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Whispering-gallery-mode analysis of phase-matched doubly resonant second-harmonic generation

Yannick Dumeige* and Patrice Féron
ENSSAT-FOTON (CNRS-UMR 6082)–Université de Rennes 1, 6 rue de Kerampont, Boîte Postal 80518, 22300 Lannion, France

We propose a coupled modes analysis of second-harmonic generation in microdisk resonators. We demon-
strate that whispering gallery modes can be used to obtain a combination of modal and geometrical quasi-
phase-matching �without domain inversion� to obtain efficient conversion in isotropic and nonferroelectric
materials such as III-V semiconductor compounds. Finally we use an analytical model to describe the coupling
between a bus waveguide and the nonlinear microdisk to achieve an optimization scheme for practical
configuration.

I. INTRODUCTION

The increase of nonlinear conversion efficiency has been
a long-standing goal in nonlinear optics. In the case of sec-
ond harmonic generation �SHG�, different parameters must
be considered in order to achieve efficient frequency dou-
bling. A first step to reach this aim consists in choosing ma-
terials with large second order nonlinear susceptibility. III-V
semiconductors such as AlxGa1−xAs compounds are good
candidates for this purpose due to their large nonlinear coef-
ficient d14 one order larger than commonly used materials for
a fundamental field �FF� wavelength about 1.55 �m �1,2�.
The phase matching condition is strictly required to obtain
constructive interferences between the nonlinear polarization
and the radiated second harmonic �SH� field. This is tradi-
tionally obtained using the birefringence of nonlinear mate-
rials or more recently, using periodical inversion of the non-
linear susceptibility in ferroelectric materials such as LiNbO3
in order to meet the quasi-phase-matching �QPM� condition
�3�. Unfortunately III-V compounds are very dispersive and
isotropic around 1.55 �m. Nevertheless, QPM can be imple-
mented at 1.55 �m with different steps of epitaxial growth
and technological processes �4,5�.

When the phase matching condition is obtained and
within the weak conversion limit, doubling efficiency is di-
rectly proportional to the FF optical intensity and the square
of the interaction length. Waveguiding of SH field and FF
can provide high intensity over large lengths leading to an
increase in the conversion intensity. In addition, using wave-
guide properties such as artificial birefringence or modal dis-
persion permits the phase matching condition to be reached
�6,7�. This has already been achieved in AlGaAs waveguides
leading to efficient converters �8–10�. Another way to in-
crease the FF intensity consists in embedding the nonlinear
material in an external resonant cavity for the FF �11,12�.
This can be extended by using a cavity which is also reso-
nant for the SH field �13�. More recently these approaches
have been proposed for monolithic microstructured planar
devices �14–16� or photonic crystal microcavities �17�. Us-
ing epitaxial growth and technology for vertical cavity sur-
face emitting lasers, singly or doubly resonant nonlinear

planar III-V semiconductor microcavities with Bragg mirrors
have been manufactured �18–20�. These devices pave the
way to ultracompact second order nonlinear converters. Al-
though planar approaches are very attractive due to their ver-
tical access, some difficulties inherent in the doubly resonant
approach must be circumvented �i� the 4̄3m symmetry of
AlGaAs compounds, in the commonly used �001� growth
direction, gives an effective nonlinear coefficient null under
normal incidence, �ii� the strong dispersion of III-V semicon-
ductors around 1.55 �m means that efforts have to be made
in design to obtain Bragg mirrors centered around FF and SH
frequencies, and �iii� the use of large quality �Q� factor mi-
crocavities requires large beam size �in order to limit diffrac-
tion effect� leading to a decrease in the FF intensity. The first
point is addressed by using large incident angles which can
also be used as an external tuning parameters and the second
is addressed using aperiodic or high index contrast Bragg
mirrors �16,21�.

Cylindrical �or spherical� whispering gallery mode
�WGM� microcavities working with the total internal reflec-
tion �TIR� effect can be used to reach high Q factors. These
unique properties have been widely used to achieve low
threshold microdisk lasers �22–24�. The use of WGMs in
second order nonlinear optics has been less addressed.
Schiller and Byer have used monolithic TIR MgO:LiNbO3
resonators to obtain parametric oscillation �25�. Recently
Ilchenko et al. have used periodically poled LiNbO3 QPM
toroidal resonators to efficiently achieve frequency doubling
from a wavelength around 1.55 �m �26�. Finally, dispersion
of coupled microdisk resonators have been proposed to reach
simultaneously quasi phase-matching and enhancement of
fields in nonlinear interaction �27,28�.

