
HAL Id: hal-00189123
https://hal.science/hal-00189123

Submitted on 20 Nov 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Static Analysis of XML Paths and Types
Pierre Genevès, Nabil Layaïda, Alan Schmitt

To cite this version:
Pierre Genevès, Nabil Layaïda, Alan Schmitt. Efficient Static Analysis of XML Paths and Types.
Proceedings of the 2007 ACM SIGPLAN conference on Programming language design and implemen-
tation, Jun 2007, San Diego, United States. pp.342–351, �10.1145/1250734.1250773�. �hal-00189123�

https://hal.science/hal-00189123
https://hal.archives-ouvertes.fr


Efficient Static Analysis of XML Paths and Types

Pierre Genevès
Ecole Polytechnique Fédérale de Lausanne ∗

pierre.geneves@epfl.ch

Nabil Layaı̈da Alan Schmitt
INRIA Rhône-Alpes

{nabil.layaida, alan.schmitt}@inria.fr

Abstract
We present an algorithm to solve XPath decision problems under
regular tree type constraints and show its use to statically type-
check XPath queries. To this end, we prove the decidability of a
logic with converse for finite ordered trees whose time complexity
is a simple exponential of the size of a formula. The logic cor-
responds to the alternation free modal µ-calculus without greatest
fixpoint, restricted to finite trees, and where formulas are cycle-free.

Our proof method is based on two auxiliary results. First, XML
regular tree types and XPath expressions have a linear translation
to cycle-free formulas. Second, the least and greatest fixpoints are
equivalent for finite trees, hence the logic is closed under negation.

Building on these results, we describe a practical, effective
system for solving the satisfiability of a formula. The system has
been experimented with some decision problems such as XPath
emptiness, containment, overlap, and coverage, with or without
type constraints. The benefit of the approach is that our system can
be effectively used in static analyzers for programming languages
manipulating both XPath expressions and XML type annotations
(as input and output types).

Categories and Subject Descriptors E.1 [Data Structures]: Trees;
F.4.1 [Mathematical Logic and Formal Languages]: Mathemat-
ical Logic—modal logic; F.4.3 [Mathematical Logic and For-
mal Languages]: Formal Languages—decision problems; H.2.1
[Database Management]: Logical Design; H.2.3 [Database Man-
agement]: Languages—Query Languages

General Terms Algorithms, languages, theory, verification

Keywords Modal logic, satisfiability, type checking, XPath

1. Introduction
This work is motivated by the need of efficient type checkers for
XML-based programming languages where XML types and XPath
queries are used as first class language constructs. In such settings,
XPath decision problems in the presence of XML types such as
DTDs or XML Schemas arise naturally. Examples of such decision
problems include emptiness test (whether an expression ever se-
lects nodes), containment (whether the results of an expression are
always included in the results of another one), overlap (whether two

∗Major part of this work done when the author was at INRIA Rhône-Alpes.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’07 June 11–13, 2007, San Diego, California, USA.
Copyright c© 2007 ACM 978-1-59593-633-2/07/0006. . . $5.00

expressions select common nodes), and coverage (whether nodes
selected by an expression are always contained in the union of the
results selected by several other expressions).

XPath decision problems are not trivial in that they need to be
checked on a possibly infinite quantification over a set of trees. An-
other difficulty arises from the combination of upward and down-
ward navigation on trees with recursion [31].

The most basic decision problem for XPath is the emptiness
test of an expression [3]. This test is important for optimization of
host languages implementations: for instance, if one can decide at
compile time that a query result is empty then subsequent bound
computations can be ignored. Another basic decision problem is
the XPath equivalence problem: whether or not two queries always
return the same result. It is important for reformulation and opti-
mization of an expression [17] , which aim at enforcing operational
properties while preserving semantic equivalence [23]. The most
essential problem for type-checking is XPath containment. It is re-
quired for the control-flow analysis of XSLT [25], for checking in-
tegrity constraints, and for XML security [12].

The complexity of XPath decision problems heavily depends on
the language features. Previous works [28, 3] showed that including
general comparisons of data values from an infinite domain may
lead to undecidability. Therefore, we focus on a XPath fragment
which covers all features except counting [8] and data values.

In our approach to solve XPath decision problems, two issues
need to be addressed. First, we identify the most appropriate logic
with sufficient expressiveness to capture both regular tree types and
our XPath fragment. Second, we solve efficiently the satisfiability
problem which allows to test if a given formula of the logic admits
a satisfying finite tree.

The essence of our results lives in a sub-logic of the alternation
free modal µ-calculus (AFMC) with converse, some syntactic re-
strictions on formulas, without greatest fixpoint, and whose models
are finite trees. We prove that XPath expressions and regular tree
type formulas conform to these syntactic restrictions. Boolean clo-
sure is the key property for solving the containment (a logical im-
plication). In order to obtain closure under negation, we prove that
the least and greatest fixpoint operators collapse in a single fixpoint
operator. Surprisingly, the translations of XML regular tree types
and a large XPath fragment does not increase complexity since they
are linear in the size of the corresponding formulas in the logic. The
combination of these ingredients lead to our main result: a satisfi-
ability algorithm for a logic for finite trees whose time complexity
is a simple exponential of the size of a formula.

The decision procedure has been implemented in a system for
solving XML decision problems such as XPath emptiness, con-
tainment, overlap, and coverage, with or without XML type con-
straints. The system can be used as a component of static analyzers
for programming languages manipulating XPath expressions and
XML type annotations for both input and output.



2. Outline
The paper is organized as follows. We first present our data model,
trees with focus, and our logic in §3 and §4. We next present XPath
and its translation in our logic in §5. Our satisfiability algorithm
is introduced and proven correct in §6, and a few details of the
implementation are discussed in §7. Applications for type checking
and some experimental results are described in §8. We study related
work in §9 and conclude in §10.

Detailed proofs and implementation techniques can be found in
a long version of this paper [16].

3. Trees with Focus
In order to represent XML trees that are easy to navigate we use fo-
cused trees, inspired by Huet’s Zipper data structure [20]. Focused
trees not only describe a tree but also its context: its previous sib-
lings and its parent, including its parent context recursively. Explor-
ing such a structure has the advantage to preserve all information,
which is quite useful when considering languages such as XPath
that allow forward and backward axes of navigation.

Formally, we assume an alphabet Σ of labels, ranged over by σ.

t ::= σ[tl ] tree
tl ::= list of trees

ε empty list
| t :: tl cons cell

c ::= context
(tl ,Top, tl) root of the tree

| (tl , c[σ], tl) context node
f ::= (t, c) focused tree

In order to deal with decision problems such as containment, we
need to represent in a focused tree the place where the evaluation
was started using a start mark, often simply called “mark” in the
following. To do so, we consider focused trees where a single tree
or a single context node is marked, as in σs[tl ] or (tl , c[σs], tl).
When the presence of the mark is unknown, we write it as σ◦[tl ].
We write F for the set of finite focused trees with a single mark.
The name of a focused tree is defined as nm(σ◦[tl ], c) = σ.

We now describe how to navigate focused trees, in binary style.
There are four directions that can be followed: for a focused tree f ,
f 〈1〉 changes the focus to the children of the current tree, f 〈2〉
changes the focus to the next sibling of the current tree, f

˙
1

¸
changes the focus to the parent of the tree if the current tree is
a leftmost sibling, and f

˙
2

¸
changes the focus to the previous

sibling.
Formally, we have:

(σ◦[t :: tl ], c) 〈1〉 def
= (t, (ε, c[σ◦], tl))

(t, (tl l, c[σ
◦], t′ :: tlr)) 〈2〉

def
= (t′, (t :: tl l, c[σ

◦], tlr))

(t, (ε, c[σ◦], tl))
˙
1

¸ def
= (σ◦[t :: tl ], c)

(t′, (t :: tl l, c[σ
◦], tlr))

˙
2

¸ def
= (t, (tl l, c[σ

◦], t′ :: tlr))

When the focused tree does not have the required shape, these
operations are not defined.

4. The Logic
We introduce in this section the logic to which XPath expressions
and XML regular tree types are going to be translated, a sub-logic
of the alternation free modal µ-calculus with converse. We also
introduce a restriction on the formulas we consider and give an
interpretation of formulas as sets of finite focused trees. We finally
show that the logic has a single fixpoint for these models and that
it is closed under negation.

