Z1. By Claim 1.4, vertices x1, x2 are adjacent. Then {x1, x2, y1, y2, z1, z2}
induces an F4, which contradicts that G is F-free. So Claim 1.5 holds.

Let Z be a big component of S as described in Claim 1.5. Let T = S \Z.
So T contains a big component of S. Put UZ = U ∩ Z and UT = U ∩ T .

1.6. For every vertex a ∈ R and every set Y ⊂ Z that induces a connected

subgraph and contains no neighbour of a, there exists a vertex of Z that is

adjacent to all of Y ∪ {a}.

Proof. Pick any vertex y in Y . Since Z is connected, and a has a neighbour
in Z by Claim 1.3, there is a shortest path z0-z1-· · · -zp in Z such that z0 is
adjacent to a and zp = y. Let t be any vertex in a big component of T . By
Claim 1.5, vertices a, t are adjacent. Then p = 1, for otherwise z2-z1-z0-a-t
is a P5. Thus z0 is adjacent to both a, y. We show that z0 is adjacent to all
of Y . In the opposite case, since Y is connected there are adjacent vertices
y′, y′′ such that z0 is adjacent to y′ and not to y′′; but then y′′-y′-z0-a-t is a
P5, a contradiction. So Claim 1.6 holds.

1.7. |R| ≤ ω(G) − 2.

Proof. By the definition of S, the set T contains two adjacent vertices a, b.
By Claim 1.4, R ∪ {a, b} is a clique. So Claim 1.7 holds.

1.8. UZ 6= ∅.

Proof. Suppose on the contrary that Z contains no vertex of U . Consider
the graph G′ = G \ Z. Clearly, G′ is a chordal and F-free graph, and
|V (G′)| + |E(G′)| < |V (G)| + |E(G)|. We show that c is a b-coloring of G′.
To establish this, consider vertex ui for each i = 1, . . . , k and consider any
color j 6= i. If ui is not in R, then ui has the same neighbours in G and
in G′, so ui is a b-vertex in G′. Now suppose that ui is in R. If uj is in a
component of S of cardinality 1, then N(uj) ⊆ R, so uj is a simplicial vertex
by Claim 1.4, which contradicts Claim 1.1. Thus uj is in a big component
of T . Then uj is a neighbour of ui by Claim 1.5 and the definition of Z.
Thus every ui is a b-vertex for c in G′. But then G′ is a counterexample to
the theorem, which contradicts the minimality of G. So Claim 1.8 holds.

1.9. T contains no P4 and no 2P3.

Proof. Suppose on the contrary that T contains a set Q of vertices that
induces a P4 or a 2P3. Therefore Z contains no P3, for otherwise taking
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a P3 in Z plus Q would give an induced F2 or F3. Since Z is connected
and contains no P3, it is a clique. By Claim 1.8, we may assume that u1

is in Z. For j = 2, . . . , k, let vj be a neighbour of u1 of color j. Since
{u1, v2, . . . , vk} is not a clique, we may assume that v2, v3 are not adjacent.
Since N(u1) ⊂ R∪Z and both R,Z are cliques, we may assume that v2 ∈ R

and v3 ∈ Z. By Claim 1.7, R contains at most k − 3 of the vj ’s; so we may
assume that v4 ∈ Z. Now, if v2 is not adjacent to v4, then W ∪{v1, v2, v3, v4}
induces an F8 or F9; while if v2 is adjacent to v4 then the same set contains
an induced F5. So Claim 1.9 holds.

1.10. UT 6= ∅.

Proof. Suppose on the contrary that T contains no vertex of U . Let G′ be
the graph obtained from G by removing all edges whose two endvertices are
in T . Graph G′ satisfies |V (G′)| + |E(G′)| < |V (G)| + |E(G)| since we have
removed at least one edge because T contains a big component of S. We
will show that (a) c is a b-coloring of G′, (b) G′ is a chordal graph, and
(c) G′ is F-free. These facts will imply that G′ is a counterexample to the
theorem, which will contradict the minimality of G and complete the proof
of the claim.

To prove (a), it suffices to observe that every vertex of U is a b-vertex
for c in G′, because the edges we have removed from G to obtain G′ are not
incident with any vertex of U .

To prove (b), observe that in G′ all vertices of T are simplicial (because
their neighbourhood is in R) and thus cannot lie in a hole of G′. Moreover,
G′ \ T = G \ T . So G′ contains no hole and is chordal.