In this paper we propose to use microdisk cavities and
their associated WGMs to simultaneously obtain phase
matching for III-V semiconductors, FF and SH resonances,
and transverse fields confinement. Note that in WGM de-
vices TIR acts as an ultrabroad band mirror working for FF
and SH frequencies. This combination could be used to fully
integrate nonlinear converters working with low FF power.

The paper is organized as follows. We start with a
coupled-mode formulation of the SHG for WGMs in a mi-
crodisk. In this second section we review linear properties of
WGMs, and we introduce coupled-mode theory �CMT� �29�
for SHG in a doubly resonant WGM microcavity. We also*Electronic address: yannick.dumeige@enssat.fr
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introduce the coupling with an input/output bus waveguide
indispensable for the description of the insertion of the FF in
the microdisk and the extraction of the SH field from the
microcavity. In the last section, we propose to benefit from
the unique properties of WGMs to obtain original phase-
matching scheme in III-V semiconductor microdisk. We fin-
ish this third section by a discussion of the optimization of
coupling between the bus waveguide and the nonlinear
microdisk in the perspective of experimental implementa-
tion.

II. COUPLED MODE THEORY FOR SHG WITH WGMS

Figure 1 schematizes the cylindrical microcavity studied
in this paper. It consists of a microdisk cavity with a second
order nonlinear susceptibility ��2� coupled to a bus wave-
guide. This waveguide allows the FF to be inserted in the
microcavity and the generated SH field to be extracted from
the microcavity. The field confinement in the z direction
is provided by planar waveguiding. The required layered
structuration is taken into account by the effective
index method �EIM� �30�. The refractive index of the non-
linear material at angular frequency � is N�=���, the
effective propagation constant associated with the vertical
confinement evaluated thanks to the EIM is called
��=n�k� where n� is the effective index and k�=� /c the
free space wave vector.

A. Linear properties of WGMs

In the framework of the EIM, the solutions of Maxwell’s
equations can be divided into two polarized fields TE
�Ez

� ,Hr
� ,H�

�� and TM �Hz
� ,Er

� ,E�
��. The fields are all as-

sumed to be CW at single frequency � for the FF �or 2� for
the SH field�. For a microdisk, �� represents the electric or

the magnetic field depending on the polarization

���r,�,z,t� = A����r�	��z�ej��t−
���, �1�

in the TE case, we can write the magnetic field as

H��r,�,z,t� = A�	��z�ej��t−
����Hr
�ûr + H�

�û�� , �2�

and in the TM case the electric field is as follows:

E��r,�,z,t� = A�	��z�ej��t−
����Er
�ûr + E�

�û�� . �3�

In the TE case ��=Ez
�, ��=Ez

�, Hr
�=


�

r�0���, H�
�= 1

j�0�
d��

dr

and in the TM case ��=Hz
�, ��=Hz

�, for r�R we have
Er

�=−

�

r�0n�
2 �

�� and E�
�= j

�0n�
2 �

d��

dr , for r�R we replace n� by
1. The integer 
� is the azimuthal number. 	��z� is the ver-
tical dependence of the field amplitude and is derived from
the solution of the transverse modes in a planar waveguide
with the thickness equal to that of the microdisk height. We
will consider 	��z� to be dimensionless and harmonic in the
nonlinear medium with �	��z��2=1. The z component of the
wave vector q� is deduced from the EIM by:
q�=�k�

2 N�
2 −��

2 �31�. Considering these assumptions to be
correct, Helmholtz’s equation reads

d2��

dr2 +
1

r

d��

dr
+ ���

2 −

�

2

r2 ��� = 0. �4�

Within the microdisk the solution is described by a Bessel
function of the first kind ���r�=A�J
�

���r�, whereas at the
exterior the solution is represented by a Hankel function of
the second kind ���r�=B�H
�

�2��k�r�. Tangential field compo-
nent continuity allows the link between the constants A� and
B� to be written as follows

A�J
�
���R� = B�H
�

�2��k�R� , �5�

and the dispersion relation to be calculated using

	u�
 dJ
�

dr



��R

 dH
�

�2�

dr



k�R

J
�
���R� H
�

�2��k�R� 	 = 0 �6�

with u�=n� for TE polarization and u�=1/n� for TM
polarization. A� is chosen in order to obtain for TE
polarization

1

2
�

0

+

�Hr
��*Ez

�dr = 1, �7�

and for TM polarization

−
1

2
�

0

+

�Hz
��*Er

�dr = 1. �8�

In these two cases, expression �1� corresponds to an
azimuthal power flow of �A��2W /m.