Lµ 3 ϕ,ψ ::= formula
> true

| σ | ¬σ atomic prop (negated)
| s | ¬s start prop (negated)
| X variable
| ϕ ∨ ψ disjunction
| ϕ ∧ ψ conjunction
| 〈a〉ϕ | ¬ 〈a〉> existential (negated)
| µXi.ϕi in ψ least n-ary fixpoint
| νXi.ϕi in ψ greatest n-ary fixpoint

Figure 1. Logic formulas

J>KV
def
= F JσKV

def
= {f | nm(f) = σ}

JXKV
def
= V (X) J¬σKV

def
= {f | nm(f) 6= σ}

Jϕ ∨ ψKV
def
= JϕKV ∪ JψKV JsKV

def
=

n
f | f = (σs[tl ], c)

o
Jϕ ∧ ψKV

def
= JϕKV ∩ JψKV J¬sKV

def
= {f | f = (σ[tl ], c)}

J〈a〉ϕKV
def
= {f 〈a〉 | f ∈ JϕKV ∧ f 〈a〉 defined}

J¬ 〈a〉>KV
def
= {f | f 〈a〉 undefined}

JµXi.ϕi in ψKV
def
= let Ti =

“\ n
Ti ⊆ F | JϕiKV [Ti/Xi]

⊆ Ti
o”

i

in JψKV [Ti/Xi]

JνXi.ϕi in ψKV
def
= let Ti =

“[ n
Ti ⊆ F | Ti ⊆ JϕiKV [Ti/Xi]

o”
i

in JψKV [Ti/Xi]

Figure 2. Interpretation of formulas

In the following definitions, a ∈ {1, 2, 1, 2} are programs and
atomic propositions σ correspond to labels from Σ. We also assume
that a = a. Formulas defined in Fig. 1 include the truth predicate,
atomic propositions (denoting the name of the tree in focus), start
propositions (denoting the presence of the start mark), disjunction
and conjunction of formulas, formulas under an existential (denot-
ing the existence a subtree satisfying the sub-formula), and least
and greatest n-ary fixpoints. We chose to include a n-ary version of
fixpoints because regular types are often defined as a set of mutu-
ally recursive definitions, making their translation in our logic more
succinct. In the following we write “µX.ϕ” for “µX.ϕ in ϕ”.

We define in Fig. 2 an interpretation of our formulas as sets of fi-
nite focused trees with a single start mark. The interpretation of the
n-ary fixpoints first compute the smallest or largest interpretation
for each ϕi then returns the interpretation of ψ.

We now restrict the set of valid formulas to cycle-free formulas,
i.e. formulas that have a bound on the number of modality cycles
independently of the number of unfolding of their fixpoints. A
modality cycle is a subformula of the form 〈a〉ϕ where ϕ contains
a top-level existential of the form 〈a〉ψ. (By “top-level” we mean
under an arbitrary number of conjunctions or disjunctions, but not
under any other construct.) For instance, the formula “µX. 〈1〉 (ϕ∨˙
1

¸
X) in X” is not cycle free: for any integer n, there is an

unfolding of the formula with nmodality cycles. On the other hand,
the formula “µX. 〈1〉 (X∨Y ), Y.

˙
1

¸
(Y ∨>) in X” is cycle free:

there is at most one modality cycle.
Cycle-free formulas have a very interesting property, which we

now describe. To test whether a tree satisfies a formula, one may



define a straightforward inductive relation between trees and for-
mulas that only holds when the root of the tree satisfies the formula,
unfolding fixpoints if necessary. Given a tree, if a formula ϕ is cy-
cle free, then every node of the tree will be tested a finite number
of time against any given subformula of ϕ. The intuition behind
this property, which holds a central role in the proof of lemma 4.2,
is the following. If a tree node is tested an infinite number of times
against a subformula, then there must be a cycle in the navigation in
the tree, corresponding to some modalities occurring in the subfor-
mula, between one occurrence of the test and the next one. As we
consider trees, the cycle implies there is a modality cycle in the for-
mula (as cycles of the form 〈1〉 〈2〉

˙
1

¸ ˙
2

¸
cannot occur). Hence

the number of modality cycles in any expansion of ϕ is unbounded,
thus the formula is not cycle free.

We are now ready to show a first result: in the finite focused-tree
interpretation, the least and greatest fixpoints coincide for cycle-
free formulas. To this end, we prove a stronger result that states
that a given focused tree is in the interpretation of a formula if it
is in a finite unfolding of the formula. In the base case, we use the
formula σ ∧ ¬σ as “false”.

DEFINITION 4.1 (Finite unfolding). The finite unfolding of a for-
mula ϕ is the set unf (ϕ) inductively defined as

unf (ϕ)
def
= {ϕ} for ϕ = >, σ,¬σ,s,¬s, X,¬ 〈a〉>

unf (ϕ ∨ ψ)
def
=

˘
ϕ′ ∨ ψ′ | ϕ′ ∈ unf (ϕ), ψ′ ∈ unf (ψ)

¯
unf (ϕ ∧ ψ)

def
=

˘
ϕ′ ∧ ψ′ | ϕ′ ∈ unf (ϕ), ψ′ ∈ unf (ψ)

¯
unf (〈a〉ϕ)

def
=

˘
〈a〉ϕ′ | ϕ′ ∈ unf (ϕ)

¯
unf (µXi.ϕi in ψ)

def
= unf (ψ{µXi.ϕi inXi/Xi}) ∪ {σ ∧ ¬σ}

unf (νXi.ϕi in ψ)
def
= unf (ψ{νXi.ϕi inXi/Xi}) ∪ {σ ∧ ¬σ}

LEMMA 4.2. Letϕ a cycle-free formula, then JϕKV = Junf (ϕ)KV .

The reason why this lemma holds is the following. Given a tree
satisfying ϕ, we deduce from the hypothesis that ϕ is cycle free
the fact that every node of the tree will be tested a finite number of
times against every subformula of ϕ. As the tree and the number
of subformulas are finite, the satisfaction derivation is finite hence
only a finite number of unfolding is necessary to prove that the tree
satisfies the formula, which is what the lemma states. As least and
greatest fixpoints coincide when only a finite number of unfolding
is required, this is sufficient to show that they collapse. Note that
this would not hold if infinite trees were allowed: the formula
µX. 〈1〉X is cycle free, but its interpretation is empty, whereas
the interpretation of νX. 〈1〉X includes every tree with an infinite
branch of 〈1〉 children.

We now illustrate why formulas need to be cycle free for the
fixpoints to collapse. Consider the formula µX. 〈1〉

˙
1

¸
X . Its in-

terpretation is empty. The interpretation of νX. 〈1〉
˙
1

¸
X however

contains every focused tree that has one 〈1〉 child.
In the rest of the paper, we only consider least fixpoints. An

important consequence of Lemma 4.2 is that the logic restricted
in this way is closed under negation using De Morgan’s dualities,
extended to eventualities and fixpoints as follows:

¬ 〈a〉ϕ def
= ¬ 〈a〉> ∨ 〈a〉 ¬ϕ

¬µXi.ϕi in ψ def
= µXi.¬ϕi{Xi/¬Xi} in ¬ψ{Xi/¬Xi}

5. XPath and Regular Tree Languages
XPath [6] is a powerful language for navigating in XML documents
and selecting sets of nodes matching a predicate. In their simplest
form, XPath expressions look like “directory navigation paths”. For

LXPath 3 e ::= XPath expression
/p absolute path

| p relative path
| e1 p e2 union
| e1 ∩ e2 intersection

Path p ::= path
p1/p2 path composition

| p[q] qualified path
| a::σ step with node test
| a::∗ step

Qualif q ::= qualifier
q1 and q2 conjunction

| q1 or q2 disjunction
| not q negation
| p path

Axis a ::= tree navigation axis
child | self | parent

| descendant | desc-or-self
| ancestor | anc-or-self
| foll-sibling | prec-sibling
| following | preceding

Figure 3. XPath Abstract Syntax.

example, the XPath expression

/child::book/child::chapter/child::section

navigates from the root of a document (designated by the lead-
ing “/”) through the top-level “book” node to its “chapter” child
nodes and on to its child nodes named “section”. The result of the
evaluation of the entire expression is the set of all the “section”
nodes that can be reached in this manner. The situation becomes
more interesting when combined with XPath’s capability of search-
ing along “axes” other than “child”. For instance, one may use the
“preceding-sibling” axis for navigating backward through nodes of
the same parent, or the “ancestor” axis for navigating upward re-
cursively. Furthermore, at each step in the navigation the selected
nodes can be filtered using qualifiers: boolean expression between
brackets that can test the existence or absence of paths.