Now we prove (c). Suppose on the contrary that G′ contains a member
F of F . Note that G′ does not contain Fi for i = 10, . . . , 22, because every
such Fi contains a hole of length 4 or 5, while G′ is chordal. Thus F must
be one of F1, . . . , F9. Graph F must contain two vertices of T that are
adjacent in G, for otherwise F would be an induced subgraph of G. Let x, y

be two vertices of T in F that are adjacent in G. So x, y lie in the same big
component of T , and it follows from Claim 1.5 that the neighbourhood of
each of them in G′ is R. In particular, in F they are non-adjacent twins.
This immediately implies that F cannot be F1, F4 or F8 since such graphs
do not have twins. Thus F must be one of F2, F3, F5, F6, F7, F9. Note
that, in each of these six cases, there is up to symmetry only one pair of
non-adjacent twins.

Suppose that F is either F2 or F3. So F has vertices x, y, a, z1, . . . , zp,
edges xa, ya, and either (if F is F2) p = 4 and {z1, . . . , z4} induces a P4, or (if
F is F3) p = 6 and {z1, . . . , z6} induces a 2P3 with edges z1z2, z2z3, z4z5, z5z6.
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As observed above, we may assume that x, y ∈ T and consequently a ∈ R;
then vertices z1, . . . , zp are in a big component of S, and, by Claim 1.5, they
cannot be in T , so they are in Z. Let p = 4. By Claim 1.6, Z contains
a vertex z that is adjacent in G to a, z1, . . . , z4. Then {z, z1, . . . , z4, a, x, y}
induces an F8 in G, a contradiction. Now let p = 6. By Claim 1.6, Z

contains a vertex z that is adjacent in G to a, z1, z2, z3 and a vertex z′ that
is adjacent in G to a, z4, z5, z6. If z 6= z′, then {z, z′, z1, . . . , z6} induces an
F6 or F7 in G, a contradiction. So z = z′. But then {z, z1, . . . , z6, a, x, y}
induces an F9 in G, a contradiction.

Suppose that F is either F5 or F9. So F has vertices x, y, a, b, z1, . . . , zp,
edges xa, xb, ya, yb, ab, az1, z1z2, z1z3, z2z3 and either (if F is F5) p = 3
and az2 is an edge, or (if F is F9) p = 6 and vertices z4, z5, z6 induce a P3

and are adjacent to a. As observed above, we may assume that x, y ∈ T

and consequently a, b ∈ R, and so z1, . . . , zp ∈ Z. By Claim 1.6, Z contains
a vertex z that is adjacent in G to b, z1, z2, z3. Then z is adjacent to a, for
otherwise {z, a, b, z1} induces a hole in G. But then {z, a, b, z1, z3, x} induces
an F4 in G, a contradiction.

Finally suppose that F is either F6 or F7. So F has vertices x, y, a, b,

z1, . . . , z4 and edges xa, xb, ya, yb, ab, z1z2, z1z3, z1z4, z2z3, z2z4 and possibly
(if F is F7) the edge az1. As observed above, we may assume that x, y ∈ T

and consequently a, b ∈ R and z1, . . . , z4 ∈ Z. By Claim 1.6, Z contains a
vertex z that is adjacent in G to a, z2, z3, z4. Vertex z is also adjacent to
z1, for otherwise {z, z1, z3, z4} induces a hole. By Claim 1.6, Z contains a
vertex z′ that is adjacent in G to b, z1, . . . , z4. If none of z, z′ is adjacent
to both a, b, then either {z, z′, a, b} or {z, z′, a, b, z2} induces a hole. So we
may assume, up to symmetry, that z is adjacent to both a, b. But then
{z, a, b, x, z2, z3, z4} induces an F5 in G, a contradiction. Thus Claim 1.10
holds.

1.11. UT is a clique.

Proof. Suppose on the contrary that u1, u2 are non adjacent vertices of UT .
By Claim 1.1, vertex u1 has two neighbours v, v′ that are not adjacent, and
vertex u2 has two neighbours w,w′ that are not adjacent. By Claims 1.4
and 1.5 we have v, v′, w,w′ ∈ T . If u1 is adjacent to w, then {u1, w, u2, w

′}
induces a P4 or a hole, which contradicts Claim 1.9 or the chordality of G.
So u1 is not adjacent to w, and by symmetry it is not adjacent to w′, and
u2 is not adjacent to any of v, v′. If v is adjacent to w, then {v, u1, v

′, w}
induce a P4 or a hole, a contradiction. So v is not adjacent to w, and by
symmetry it is not adjacent to w′, and v′ is not adjacent to any of w,w′.
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But now {u1, v, v′, u2, w,w′} induces a 2P3, which contradicts Claim 1.9. So
Claim 1.11 holds.