B. Frequency conversion with a nonlinear polarization TE
polarized

We adapt the coupled-mode theory developed for planar
waveguides �29� for the case of WGMs and thus we start
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FIG. 1. The generic structure studied in this work is constituted
by a nonlinear microdisk side coupled with a bus waveguide. This
waveguide allows the insertion of the FF in the waveguide and the
extraction of the SH field. ��, ���, ��, and ��� are the coupling
coefficients introduced in Sec. II C.
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with Helmholtz’s equation in TE polarization

��� · E2�� − �E2� = − �0
�2

�t2 ��0�2�E2� + P� , �9�

P=�0��2� :E�E� is the second order nonlinear polarization.
Taking into account the field dependence given in Eq. �1�
and assuming that the FF is TE or TM polarized we have

��� · E2�� · ûz =
4q�

2

�0�2�

Pz. �10�

Considering only the z component of the electric field, Eq.
�9� becomes

�r,�Ez
2� + �2�

2 Ez
2� = −

4�q�
2 − �2�k�

2 �
�0�2�

Pz, �11�

where �r,� is the laplacian operator in cylindrical coordi-
nates. Using the slowly varying envelope approximation
�SVEA� we can write

Ez
2��r,�,z,t� = A2����Ez

2��r�	2��z�ej�2�t−
2���. �12�

Considering only one polarization for the FF:

Pz�r,�,z,t� = Pz�r,���	��z��2ej�2�t−2
���. �13�

Assuming that �	��z��2=	2��z� �or q2�=2q��, which will be
the case in the following section since we will only consider
the fundamental modes of the planar vertical waveguide, us-
ing Eq. �4� and normalization relation �7� for Ez

2� we obtain

dA2�

d�
= −

j�2�
2

4
2��0�2�
��

0

R

�Hr
2��*Pzr

2drej�
�. �14�

The integration domain of Eq. �14� is limited to �0,R� since
the nonlinear susceptibility vanishes for r�R.

C. Linear coupling with the bus waveguide

The imaginary part of the frequencies �� or 2�� calcu-
lated from Eq. �6� characterizes the intrinsic diffraction
losses of the microdisk. In order to take into account all
sources of losses �not only diffraction but also surface rug-
osity for example�, using coupled mode theory, and follow-
ing Rowland and Love �32� it is possible to add losses in the
field expression considering the WGM as a bent waveguide
mode. The complex frequency or the bent waveguide ap-
proaches are equivalent �33�. Consequently we will now con-
sider a complex azimuthal dependence �and a real angular
frequency� for the WGM:


̃� = 
� − j��R/2, �15�

where �� represents the overall losses of the WGMs consid-
ered as a bent waveguide mode. In order to link the WGMs
and the bus waveguide modes we use the matrix approach
provided by Yariv in Ref. �34�. Here we consider an asym-
metric coupling in order to describe the multimodal behavior
of the bus waveguide. Consequently for a given frequency
we use four coupling coefficients ��, ��� , ��, and ��� as
shematized in Fig. 1:

A� = j���Ain + ��A�e−j
̃�2� �16�

assuming a lossless coupling we have ��
2 +��

2 =1, ���� �2

+ ���� �2=1, the power flow of the incoming FF bus wave-
guide mode is described by �Ain�2 in the case where only one
mode of the bus waveguide is excited. As we want to benefit
from resonance field enhancement, we will consider weak
coupling and so we assume now �with no loss of generality�
that the resonant frequencies of the waveguide-loaded micro-
disk are the same as the free one �35�. Note that the assump-
tion of a single mode resonator is verified since we consider
here only one resonant mode at FF and SH frequencies. The
FF envelope is then given by

A� =
j���Ain

1 − ��e−j
̃�2�
. �17�

We write the same relation as Eq. �16� for the SH field
envelope taking into account its angular dependence:

A2��0� = �2�A2��2��e−j
̃2�2�. �18�

This last expression combined with Eq. �14� will give us the
expression of the SH field generated inside the cavity. With
the expression of A2��2��, it is possible to obtain the expres-
sion for the SH field radiated out from the cavity through the
bus waveguide �for only one mode of the bus waveguide�:

Aout = j�2�A2��2��e−j
̃2�2�. �19�

III. APPLICATION TO SHG IN III-V SEMICONDUCTORS

In this section we will apply the formalism developed in
Sec. II to the case of highly nonlinear and isotropic III-V
semiconductor materials for a FF TM-polarized and an SH
TE-polarized field �i.e., parallel to the z direction�.