We consider a large XPath fragment covering all major features
of the XPath recommendation [6] except counting and comparisons
between data values.

Fig. 3 gives the syntax of XPath expressions. Fig. 4 gives an
interpretation of XPath expressions as functions between sets of
focused trees.

5.1 XPath Embedding
We now explain how an XPath expression can be translated into an
equivalent Lµ formula that performs navigation in focused trees in
binary style.

Logical Interpretation of Axes The translation of navigational
primitives (namely XPath axes) is formally specified in Fig. 5. The
translation function, noted “A→JaKχ”, takes an XPath axis a as
input, and returns its Lµ translation, parameterized by the Lµ for-
mula χ given as parameter. This parameter represents the context
in which the axis occurs and is needed for formula composition
in order to translate path composition. More precisely, the formula
A→JaKχ holds for all nodes that can be accessed through the axis
a from some node verifying χ.

Let us consider an example. The formula A→JchildKχ, trans-
lated as µZ.

˙
1

¸
χ ∨

˙
2

¸
Z, is satisfied by children of the context

χ. These nodes consist of the first child and the remaining chil-
dren. From the first child, the context must be reached immediately



SeJ·K· : LXPath → 2F → 2F

SeJ/pKF
def
= SpJpKroot(F )

SeJpKF
def
= SpJpK{(σs[tl],c)∈F}

SeJe1 p e2KF
def
= SeJe1KF ∪ SeJe2KF

SeJe1 ∩ e2KF
def
= SeJe1KF ∩ SeJe2KF

SpJ·K· : Path→ 2F → 2F

SpJp1/p2KF
def
=

n
f ′ | f ′ ∈ SpJp2K(SpJp1KF )

o
SpJp[q]KF

def
= {f | f ∈ SpJpKF ∧ SqJqKf}

SpJa::σKF
def
= {f | f ∈ SaJaKF ∧ nm(f) = σ}

SpJa::∗KF
def
= {f | f ∈ SaJaKF }

SqJ·K· : Qualif → F → {true, false}

SqJq1 and q2Kf
def
= SqJq1Kf ∧ SqJq2Kf

SqJq1 or q2Kf
def
= SqJq1Kf ∨ SqJq2Kf

SqJnot qKf
def
= ¬ SqJqKf

SqJpKf
def
= SpJpK{f} 6= ∅

SaJ·K· : Axis→ 2F → 2F

SaJselfKF
def
= F

SaJchildKF
def
= fchild(F ) ∪ SaJfoll-siblingKfchild(F )

SaJfoll-siblingKF
def
= nsibling(F ) ∪ SaJfoll-siblingKnsibling(F )

SaJprec-siblingKF
def
= psibling(F ) ∪ SaJprec-siblingKpsibling(F )

SaJparentKF
def
= parent(F )

SaJdescendantKF
def
= SaJchildKF ∪ SaJdescendantK(SaJchildKF )

SaJdesc-or-selfKF
def
= F ∪ SaJdescendantKF

SaJancestorKF
def
= SaJparentKF ∪ SaJancestorK(SaJparentKF )

SaJanc-or-selfKF
def
= F ∪ SaJancestorKF

SaJfollowingKF
def
= SaJdesc-or-selfK(SaJfoll-siblingK(SaJanc-or-selfKF ))

SaJprecedingKF
def
= SaJdesc-or-selfK(SaJprec-siblingK(SaJanc-or-selfKF ))

fchild(F )
def
= {f 〈1〉 | f ∈ F ∧ f 〈1〉 defined}

nsibling(F )
def
= {f 〈2〉 | f ∈ F ∧ f 〈2〉 defined}

psibling(F )
def
=

˘
f

˙
2

¸
| f ∈ F ∧ f

˙
2

¸
defined

¯
parent(F )

def
= {(σ◦[rev a(tl l, t :: tlr)], c)

| (t, (tl l, c[σ◦], tlr)) ∈ F}

rev a(ε, tlr)
def
= tlr

rev a(t :: tl l, tlr)
def
= rev a(tl l, t :: tlr)

root(F )
def
= {(σs[tl ], (tl ,Top, tl)) ∈ F}
∪ root(parent(F ))

Figure 4. Interpretation of XPath in terms of Focused Trees.

A→J·K· : Axis→ Lµ → Lµ

A→JselfKχ
def
= χ

A→JchildKχ
def
= µZ.

˙
1

¸
χ ∨

˙
2

¸
Z

A→Jfoll-siblingKχ
def
= µZ.

˙
2

¸
χ ∨

˙
2

¸
Z

A→Jprec-siblingKχ
def
= µZ. 〈2〉χ ∨ 〈2〉Z

A→JparentKχ
def
= 〈1〉µZ.χ ∨ 〈2〉Z

A→JdescendantKχ
def
= µZ.

˙
1

¸
(χ ∨ Z) ∨

˙
2

¸
Z

A→Jdesc-or-selfKχ
def
= µZ.χ ∨ µY.

˙
1

¸
(Y ∨ Z) ∨

˙
2

¸
Y

A→JancestorKχ
def
= 〈1〉µZ.χ ∨ 〈1〉Z ∨ 〈2〉Z

A→Janc-or-selfKχ
def
= µZ.χ ∨ 〈1〉µY.Z ∨ 〈2〉Y

A→JfollowingKχ
def
= A→Jdesc-or-selfKη1

A→JprecedingKχ
def
= A→Jdesc-or-selfKη2

η1
def
= A→Jfoll-siblingKA→Janc-or-selfKχ

η2
def
= A→Jprec-siblingKA→Janc-or-selfKχ

Figure 5. Translation of XPath Axes.

E→J·K· : LXPath → Lµ → Lµ

E→J/pKχ
def
= P→JpK((µZ.¬〈1〉>∨〈2〉Z)∧(µY.χ∧s∨〈1〉Y ∨〈2〉Y ))

E→JpKχ
def
= P→JpK(χ∧s)

E→Je1 p e2Kχ
def
= E→Je1Kχ ∨ E→Je2Kχ

E→Je1 ∩ e2Kχ
def
= E→Je1Kχ ∧ E→Je2Kχ

P→J·K· : Path→ Lµ → Lµ

P→Jp1/p2Kχ
def
= P→Jp2K(P→Jp1Kχ)

P→Jp[q]Kχ
def
= P→JpKχ ∧Q←JqK>

P→Ja::σKχ
def
= σ ∧A→JaKχ

P→Ja::∗Kχ
def
= A→JaKχ

Figure 6. Translation of Expressions and Paths.

by going once upward via 1. From the remaining children, the con-
text is reached by going upward (any number of times) via 2 and
then finally once via 1.

Logical Interpretation of Expressions Fig. 6 gives the translation
of XPath expressions into Lµ. The translation function “E→JeKχ”
takes an XPath expression e and a Lµ formula χ as input, and re-
turns the corresponding Lµ translation. The translation of a relative
XPath expression marks the initial context with s. The translation
of an absolute XPath expression navigates to the root which is taken
as the initial context.

Figure 7 illustrates the translation of the XPath expression
“child::a[child::b]”. This expression selects all “a” child nodes of a
given context which have at least one “b” child. The translated Lµ
formula holds for “a” nodes which are selected by the expression.
The first part of the translated formula, ϕ, corresponds to the step



Translated Query: child::a [child::b]

a ∧ (µX.
˙
1

¸
(χ ∧ s) ∨

˙
2

¸
X)| {z }

ϕ

∧ 〈1〉µY.b ∨ 〈2〉Y| {z }
ψ

χ

a ϕ

c

a

d

b

ϕ∧ψ

Figure 7. XPath Translation Example.

“child::a” which selects candidates “a” nodes. The second part,
ψ, navigates downward in the subtrees of these candidate nodes to
verify that they have at least one immediate “b” child.