By Claim 1.10, there is a vertex u of U in T . By Claim 1.1, vertex u has
two neighbours t, t′ that are not adjacent. By Claims 1.4 and 1.5, we have
t, t′ ∈ T . In other words, there is a P3 t-u-t′ in T .

1.12. Z contains no P4 and no 2P3.

Proof. In the opposite case, a P4 or 2P3 from Z plus the P3 t-u-t′ from T

form an induced F2 or F3 in G, a contradiction. So Claim 1.12 holds.

1.13. UZ is a clique.

Proof. Suppose on the contrary that u1, u2 are non adjacent vertices of
UZ . Since Z is connected, it contains a path from u1 to u2, and since, by
Claim 1.12, Z contains no P4, such a path has length 2, that is, Z contains
a vertex x adjacent to both u1, u2. Suppose that some neighbour y 6= x of
u1 is not adjacent to x. Then y is also not adjacent to u2, for otherwise
{y, u1, x, u2} would induce a hole; and so y-u1-x-u2 is a P4. If y ∈ Z this
contradicts Claim 1.12, and if y ∈ R then u2-x-u1-y-t is a P5, another
contradiction. Therefore, x is adjacent to every neighbour of u1 different
from x, and similarly it is adjacent to every neighbour of u2 different from
x. By Claim 1.1, u1 has neighbours v, v′ that are not adjacent. Suppose
that one of v, v′, say v, is in R. Then, since R is a clique, v′ is in Z, and, by
the preceding argument, we have x 6= v′ and x is adjacent to v, v′. But then
{v, u1, v

′, x, t, u, t′} induces an F5, a contradiction. Thus v, v′ are both in Z.
Likewise, u2 has neighbours w,w′ that are not adjacent, and they are both
in Z. If u2 is adjacent to v, then u2, v, u1, v

′ induce either a P4 or a hole, a
contradiction. Thus u2 is not adjacent to v, and similarly not to v′, and u1

is not adjacent to any of w,w′. Then v is not adjacent to w, for otherwise
u1-v-w-u2 is a P4. Similarly, v is not adjacent to w′, and v′ is not adjacent
to any of w,w′. But now {u, t, t′, u1, v, v′, u2, w,w′} induces a 3P3 in G, a
contradiction. So Claim 1.13 holds.

Let CT be the set of colors that appear in UT . By Claim 1.10, we have
|CT | = |UT | ≥ 1. Let CZ be the set of colors that do not appear in R ∪ UT .
By Claim 1.1, a member of U must be in a big component of T , and so,
by Claims 1.4, 1.5 and 1.11, R ∪ UT is a clique; thus |CZ | ≥ 1. Consider
any color j ∈ CZ . By the definition of U , every member of UT must have
a neighbour of color j, and by the definition of CZ , any such neighbour
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must be in T . Let wj be one vertex of color j that is adjacent to the most
members of UT . So wj ∈ T . Suppose that wj has a non-neighbour u′ in UT .
Let w′

j be a neighbour of u′ of color j. So w′
j ∈ T . Since u′ is adjacent to w′

j

and not to wj , the choice of wj implies the existence of a vertex u′′ of UT

that is adjacent to wj and not to w′
j. But then wj-u

′′-u′-w′
j is a P4, which

contradicts Claim 1.9. Thus wj is adjacent to all of UT . Now R∪UT ∪{wj}
is a clique, which implies |CZ | ≥ 2. Let W = {wj | j ∈ CZ}. Note that W is
not a clique, for otherwise R ∪UT ∪W would be a clique of size k (because
it contains a vertex of each color).

For each color j ∈ CZ , the definition of CZ implies that uj is in Z. So

|UZ | ≥ |CZ | ≥ 2.