A. Structural description

The proposed structure consists of an etched microdisk
made of Al28%Ga72%As with a diameter D=2.1 �m and a
thickness h=760 nm �Fig. 2�. The chosen Al composition
avoids two-photon absorption at FF frequency. The vertical
confinement is obtained with a cladding layer of AlAs. This
configuration allows the EIM to be used �30�. For conve-
nience, we will call mi the number of zeros of the considered
planar waveguide mode profile along the i direction
with i= �x ,z�. At FF wavelength ���=1573.4 nm and
N�=3.2364� the vertical planar waveguide has two modes
whereas at SH wavelength �N2�=3.4632� three modes can
propagate. We have considered here that refractive index of
AlAs is 2.9010 at FF frequency and 3.0100 at SH frequency.
In the following text we will only consider the fundamental
�mz=0� FF and SH modes since the mode coupling �with the
same frequency or not� of different orders is weak. The struc-
ture can be obtained by epitaxial growth on a GaAs �001�-
oriented substrate. The bus waveguide is t=350 nm thick,
note that this value is always compatible with EIM �30�. This
waveguide has two modes indexed by mx=0,1 at FF fre-
quency and has three modes �mx=0,1 ,2� at SH frequency.
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The coupling coefficients between the bus waveguide and
the microdisk depend on the value of the gap d between
the microdisk and the bus waveguide. Taking into account
the strong natural dispersion of AlGaAs, these design param-
eters allow the azimuthal numbers 
�=9 and n=1 for the FF;

2�=20 and n=2 for the SH field to be obtained �where n is
the number of maxima of the radial dependence of the
intensity�. Because of the very strong dispersion of AlGaAs
at ��=1573.4 nm, it remains a phase mismatch �
=
2�

−2
�=2 �note that we also have �
̃= 
̃2�−2
̃��. We will see
in the following section that this phase mismatch will be
compensated for using the unique properties of WGMs.

B. Phase-matching consideration

The cubic 4̄3m symmetry of AlGaAs and the TM
polarization for the FF leads to the following expression for
nonlinear polarization �36�:

Pz = 2�0d14A�
2 Ex

�Ey
�, �20�

where d14=108 pm/V for the chosen Al composition �1,2�.
In the cylindrical coordinates the nonlinear polarization reads

Pz = �0d14A�
2 �2Er

�E�
� cos�2�� + ��Er

��2 − �E�
��2�sin�2��� .

�21�

This leads to the following angular dependence for the
effective nonlinear polarization

�
0

R

�Hr
2��*Pzr

2dr = A�
2 �a+e2j� + a−e−2j�� . �22�

This natural modulation of the nonlinear tensor can be used
to reach the quasi-phase-matching condition. Taking into ac-
count this feature �14� reads

dA2�

d�
= −

j�2�
2 A�

2

4
2��0�2�

�a+ej��
̃+2�� + a−ej��
̃−2��� . �23�

In order to analyze the SH field and nonlinear polarization
overlap we define

a± = �
0

R

f±�r�dr , �24�

with

f±�r� = �0r
2d14�Hr

2��*�Er
�E�

� ±
j

2
��E�

��2 − �Er
��2�� , �25�

which is an imaginary quantity. Figure 3�a� shows Im�f+�
and Im�f−� for the structure already described. We can notice
that due to a weak overlap between the nonlinear polariza-
tion and the SH field �a−� is lower than �a+�, calculations
show that �a+ /a−��6. Unfortunately regarding the strong
material and structural dispersions, it is not possible to obtain
�
=−2 for low value of n for FF and SH field which could
lead to phase match the term in a+ and to a better overlap
between the nonlinear polarization and the SH field. It is
possible to obtain the condition �
=−2 with high values of n
both at FF and SH wavelengths. In Fig. 3�b� we represent

AlAs

GaAs

Al28%Ga72%As

D = 2.1µm

h=0.760µm

χχχχ(2)

t = 0.35µm

d

z = [001]

x

y

x

Air

FIG. 2. The proposed structure is etched in a planar waveguide
constituted by a core in Al28%Ga72%As and a cladding layer in
AlAs. The two layers are grown on a GaAs �001�-oriented sub-
strate. The thickness of the microdisk is h=760 nm and the distance
between the bus waveguide and the microdisk is d. The width of the
bus waveguide is t=350 nm. The diameter of the microdisk is taken
equal to D=2.1 �m.