Note that without converse programs we would have been un-
able to differentiate selected nodes from nodes whose existence is
tested: we must state properties on both the ancestors and the de-
scendants of the selected node. Equipping the Lµ logic with both
forward and converse programs is therefore crucial for supporting
XPath. Logics without converse programs may only be used for
solving XPath emptiness but cannot be used for solving other deci-
sion problems such as containment efficiently.

XPath composition construct p1/p2 translates into formula
composition in Lµ, such that the resulting formula holds for all
nodes accessed through p2 from those nodes accessed through p1

from χ. The translation of the branching construct p[q] signifi-
cantly differs. The resulting formula must hold for all nodes that
can be accessed through p and from which q holds. To preserve se-
mantics, the translation of p[q] stops the “selecting navigation” to
those nodes reached by p, then filters them depending on whether
q holds or not. We express this by introducing a dual formal trans-
lation function for XPath qualifiers, noted Q←JqK· and defined in
Fig. 8, that performs “filtering” instead of navigation. Specifically,
P→J·K· can be seen as the “navigational” translating function: the
translated formula holds for target nodes of the given path. On the
opposite, Q←J·K· can be seen as the “filtering” translating func-
tion: it states the existence of a path without moving to its result.
The translated formula Q←JqKχ (respectively P←JpKχ) holds for
nodes from which there exists a qualifier q (respectively a path p)
leading to a node verifying χ.

XPath translation is based on these two translating “modes”,
the first one being used for paths and the second one for qualifiers.
Whenever the “filtering” mode is entered, it will never be left.

The translation of paths inside qualifiers is also given in Fig. 8.
It uses the translation for axes and is based on XPath symmetry:
symmetric(a) denotes the symmetric XPath axis corresponding to
the axis a (for instance symmetric(child) = parent).

We may now state that our translation is correct, by relating the
interpretation of an XPath formula applied to some set of trees to
the interpretation of its translation, by stating that the translation of
a formula is cycle-free, and by giving a bound in the size of this
translation.

We restrict the sets of trees to which an XPath formula may
be applied to those that may be denoted by an Lµ formula. This
restriction will be justified in Section 5.2 where we show that every
regular tree language may be translated to an Lµ formula.

PROPOSITION 5.1 (Translation Correctness). The following hold
for an XPath expression e and a Lµ formula ϕ denoting a set of
focused trees, with ψ = E→JeKϕ:

Q←J·K· : Qualif → Lµ → Lµ

Q←Jq1 and q2Kχ
def
= Q←Jq1Kχ ∧Q←Jq2Kχ

Q←Jq1 or q2Kχ
def
= Q←Jq1Kχ ∨Q←Jq2Kχ

Q←Jnot qKχ
def
= ¬ Q←JqKχ

Q←JpKχ
def
= P←JpKχ

P←J·K· : Path→ Lµ → Lµ

P←Jp1/p2Kχ
def
= P←Jp1K(P←Jp2Kχ)

P←Jp[q]Kχ
def
= P←JpK(χ∧Q←JqK>)

P←Ja::σKχ
def
= A←JaK(χ∧σ)

P←Ja::∗Kχ
def
= A←JaKχ

A←J·K· : Axis→ Lµ → Lµ

A←JaKχ
def
= A→Jsymmetric(a)Kχ

Figure 8. Translation of Qualifiers.

1. JψK∅ = SeJeKJϕK∅
2. ψ is cycle-free
3. the size of ψ is linear in the size of e and ϕ

5.2 Embedding Regular Tree Languages
Several formalisms exist for describing types of XML documents
(e.g. DTD, XML Schema, Relax NG). In this paper we embed
regular tree languages, which gather all of them [26] into Lµ. We
rely on a straightforward isomorphism between unranked regular
tree types and binary regular tree types [19]. Assuming a countably
infinite set of type variables ranged over by X , binary regular tree
type expressions are defined as follows:

LBT 3 T ::= tree type expression
∅ empty set

| ε leaf
| T1 p T2 union
| σ(X1, X2) label
| let Xi.Ti in T binder

We refer the reader to [19] for the denotational semantics of regular
tree languages, and directly introduce their translation into Lµ:

J·K : LBT → Lµ
JT K def

= σ ∧ ¬σ for T = ∅, ε

JT1 p T2K
def
= JT1K ∨ JT2K

Jσ(X1, X2)K
def
= σ ∧ succ1(X1) ∧ succ2(X2)

Jlet Xi.Ti in T K def
= µXi.JTiK in JT K

where we use the formula σ ∧ ¬σ as “false”, and the function
succ·(·) takes care of setting the type frontier:

succα(X) =

8<: ¬ 〈α〉> if X is bound to ε
¬ 〈α〉> ∨ 〈α〉X if nullable(X)
〈α〉X if not nullable(X)

according to the predicate nullable(X) which indicates whether the
type T 6= ε bound to X contains the empty tree.



Note that the translation of a regular tree type uses only down-
ward modalities since it describes the allowed subtrees at a given
context. No additional restriction is imposed on the context from
which the type definition starts. In particular, navigation is allowed
in the upward direction so that we can support type constraints for
which we have only partial knowledge in a given direction. How-
ever, when we know the position of the root, conditions similar to
those of absolute paths are added in the form of additional formulas
describing the position that need to be satisfied. This is particularly
useful when a regular type is used by an XPath expression that
starts its navigation at the root (/p) since the path will not go above
the root of the type (by adding the restriction µZ.¬

˙
1

¸
>∨

˙
2

¸
Z).

On the other hand, if the type is compared with another type
(typically to check inclusion of the result of an XPath expression
in this type), then there is no restriction as to where the root of the
type is (our translation does not impose the chosen node to be at the
root). This is particularly useful since an XPath expression usually
returns a set of nodes deep in the tree which we may compare to
this partially defined type.

6. Satisfiability-Testing Algorithm
In this section we present our algorithm, show that it is sound
and complete, and prove a time complexity boundary. To check
a formula ϕ, our algorithm builds satisfiable formulas out of some
subformulas (and their negation) of ϕ, then checks whether ϕ was
produced. We first describe how to extract the subformulas from ϕ.

6.1 Preliminary Definitions

For ϕ = (µXi.ϕi in ψ) we define exp(ϕ)
def
= ψ{µXi.ϕi inXi/Xi}

which denotes the formula ψ in which every occurrence of a Xi is
replaced by (µXi.ϕi in Xi).

We define the Fisher-Ladner closure cl(ψ) of a formula ψ as the
set of all subformulas of ψ where fixpoint formulas are additionally
unwound once. Specifically, we define the relation→e⊆ Lµ ×Lµ
as the least relation that satisfies the following:

• ϕ1 ∧ ϕ2 →e ϕ1, ϕ1 ∧ ϕ2 →e ϕ2

• ϕ1 ∨ ϕ2 →e ϕ1, ϕ1 ∨ ϕ2 →e ϕ2

• 〈a〉ϕ′ →e ϕ
′

• µXi.ϕi in ψ →e exp(µXi.ϕi in ψ)

The closure cl(ψ) is the smallest set S that contains ψ and closed
under the relation→e, i.e. if ϕ1 ∈ S and ϕ1 →e ϕ2 then ϕ2 ∈ S.

We call Σ(ψ) the set of atomic propositions σ used in ψ along
with another name, σx, that does not occur in ψ to represent atomic
propositions not occurring in ψ.

We define cl∗(ψ) = cl(ψ) ∪ {¬ϕ | ϕ ∈ cl(ψ)}. Every formula
ϕ ∈ cl∗(ψ) can be seen as a boolean combination of formulas of
a set called the Lean of ψ, inspired from [27]. We note this set
Lean(ψ) and define it as follows:

Lean(ψ) =
˘
〈a〉> | a ∈ {1, 2, 1, 2}

¯
∪ Σ(ψ)

∪ {s} ∪ {〈a〉ϕ | 〈a〉ϕ ∈ cl(ψ)}
Aψ-type (or simply a “type”) (Hintikka set in the temporal logic

literature) is a set t ⊆ Lean(ψ) such that:

• ∀ 〈a〉ϕ ∈ Lean(ψ), 〈a〉ϕ ∈ t ⇒ 〈a〉> ∈ t (modal consis-
tency);

•
˙
1

¸
> /∈ t ∨

˙
2

¸
> /∈ t (a tree node cannot be both a first child

and a second child);
• exactly one atomic proposition σ ∈ t (XML labeling); we use

the function σ(t) to return the atomic proposition of a type t;
• s may belong to t.