Consider any color h ∈ CT . By the definition of U , every member of UZ must
have a neighbour of color h, and by the definition of CT and by Claim 1.5,
any such neighbour must be in Z. Let yh be one vertex of color h that is
adjacent to the most members of UZ . So yh ∈ Z. Suppose that yh has a
non-neighbour u′ in UZ . Let y′h be a neighbour of u′ of color h. So y′h ∈ Z.
Since u′ is adjacent to y′h and not to yh, the choice of yh implies the existence
of a vertex u′′ of UZ that is adjacent to yh and not to y′h. But then yh-u′′-
u′-y′h is a P4, which contradicts Claim 1.12. Thus yh is adjacent to all of
UZ . Let Y = {yh | h ∈ CT }. So |Y | = |CT |. Suppose that Y is not a clique.
So there are non-adjacent vertices yg, yh in Y . Thus |CT | ≥ 2, and we have
ug, uh ∈ UT . Recall that W is not a clique, so it contains two non-adjacent
vertices wi, wj , and by the definition of W we have ui, uj ∈ UT . But then
{yg, yh, ui, uj , wi, wj , ug, uh} induces an F6, a contradiction. Thus Y is a
clique, and so

Y ∪ UZ is a clique of size at least |CT | + |CZ | ≥ 3.

Let R1 be the set of vertices of R that have at most one neighbour in
Y ∪ UZ , and let R2 = R \ R1. If some vertex a ∈ R2 has a non-neighbour
v in Y ∪ UZ , then, since a has two neighbours z, z′ in Y ∪ UZ , we see that
{a, z, z′, v, t, u, t′} induces an F5, a contradiction (recall that t-u-t′ is a P3

in T ). Thus every vertex of R2 is adjacent to every vertex of Y ∪ UZ . This
implies R1 6= ∅, for otherwise R∪Y ∪UZ would be a clique of size k (because
it contains a vertex of each color).

Consider any color ℓ that appears in R1, and let aℓ be the vertex of
R1 of color ℓ. By the definition of U and R1, every vertex of UZ , except
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possibly one, must have a neighbour of color ℓ in Z. Let xℓ be one vertex
of Z of color ℓ that is adjacent to the most members of UZ . By the same
argument as above concerning yh, using the fact that Z contains no P4, we
obtain that xℓ is adjacent to every vertex of UZ that has a neighbour of
color ℓ in Z. Now we show that xℓ is adjacent to all of Y ∪ UZ . Suppose
on the contrary that xℓ has a non-neighbour v in Y ∪ UZ . If xℓ has two
neighbours z, z′ in Y ∪ UZ , then either t-aℓ-v-z-xℓ is a P5 (if aℓ is adjacent
to v), or {v, z, z′, xℓ, aℓ, t, u, t′} induces an F6 or F7, a contradiction. So xℓ

has only one neighbour z in Y ∪ UZ . By the definition of xℓ, this implies
that UZ = {z, z′} where z′ has no neighbour of color ℓ in T . Since z′ is in
U , it must have a neighbour of color ℓ, and this can only be aℓ. But then
xℓ-z-z′-aℓ-t is a P5, a contradiction. Thus xℓ is adjacent to all of Y ∪ UZ .
Now we show that xℓ is adjacent to all of R2. For suppose that xℓ is not
adjacent to some vertex a of R2. Let z, z′ be any two vertices in Y ∪ UZ .
Then {xℓ, z, z′, a, t, u, t′} induces an F5, a contradiction. In summary, xℓ is
adjacent to all of Y ∪ UZ ∪ R2.

Let X = {xℓ | color ℓ appear in R1}. So X 6= ∅. Suppose that there are
two non-adjacent vertices xℓ, xm in X. Let aℓ be a vertex of color ℓ in R1. Let
z, z′ be any two vertices in Y ∪UZ . Then aℓ is adjacent to xm, for otherwise
{xℓ, xm, z, z′, aℓ, t, u, t′} induces an F6 or F7. Then aℓ is adjacent to z′, for
otherwise xℓ-z

′-xm-aℓ-t is a P5. But then {xm, z, z′, aℓ, t, u, t′} induces an
F5, a contradiction. Therefore X is a clique. But now, X ∪Y ∪UZ ∪R2 is a
clique of size k (because it contains a vertex of each color), a contradiction.
This completes the proof of the theorem. �

Theorem 1 can be generalized slightly as follows.

Theorem 2. Every F-free C4-free graph is b-perfect.

