Some ways to reduce the space dimension in polyhedra computations

Abstract : Convex polyhedra are often used to approximate sets of states of programs involving numerical variables. The manipulation of convex polyhedra relies on the so-called double description, consisting of viewing a polyhedron both as the set of solutions of a system of linear inequalities, and as the convex hull of a system of generators, i.e., a set of vertices and rays. The cost of these manipulations is highly dependent on the number of numerical variables, since the size of each representation can be exponential in the dimension of the space. In this paper, we investigate some ways for reducing the dimension: On one hand, when a polyhedron satisfies affine equations, these equations can obviously be used to eliminate some variables. On the other hand, when groups of variables are unrelated with each other, this means that the polyhedron is in fact a Cartesian product of polyhedra of lower dimensions. Detecting such Cartesian factoring is not very difficult, but we adapt also the operations to work on Cartesian products. Finally, we extend the applicability of Cartesian factoring by applying suitable variable change, in order to maximize the factoring.
Type de document :
Article dans une revue
Formal Methods in System Design, Springer Verlag, 2006, 29 (1), pp.79-95. 〈10.1007/s10703-006-0013-2〉
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00189633
Contributeur : Nicolas Halbwachs <>
Soumis le : mercredi 21 novembre 2007 - 15:28:58
Dernière modification le : jeudi 11 janvier 2018 - 06:14:33
Document(s) archivé(s) le : lundi 24 septembre 2012 - 15:50:26

Fichier

main.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

IMAG | UGA

Citation

Nicolas Halbwachs, David Merchat, Laure Gonnord. Some ways to reduce the space dimension in polyhedra computations. Formal Methods in System Design, Springer Verlag, 2006, 29 (1), pp.79-95. 〈10.1007/s10703-006-0013-2〉. 〈hal-00189633〉

Partager

Métriques

Consultations de la notice

406

Téléchargements de fichiers

414