>
.
∈ t =⇒ (∅, ∅)

ϕ ∈ Lean(ψ) ϕ ∈ t
ϕ

.
∈ t =⇒ ({ϕ}, ∅)

ϕ1

.
∈ t =⇒ (T1, F1) ϕ2

.
∈ t =⇒ (T2, F2)

ϕ1 ∧ ϕ2

.
∈ t =⇒ (T1 ∪ T2, F1 ∪ F2)

ϕ1

.
∈ t =⇒ (T1, F1)

ϕ1 ∨ ϕ2

.
∈ t =⇒ (T1, F1)

ϕ2

.
∈ t =⇒ (T2, F2)

ϕ1 ∨ ϕ2

.
∈ t =⇒ (T2, F2)

ϕ
.

/∈ t =⇒ (T, F )

¬ϕ
.
∈ t =⇒ (T, F )

exp(µXi.ϕi in ψ)
.
∈ t =⇒ (T, F )

µXi.ϕi in ψ
.
∈ t =⇒ (T, F )

ϕ ∈ Lean(ψ) ϕ 6∈ t

ϕ
.

/∈ t =⇒ (∅, {ϕ})

ϕ1

.

/∈ t =⇒ (T1, F1) ϕ2

.

/∈ t =⇒ (T2, F2)

ϕ1 ∨ ϕ2

.

/∈ t =⇒ (T1 ∪ T2, F1 ∪ F2)

ϕ1

.

/∈ t =⇒ (T1, F1)

ϕ1 ∧ ϕ2

.

/∈ t =⇒ (T1, F1)

ϕ2

.

/∈ t =⇒ (T2, F2)

ϕ1 ∧ ϕ2

.

/∈ t =⇒ (T2, F2)

ϕ
.
∈ t =⇒ (T, F )

¬ϕ
.

/∈ t =⇒ (T, F )

exp(µXi.ϕi in ψ)
.

/∈ t =⇒ (T, F )

µXi.ϕi in ψ
.

/∈ t =⇒ (T, F )

Figure 9. Truth assignment of a formula

We call Types(ψ) the set of ψ-types. For a ψ-type t, the comple-
ment of t is the set Lean(ψ) \ t.

A type determines a truth assignment of every formula in cl∗(ψ)
with the relation

.
∈ defined in Fig. 9. Note that such derivations are

finite because the number of naked µXi.ϕi in ψ (that do not occur
under modalities) strictly decreases after each expansion.

We often write ϕ
.
∈ t if there are some T, F such that ϕ

.
∈

t =⇒ (T, F ). We say that a formula ϕ is true at a type t iff ϕ
.
∈ t.

We now relate a formula to the truth assignment of its ψ-types.

PROPOSITION 6.1. If ϕ
.
∈ t =⇒ (T, F ), then we have T ⊆ t,

F ⊆ Lean(ϕ) \ t, and
V
ψ∈T ψ ∧

V
ψ∈F ¬ψ implies ϕ (every

tree in the interpretation of the first formula is in the interpretation
of the second). If ϕ

.

/∈ t =⇒ (T, F ), then we have T ⊆ t,
F ⊆ Lean(ϕ) \ t, and

V
ψ∈T ψ ∧

V
ψ∈F ¬ψ implies ¬ϕ.

We next define a compatibility relation between types to state
that two types are related according to a modality.

DEFINITION 6.2 (Compatibility relation). Two types t and t′ are
compatible under a ∈ {1, 2}, written ∆a(t, t

′), iff

∀ 〈a〉ϕ ∈ Lean(ψ), 〈a〉ϕ ∈ t⇔ ϕ
.
∈ t′

∀ 〈a〉ϕ ∈ Lean(ψ), 〈a〉ϕ ∈ t′ ⇔ ϕ
.
∈ t

6.2 The Algorithm
The algorithm works on sets of triples of the form (t, w1, w2)
where t is a type, and w1 and w2 are sets of types which represent
every witness for t according to relations ∆1(t, ·) and ∆2(t, ·).

The algorithm proceeds in a bottom-up approach, repeatedly
adding new triples until a satisfying model is found (i.e. a triple
whose first component is a type implying the formula), or until no



Upd(X)
def
= X ∪ {(t, w1(t,X

◦), w2(t,X
◦)) | s /∈ t ⊆ Types(ψ) ∧ 〈1〉> ∈ t⇒ w1(t,X

◦) 6= ∅ ∧ 〈2〉> ∈ t⇒ w2(t,X
◦) 6= ∅}

∪
n

(t, w1(t,X
◦), w2(t,X

◦))s | s ∈ t ⊆ Types(ψ) ∧ 〈1〉> ∈ t⇒ w1(t,X
◦) 6= ∅ ∧ 〈2〉> ∈ t⇒ w2(t,X

◦) 6= ∅
o

∪
n

(t, w1(t,X
s), w2(t,X

◦))s | s /∈ t ⊆ Types(ψ) ∧ 〈1〉> ∈ t⇒ w1(t,X
s) 6= ∅ ∧ 〈2〉> ∈ t⇒ w2(t,X

◦) 6= ∅
o

∪
n

(t, w1(t,X
◦), w2(t,X

s))s | s /∈ t ⊆ Types(ψ) ∧ 〈1〉> ∈ t⇒ w1(t,X
◦) 6= ∅ ∧ 〈2〉> ∈ t⇒ w2(t,X

s) 6= ∅
o

wa(t,X)
def
= {type(x) | x ∈ X ∧ 〈a〉> ∈ type(x) ∧∆a(t, type(x))} Xs def

=
n
x ∈ X | x = ( , , )s

o
FinalCheck(ψ,X)

def
= ∃x ∈ Xs, dsat(x, ψ) ∧ ∀a ∈ {1, 2}, 〈a〉> /∈ type(x) X◦

def
= {x ∈ X | x = ( , , )}

dsat((t, w1, w2), ψ)
def
= ψ

.
∈ t ∨ ∃x′, dsat(x′, ψ) ∧ (x′ ∈ w1 ∨ x′ ∈ w2) type((t, w1, w2))

def
= t

Figure 10. Operations used by the Algorithm.

more triple can be added. Each iteration of the algorithm builds
types representing deeper trees (in the 1 and 2 direction) with
pending backward modalities that will be fulfilled at later iterations.
Types with no backward modalities are satisfiable, and if such a
type implies the formula being tested, then it is satisfiable. The
main iteration is as follows:

X ← ∅
repeat
X ′ ← X
X ← Upd(X ′)
if FinalCheck(ψ,X) then

return “ψ is satisfiable”
until X = X ′

return “ψ is unsatisfiable”

where X ⊆ Types(ψ) × 2Types(ψ) × 2Types(ψ) and the operations
Upd(·) and FinalCheck(·) are defined on Fig. 10.

We note Xi the set of triples and T i the set of types after i
iterations: T i =

˘
type(x) | x ∈ Xi

¯
. Note that T i+1 is the set of

types for which at least one witness belongs to T i.

6.3 Correctness and Complexity
In this section we define the necessary notions to prove the correct-
ness of the satisfiability testing algorithm, and show that its time
complexity is 2O(|Lean(ψ)|).

THEOREM 6.3 (Correctness). The algorithm decides satisfiability
of Lµ formulas over finite focused trees.

Termination For ψ ∈ Lµ, since cl(ψ) is a finite set, Lean(ψ) and
2Lean(ψ) are also finite. Furthermore, Upd(·) is monotonic and each
Xi is included in the finite set Types(ψ) × 2Types(ψ) × 2Types(ψ),
therefore the algorithm terminates. To finish the proof, it thus suf-
fices to prove soundness and completeness.

Preliminary Definitions for Soundness First, we introduce a no-
tion of partial satisfiability for a formula, where backward modal-
ities are only checked up to a given level. A formula ϕ is partially
satisfied iff JϕK0V 6= ∅ as defined in Fig. 11.

For a type t, we note ϕc(t) its most constrained formula, where
atoms are taken from Lean(ψ). In the following, ◦ stands for s if
s ∈ t, and for ¬s otherwise.