Proof. Let G be an F-free C4-free graph. Since G contains no P5, it contains
no hole Ck with k ≥ 6. We prove that b(G) = χ(G) by induction on the
number of C5’s contained in G. If G contains no C5, then it is chordal and
the result follows from Theorem 1. So we may now assume that G contains
a C5. Let z1, . . . , z5 be five vertices such that, for i = 1, . . . , 5 modulo 5,
vertex zi is adjacent to zi+1 and not to zi+2. Let Z = {z1, . . . , z5}. Let x be
a vertex of G\Z that has a neighbour in Z. If x also has a non-neighbour in
Z, then it is easy to see that Z ∪{x} contains a set that induces either a P5,
or a C4, or an F16, a contradiction. Thus x is adjacent to all of Z. Let X

be the set of vertices that are adjacent to Z. Note that X is a clique, for if
it contained two non-adjacent vertices x, y, then {x, y, z1, z3} would induce
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a C4. Suppose that G admits a b-coloring c with k > χ(G) colors. We may
assume that the colors of c that appear in Z are 1, . . . , ℓ, with 3 ≤ ℓ ≤ 5.
So only the colors ℓ + 1, . . . , k may appear in X.

If ℓ = 3, let G′ be the graph obtained from G \ Z by adding three new
vertices a1, a2, a3 that are pairwise adjacent and all adjacent to all of X. If
ℓ = 4 or 5, let G′ be the graph obtained from G\Z by adding ℓ new vertices
a1, . . . , aℓ that are pairwise not adjacent and all adjacent to all of X. In
either case, since X is a clique the new vertices a1, . . . , al are simplicial, so
they cannot belong to any hole, and so G′ has strictly fewer C5’s than G.

2.1. b(G′) ≥ b(G).

Proof. Let c′ be the coloring of the vertices of G′ defined by c′(x) = c(x)
if x is a vertex of G \ Z and c′(ai) = i for i = 1, . . . , ℓ. Clearly, c′ is a
coloring with k colors. For each i = 1, . . . , k, let ui be a b-vertex of color i

for c in G. Suppose that ui is in G \ Z. Consider a neighbour vj of ui of
color j in G for any j 6= i. Then either vj is in G \ Z = G′ \ Z, and in this
case vj is a neighbour of ui of color j in G′; or vj is in Z, and in this case
j ∈ {1, . . . , ℓ} and aj is a neighbour of ui of color j in G′. So ui is a b-vertex
for G′. Now suppose that ui is in Z. Then ui must have a neighbour of
every color 1, . . . , ℓ different from i, and since such colors do not appear in
X, they must appear in Z, and so ℓ = 3 and all colors 4, . . . , k appear in X.
Then ai is a b-vertex of color i in G′. Thus c′ has a b-vertex of every color
i = 1, . . . , k. So Claim 2.1 holds.

2.2. χ(G′) ≤ χ(G).

Proof. Consider any coloring γ of G with χ(G). We may assume that the
colors of γ that appear in Z are 1, . . . , h, with 3 ≤ h ≤ 5. Let γ′ be defined
as follows. For x ∈ G \ Z, set γ′(x) = γ(x). If ℓ = 3, set γ′(ai) = i for
i = 1, 2, 3. If ℓ = 4 or 5, set γ′(ai) = 1 for i = 1, . . . , ℓ. In either case, γ′ is a
coloring of G′ with at most χ(G) colors. So Claim 2.2 holds.

2.3. G′ is F-free and C4-free.

Proof. Suppose on the contrary that G′ contains a subgraph F which is
either a member of F or a C4. Let A = {a1, . . . , aℓ}. If F contains at most
two vertices of A, then, since Z has two adjacent vertices and also two non-
adjacent vertices, we can replace the vertices of F ∩ A by an appropriate
choice of vertices of Z and we find a subgraph of G that is isomorphic to F ,
a contradiction. So F must contain at least three vertices of A. Note that
in F , the neighbourhood of any of these vertices is equal to F ∩X, i.e., they
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are pairwise twins. But this is impossible, because no member of F ∪ {C4}
has three vertices that are pairwise twins. Thus Claim 2.3 holds.

By Claims 2.1–2.3, G′ is an F-free, C4-free graph with b(G′) ≥ b(G) >

χ(G) ≥ χ(G′) and G′ has strictly fewer C5’s than G, a contradiction. This
completes the proof of Theorem 2. �
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turelles et algorithmes. PhD thesis, Univ. Orsay, France, 2005.

[3] M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs., Annals
of Discrete Mathematics 57, 2nd Edition, North Holland, 2004.
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