ϕc(t) = σ(t) ∧
^

σ∈Σ,σ/∈t

¬σ ∧ ◦ ∧
^
〈a〉ϕ∈t

〈a〉ϕ ∧
^
〈a〉ϕ/∈t

¬ 〈a〉ϕ

We now introduce a notion of paths, written ρ which are con-
catenations of modalities: the empty path is written ε, and path con-
catenation is written ρa.

J>KnV
def
= F JXKnV

def
= V (X)

Jϕ ∨ ψKnV
def
= JϕKnV ∪ JψKnV JpKnV

def
= {f | nm(f) = p}

Jϕ ∧ ψKnV
def
= JϕKnV ∩ JψKnV J¬pKnV

def
= {f | nm(f) 6= p}

J
˙
1

¸
ϕK0V

def
= F JsKnV

def
=

n
f | f = (σs[tl ], c)

o
J
˙
2

¸
ϕK0V

def
= F J¬sKnV

def
= {f | f = (σ[tl ], c)}

J
˙
1

¸
ϕKn>0
V

def
=

˘
f 〈1〉 | f ∈ JϕKn−1

V ∧ f 〈1〉 defined
¯

J
˙
2

¸
ϕKn>0
V

def
=

˘
f 〈2〉 | f ∈ JϕKn−1

V ∧ f 〈2〉 defined
¯

J〈1〉ϕKnV
def
=

˘
f

˙
1

¸
| f ∈ JϕKn+1

V ∧ f
˙
1

¸
defined

¯
J〈2〉ϕKnV

def
=

˘
f

˙
2

¸
| f ∈ JϕKn+1

V ∧ f
˙
2

¸
defined

¯
J¬ 〈a〉>KnV

def
= {f | f 〈a〉 undefined}

JµXi.ϕi in ψKnV
def
= let Ti =

“\ n
Ti ⊆ F | JϕiKnV [Ti/Xi]

⊆ Ti
o”

i

in JψKn
V [Ti/Xi]

Figure 11. Partial satisfiability

Every path may be given a depth:

depth(ε)
def
= 0

depth(ρa)
def
= depth(ρ) + 1 if a ∈ {1, 2}

depth(ρa)
def
= depth(ρ)− 1 if a ∈ {1, 2}

A forward path is a path that only mentions forward modalities.
We define a tree of types T as a tree whose nodes are types,

T (·) = t, with at most two children, T 〈1〉 and T 〈2〉. The nav-
igation in trees of types is trivially extended to forward paths. A
tree of types is consistent iff for every forward path ρ and for every
child a of T 〈ρ〉, we have T 〈ρ〉 (·) = t, T 〈ρa〉 (·) = t′ implies
〈a〉> ∈ t, 〈a〉> ∈ t′, and ∆a(t, t

′).
Given a consistent tree of types T , we now define a dependency

graph whose nodes are pairs of a forward path ρ and a formula in
t = T 〈ρ〉 (·) or the negation of a formula in the complement of
t. The directed edges of the graph are labeled with modalities con-
sistent with the tree. This graph corresponds to what the algorithm
ultimately builds, as every iteration discovers longer forward paths.
For every (ρ, ϕ) in the nodes we build the following edges:

• ϕ ∈ Σ(ψ) ∪ ¬Σ(ψ) ∪ {s,¬s, 〈a〉>,¬ 〈a〉>}: no edge



• ρ = ε and ϕ = 〈a〉ϕ′ with a ∈ {1, 2}: no edge
• ρ = ρ′a and ϕ = 〈a′〉ϕ′: let t = T 〈ρ〉 (·).

We first consider the case where a′ ∈ {1, 2} and let t′ =
T 〈ρa′〉 (·). As T is consistent, we have ϕ′

.
∈ t′ hence there

are T, F such that ϕ′
.
∈ t′ =⇒ (T, F ) with T a subset of t′,

and F a subset of the complement of t′. For every ϕT ∈ T we
add an edge a′ to (ρa′, ϕT ), and for every ϕF ∈ F we add an
edge a′ to (ρa′,¬ϕF ).
We now consider the case where a′ ∈ {1, 2} and first show
that we have a′ = a. As T is consistent, we have 〈a〉> in t.
Moreover, as t is a tree type, it must contain 〈a′〉>. As a′ is a
backward modality, it must be equal to a as at most one may be
present. Hence we have ρ′aa′ = ρ′ and we let t′ = T 〈ρ′〉 (·).
By consistency, we have ϕ′

.
∈ t′, hence ϕ′

.
∈ t′ =⇒ (T, F )

and we add edges as in the previous case: to (ρ′, ϕT ) and to
(ρ′,¬ϕF ).

• ρ = ρ′a and ϕ = ¬ 〈a′〉ϕ′: let t = T 〈ρ〉 (·). If 〈a′〉>
is not in t then no edge is added. Otherwise, we proceed as
in the previous case. For downward modalities, we let t′ =

T 〈ρa′〉 (·) and we compute ϕ′
.

/∈ t′ =⇒ (T, F ), which we
know to hold by consistency. We then add edges to (ρa′, ϕT )
and to (ρa′,¬ϕF ) as before. For upward modalities, as we have
〈a′〉> in t, we must have a′ = a and we let t′ = T 〈ρ′〉 (·). We
compute ϕ′

.

/∈ t′ =⇒ (T, F ) and we add the edges to (ρ′, ϕT )
and to (ρ′,¬ϕF ) as before.

LEMMA 6.4. The dependency graph of a consistent tree of types of
a cycle-free formula is cycle free.

LEMMA 6.5 (Soundness). Let T be the result set of the algorithm.
For any type t ∈ T and any ϕ such that ϕ

.
∈ t, then JϕK0∅ 6= ∅.

Proof outline: The proof (detailed in [16] ) proceeds by induction
on the number of steps of the algorithm. For every t in Tn and
every witness tree T rooted at t built from Xn, we show that T is
a consistent tree type and we build a focused tree f that is rooted
(i.e. of the shape (σ◦[tl ], (ε,Top, tl ′))).

We then proceed to show that f satisfies ϕc(t) at level 0. To do
so, we use a further induction on the dependency tree. �

LEMMA 6.6 (Completeness). For a cycle-free closed formula ϕ ∈
Lµ, if JϕK∅ 6= ∅ then the algorithm terminates with a set of triples
X such that FinalCheck(ϕ,X).

Proof outline: As the formula is satisfiable, we consider a smallest
focused tree f satisfying it. We then use Lemma 4.2 to derive a
finite satisfaction relation of ϕ that contains f . We then rely on this
relation to build a run of the algorithm that produces a type with no
backward modality implying the formula. �

LEMMA 6.7 (Complexity). For ψ ∈ Lµ the satisfiability problem
JψK∅ 6= ∅ is decidable in time 2O(n) where n = |Lean(ψ)|.

7. Implementation Techniques
Our implementation relies on a symbolic representation of sets of
ψ-types using Binary Decision Diagrams (BDDs) [5].

First, we observe that the implementation can avoid keeping
track of every possible witnesses of each ψ-type. In fact, for a
formula ϕ, we can test JϕK∅ 6= ∅ by testing the satisfiability of
the (linear-size) “plunging” formula ψ = µX.ϕ ∨ 〈1〉X ∨ 〈2〉X
at the root of focused trees. That is, checking JψK0∅ 6= ∅ while
ensuring there is no unfulfilled upward eventuality at top level 0.
One advantage of proceeding this way is that the implementation
only need to deal with a current set of ψ-types at each step.

We now introduce a bit-vector representation of ψ-types. Types
are complete in the sense that either a subformula or its negation
must belong to a type. It is thus possible for a formulaϕ ∈ Lean(ψ)
to be represented using a single BDD variable. For Lean(ψ) =
{ϕ1, ..., ϕm}, we represent a subset t ⊆ Lean(ψ) by a vector
~t = 〈t1, ..., tm〉 ∈ {0, 1}m such that ϕi ∈ t iff ti = 1. A BDD
with m variables is then used to represent a set of such bit vectors.

We define auxiliary predicates for programs a ∈ {1, 2}:
• isparenta(~t) is read “~t is a parent for program a” and is true iff

the bit for 〈a〉> is true in ~t

• ischilda(~t) is read “~t is a child for program a” and is true iff the
bit for 〈a〉> is true in ~t

For a set T ⊆ 2Lean(ψ), we note χT its corresponding character-
istic function. Encoding χTypes(ψ) is straightforward. The predicate
statusϕ(~t) is the equivalent of

.
∈ on the bit vector representation.

We now construct the BDD of the relation ∆a for a ∈ {1, 2}. This
BDD relates all pairs (~x, ~y) that are consistent w.r.t the program a,
i.e., such that ~y supports all of ~x’s 〈a〉ϕ formulas, and vice-versa
~x supports all of ~y’s 〈a〉ϕ formulas:

∆a(~x, ~y)
def
=

^
1≤i≤m

8<: xi ↔ statusϕ(~y) if ϕi = 〈a〉ϕ
yi ↔ statusϕ(~x) if ϕi = 〈a〉ϕ
> otherwise

For a ∈ {1, 2}, we define the set of witnessed vectors:

χWita(T )(~x)
def
= isparenta(~x)→ ∃~y [ h(~y) ∧∆a(~x, ~y) ]

where h(~y) = χT (~y) ∧ ischilda(~y).
Then, the BDD of the fixpoint computation is initially set to the

false constant, and the main function Upd(·) is implemented as:

χUpd(T )(~x)
def
= χT (~x) ∨

0@χTypes(ψ)(~x) ∧
^

a∈{1,2}

χWita(T )(~x)

1A
Finally, the solver is implemented as iterations over the sets

χUpd(T ) until a fixpoint is reached. The final satisfiability condition
consists in checking whether ψ is present in a ψ-type of this
fixpoint with no unfulfilled upward eventuality.

We use two major techniques for further optimization. First,
BDD relational products (∃~y [ h(~y) ∧∆a(~x, ~y) ]) are computed
using conjunctive partitioning and early quantification [10]. Sec-
ond, we observed that choosing a good initial order of Lean(ψ)
formulas does significantly improve performance. Experience has
shown that the variable order determined by the breadth-first traver-
sal of the formula ψ to solve, which keeps sister subformulas in
close proximity, yields better results in practice.

8. Typing Applications and Experimental Results
For XPath expressions e1, ..., en, we can formulate several decision
problems in the presence of XML type expressions T1, ..., Tn :

• XPath containment: E→Je1KJT1K ∧ ¬E→Je2KJT2K (if the for-
mula is unsatisfiable then all nodes selected by e1 under type
constraint T1 are selected by e2 under type constraint T2)

• XPath emptiness: E→Je1KJT1K

• XPath overlap: E→Je1KJT1K ∧ E→Je2KJT2K

• XPath coverage: E→Je1KJT1K ∧
V

2≤i≤n ¬E
→JeiKJTiK

Two problems are of special interest for XML type checking:

• Static type checking of an annotated XPath query:
E→Je1KJT1K ∧ ¬JT2K (if the formula is unsatisfiable then all



e1 /a[.//b[c/*//d]/b[c//d]/b[c/d]]
e2 /a[.//b[c/*//d]/b[c/d]]

e3 a/b//c/foll-sibling::d/e
e4 a/b//d[prec-sibling::c]/e
e5 a/c/following::d/e
e6 a/b[//c]/following::d/e ∩ a/d[preceding::c]/e

e7 *//switch[ancestor::head]//seq//audio[prec-sibling::video]

e8 descendant::a[ancestor::a]
e9 /descendant::*
e10 html/(head p body)
e11 html/head/descendant::*
e12 html/body/descendant::*

Figure 12. XPath Expressions Used in Experiments.

DTD Symbols Binary Type Variables
SMIL 1.0 19 11
XHTML 1.0 Strict 77 325

Table 1. Types Used in Experiments.

nodes selected by e1 under type constraint T1 are included in
the type T2.)

• XPath equivalence under type constraints:
E→Je1KJT1K∧¬E→Je2KJT2K and¬E→Je1KJT1K∧E→Je2KJT2K
(This test can be used to check that the nodes selected after a
modification of a type T1 by T2 and an XPath expression e1 by
e2 are the same, typically when an input type changes and the
corresponding XPath query has to change as well.)

As no third-party implementation we know of addresses reverse
axes and recursion, we simply provide evidence that our approach
is efficient. We carried out extensive tests1 [16] , and present here
only a representative sample that includes the most complex lan-
guage features such as recursive forward and backward axes, in-
tersection, large and very recursive types with a reasonable alpha-
bet size. The tests use XPath expressions shown on Fig. 12 (where
“//” is used as a shorthand for “/desc-or-self::*/”) and XML types
shown on Table 1. Table 2 presents some decision problems and
corresponding performance results. Times reported in milliseconds
correspond to the running time of the satisfiability solver without
the (negligible) time spent for parsing and translating into Lµ.

The first XPath containment instance was first formulated in
[24] as an example for which the proposed tree pattern homomor-
phism technique is incomplete. The e8 example shows that the of-
ficial XHTML DTD does not syntactically prohibit the nesting of
anchors. For the XHTML case, we observe that the time needed is
more important, but it remains practically relevant, especially for
static analysis operations performed only at compile-time.

9. Related Work
The XPath containment problem has attracted a lot of research at-
tention in the database community, where the focus was given to the
study of the impact of different XPath features on the containment
complexity (see [28] for an overview). The complexity of XPath
satisfiability in the presence of DTDs also is extensively studied in
[3]. From these results, we know that XPath containment with or
without type constraints ranges from EXPTIME to undecidable.

1 Experiments have been conducted with a JAVA implementation running
on a Pentium 4, 3 Ghz, with 512Mb of RAM with Windows XP.

XPath Decision Problem XML Type Time (ms)
e1 ⊆ e2 and e2 6⊆ e1 none 353
e4 ⊆ e3 and e4 ⊆ e3 none 45
e6 ⊆ e5 and e5 6⊆ e6 none 41
e7 is satisfiable SMIL 1.0 157
e8 is satisfiable XHTML 1.0 2630

e9 ⊆ (e10 ∪ e11 ∪ e12) XHTML 1.0 2872

Table 2. Some Decision Problems and Corresponding Results.

Most formalisms used in the context of XML are related to
one of the two logics used for unranked trees: first-order logic
(FO), and Monadic Second Order Logic (MSO). FO and relatives
are frequently used for query languages since they nicely capture
their navigational features [2]. In a attempt to reach more expres-
sive power, the work found in [1] proposes a variant of Proposi-
tional Dynamic Logic (PDL) with an EXPTIME complexity. MSO,
specifically the weak monadic second-order logic of two succes-
sors (WS2S) [9], is one of the most expressive decidable logic used
when both regular types and queries [2] are under consideration.
WS2S satisfiability is known to be non-elementary. A drawback of
the WS2S decision procedure is that it requires the full construction
and complementation of tree automata.

Some temporal and fixpoint logics closely related to MSO have
been introduced and allow to avoid explicit automata construction.
The propositional modal µ-calculus introduced in [22] has been
shown to be as expressive as nondeterministic tree automata [11].
Since it is trivially closed under negation, it constitutes a good
alternative for studying MSO-related problems. Moreover, it has
been extended with converse programs in [31]. The best known
complexity for the resulting logic is obtained through reduction to
the emptiness problem of alternating tree automaton which is in
2O(n4·log n), where n corresponds to the length of a formula [18].
Unfortunately the logic lacks the finite model property. From [31],
we know that WS2S is exactly as expressive as the alternation-free
fragment (AFMC) of the propositional modal µ-calculus. Further-
more, the AFMC subsumes all early logics such as CTL and PDL
(see [2] for a complete survey on tree logics).

The goal of the research presented so far is limited to estab-
lishing new theoretical properties and complexity bounds. Our re-
search differs in that we seek precise complexity bounds, efficient
implementation techniques, and concrete design that may be di-
rectly applied to the type checking of XPath queries under regular
tree types.

In this line of research, some experimental results based on
WS2S, through the Mona tool [21], have recently been reported
for XPath containment [15]. However, for static analysis purposes,
the explosiveness of the approach is very difficult to control due
to the non-elementary complexity. Closer to our contribution, the
recent work found in [29] provides a decision procedure for the
AFMC with converse whose time complexity is 2O(n·log n). How-
ever, models of the logic are Kripke structures (infinite graphs).
Enforcing the finite tree model property can be done at the syntac-
tic level [29], and this has been further developed in the XML set-
ting in [14]. Nevertheless, the drawback of this approach is that the
AFMC decision procedure requires expensive cycle-detection for
rejecting infinite derivation paths for least fixpoint formulas. The
present work shows how this can be avoided for finite trees. As a
consequence, the resulting performance is much more attractive. In
an earlier work on XML type checking, a logic for finite trees was
presented [30], but the logic is not closed under negation.

In [7], a technique is presented for statically ensuring correct-
ness of paths. The approach only deals with emptiness of XPath



expressions without reverse axes, whereas our approach solves the
more general problem of containment, including reverse axes.

The work [25] presents an approximated technique that is able
to statically detect errors in XSLT stylesheets. Their approach
could certainly benefit from using our exact algorithm instead of
their conservative approximation. The XDuce [19], CDuce [4], and
XStatic [13] languages support pattern-matching through regular
expression types but not XPath. A survey on existing research on
statically type checking XML transformations can be found in [25].

10. Conclusion
The main result of our paper is a sound and complete algorithm for
the satisfiability of decision problems involving regular tree types
and XPath queries with a tighter 2O(n) complexity in the length of
a formula. Our approach is based on a sub-logic of the alternation-
free modal µ-calculus with converse for finite trees.

Our proof method reveals deep connections between this logic
and XPath decision problems. First, the translations of XML reg-
ular tree types and a large XPath fragment are cycle-free and lin-
ear in the size of the corresponding formulas in the logic. Second,
on finite trees, since both operators are equivalent, the logic with
a single fixpoint operator is closed under negation. This allows to
address key XPath decision problems such as containment.

Finally, there are a number of interesting directions for further
research that build on ideas developed here: extending XPath to
restricted data values comparisons that preserves this complexity,
for instance data values on a finite domain, and integrating related
work on counting [8] to our logic. We also plan on continuing to
improve the performance of our implementation.

Acknowledgments
We would like to thank Giorgio Ghelli for his helpful comments on
earlier drafts and Benjamin C. Pierce for his useful suggestions.

References
[1] L. Afanasiev, P. Blackburn, I. Dimitriou, B. Gaiffe, E. Goris, M. Marx,

and M. de Rijke. PDL for ordered trees. Journal of Applied Non-
Classical Logics, 15(2):115–135, 2005.

[2] P. Barceló and L. Libkin. Temporal logics over unranked trees. In
LICS ’05: Proceedings of the 20th Annual IEEE Symposium on Logic
in Computer Science, pages 31–40, New York, NY, USA, 2005.

[3] M. Benedikt, W. Fan, and F. Geerts. XPath satisfiability in the
presence of DTDs. In PODS ’05: Proceedings of the twenty-fourth
ACM Symposium on Principles of Database Systems, pages 25–36,
New York, NY, USA, 2005. ACM Press.

[4] V. Benzaken, G. Castagna, and A. Frisch. CDuce: An XML-
centric general-purpose language. In ICFP ’03: Proceedings of
the Eighth ACM SIGPLAN International Conference on Functional
Programming, pages 51–63, New York, NY, USA, 2003. ACM Press.

[5] R. E. Bryant. Graph-based algorithms for boolean function
manipulation. IEEE Trans. on Computers, 35(8):677–691, 1986.

[6] J. Clark and S. DeRose. XML path language (XPath) version 1.0,
W3C recommendation, November 1999. http://www.w3.org/TR/
1999/REC-xpath-19991116.

[7] D. Colazzo, G. Ghelli, P. Manghi, and C. Sartiani. Static analysis for
path correctness of XML queries. J. Funct. Program., 16(4-5):621–
661, 2006.

[8] S. Dal Zilio, D. Lugiez, and C. Meyssonnier. A logic you can count
on. In POPL ’04: Proceedings of the 31st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 135–
146, New York, NY, USA, 2004. ACM Press.

[9] J. Doner. Tree acceptors and some of their applications. Journal of
Computer and System Sciences, 4:406–451, 1970.

[10] J. Edmund M. Clarke, O. Grumberg, and D. A. Peled. Model
checking. MIT Press, Cambridge, MA, USA, 1999.

[11] E. A. Emerson and C. S. Jutla. Tree automata, µ-calculus and
determinacy. In Proceedings of the 32nd annual Symposium on
Foundations of Computer Science, pages 368–377, Los Alamitos,
CA, USA, 1991. IEEE Computer Society Press.

[12] W. Fan, C.-Y. Chan, and M. Garofalakis. Secure XML querying
with security views. In SIGMOD ’04: Proceedings of the 2004 ACM
SIGMOD International Conference on Management of Data, pages
587–598, New York, NY, USA, 2004. ACM Press.

[13] V. Gapeyev and B. C. Pierce. Regular object types. In European
Conference on Object-Oriented Programming (ECOOP), Darmstadt,
Germany, 2003. A preliminary version was presented at FOOL ’03.

[14] P. Genevès and N. Layaı̈da. A system for the static analysis of XPath.
ACM Trans. Inf. Syst., 24(4):475–502, 2006.

[15] P. Genevès and N. Layaı̈da. Deciding XPath containement with MSO.
Data & Knowledge Engineering, to appear, 2007.

[16] P. Genevès, N. Layaı̈da, and A. Schmitt. A satisfiability solver for
XML and XPath, June 2006. http://wam.inrialpes.fr/xml.

[17] P. Genevès and J.-Y. Vion-Dury. Logic-based XPath optimization. In
DocEng ’04: Proceedings of the 2004 ACM Symposium on Document
Engineering, pages 211–219, NY, USA, 2004. ACM Press.

[18] E. Grädel, W. Thomas, and T. Wilke, editors. Automata logics, and
infinite games: a guide to current research. Springer-Verlag, New
York, NY, USA, 2002.

[19] H. Hosoya, J. Vouillon, and B. C. Pierce. Regular expression types
for XML. ACM Trans. Program. Lang. Syst., 27(1):46–90, 2005.

[20] G. P. Huet. The zipper. J. Funct. Program., 7(5):549–554, 1997.

[21] N. Klarlund, A. Møller, and M. I. Schwartzbach. MONA 1.4, January
2001. http://www.brics.dk/mona/.

[22] D. Kozen. Results on the propositional µ-calculus. Theoretical
Computer Science, 27:333–354, 1983.

[23] M. Y. Levin and B. C. Pierce. Type-based optimization for regular
patterns. In DBPL ’05: Proceedings of the 10th International
Symposium on Database Programming Languages, volume 3774
of LNCS, London, UK, August 2005. Springer-Verlag.

[24] G. Miklau and D. Suciu. Containment and equivalence for a fragment
of XPath. Journal of the ACM, 51(1):2–45, 2004.

[25] A. Møller and M. I. Schwartzbach. The design space of type checkers
for XML transformation languages. In Proc. Tenth International
Conference on Database Theory, ICDT ’05, volume 3363 of LNCS,
pages 17–36. Springer-Verlag, January 2005.

[26] M. Murata, D. Lee, M. Mani, and K. Kawaguchi. Taxonomy of XML
schema languages using formal language theory. ACM Transactions
on Internet Technology, 5(4):660–704, 2005.

[27] G. Pan, U. Sattler, and M. Y. Vardi. BDD-based decision procedures
for the modal logic K. Journal of Applied Non-classical Logics,
16(1-2):169–208, 2006.

[28] T. Schwentick. XPath query containment. SIGMOD Record,
33(1):101–109, 2004.

[29] Y. Tanabe, K. Takahashi, M. Yamamoto, A. Tozawa, and M. Hagiya.
A decision procedure for the alternation-free two-way modal µ-
calculus. In In TABLEAUX 2005, volume 3702 of LNCS, pages
277–291, London, UK, September 2005. Springer-Verlag.

[30] A. Tozawa. On binary tree logic for XML and its satisfiability test.
In PPL ’04: Informal Proceedings of the Sixth JSSST Workshop on
Programming and Programming Languages, 2004.

[31] M. Y. Vardi. Reasoning about the past with two-way automata. In
ICALP ’98: Proceedings of the 25th International Colloquium on
Automata, Languages and Programming, pages 628–641, London,
UK, 1998. Springer-Verlag.