FIG. 3. Functions Im�f+� �dash lines� and Im�f−� �full lines�
normalized for the maximal value of Im�f−� as a function of r inside
the microdisk: �a� for the proposed structure with D=2.1 �m, �b�
for the same structure with D=5.3 �m, n=2 for the FF and n=5 for
the SH field. In this last case, we have for the phase mismatch
�
=44−2�23=−2.
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Im�f+� and Im�f−� for a the same structure as described
in Fig. 2 but with D=5.3 �m, ��=1578.5 nm, n=2 for
FF and n=5 for SH. In this case �
=44−2�23=−2 and
�a+ /a−��3. Although the effective nonlinear susceptibility is
better than in the precedent case, we did not study this
structure since high values of n increase the WGMs volume
which is detrimental for nonlinear interactions.

In the case chosen here and described in Sec. II, we have
�
=2, so only the term in a− is phase matched,
consequently,

A2��2�� − A2��0� = −
j�2�

2 A�
2 a−

2
2��0�2�

e��2�−2����R − 1

��2� − 2���R
.

�26�

If we define

K̃ = −
j�2�

2 a−

2
2��0�2�

e��2�−2����R − 1

��2� − 2���R
, �27�

we can write the expression for the SH field generated inside
the cavity as

A2��2�� =
K̃A�

2

1 − �2�e−j
̃2�2�
. �28�

We can now obtain the expression of the conversion
efficiency �:

� = 
Aout

Ain

2

=
��2��2���� �4�K̃�2�Ain�2e−�2�2�R

�1 − ��e−j
̃�2��4�1 − �2�e−j
̃2�2��2
, �29�

which shows good agreement with the expression given in
Ref. �15� for a planar monolithic microcavity.

C. FF and SH field impedance matching

Equation �29� should be written for each mode of the bus
waveguide at SH frequency. We have already emphasized
that this waveguide has several modes at FF and SH frequen-
cies. We still consider uniquely the fundamental �mz=0�
even mode in the vertical direction for the FF and SH fields
since the resonant modes inside the microcavity have mz=0
and will couple preferentially with a same order mode. In
order to take into account the different modes with
x-dependent profiles �mx=0,1 ,2� we will link the coupling
coefficients to the external quality factor and derive an ex-
pression of the conversion efficiency as a function of Q fac-
tors �in this case Aout is the overall power flow correspond-
ing to the generated SH field�. Since the external quality
factors which take the multimodal behavior of the bus wave-
guide into account can be calculated analytically as a func-
tion of d �37�, this will give us a physical insight into the
impact of d on the conversion efficiency. Taking into account
that 
� is an integer, Eq. �29� can be written

� =
��2��2���� �4�K�2�Ain�2e−�2�2�R

�1 − ��e−���R�4�1 − �2�e−�2��R�2 . �30�

Carrying out the high finesse cavity approximation we can
write that ���1 and

1 − ��e−���R � 1 − �� + ���R . �31�

It is possible to link these parameters to Q factors �38�. With
this objective in mind, we define the internal quality factor as

Q�
0 =

2�N�

����

�32�

and the external quality factors as

Q�
e =

�
�

1 − ��

, Q�
e� =

�
�

1 − ���
. �33�

We can write the expression of the conversion efficiency as a
function of quality factors for the FF and the SH field:

� �
8�K�2�Ain�2

�3
�
2
2��Q�

e��2

�
�Q�

e �4Q2�
e e−4�2N2�R/��2�Q2�

0 �

�1 +
2�N�R

��
�

Q�
e

Q�
0 �4�1 +

2�N2�R

�2�
2�

Q2�
e

Q2�
0 �2 , �34�

where �K�2 is the first order development of �K̃�2 in
��2�−2��� R:

K = −
�j�2�

2 a−

2
2��0�2�

. �35�

Using the following crude approximation:


� �
2�

��

N�R , �36�

we can generalize the result of Di Falco et al. �17� and write

� �
8�K�2�Ain�2

�3
�
2
2�

�Q�
e �4Q2�

e e−2�
2�/Q2�
0

�Q�
e��2�1 +

Q�
e

Q�
0 �4�1 +

Q2�
e

Q2�
0 �2 . �37�

Depending on the relative values of Q�
0 and Q�

e �and obvi-
ously the relative values of Q2�

0 and Q2�
e �, the conversion

efficiency can be greatly enhanced or decreased. We used the
analytical model proposed by Morand et al. in Ref. �37� to
evaluate Q�

e for the different modes of the bus waveguide
and the two frequencies as a function of d. Following Ref.
�37�, we now present the expression of the intrinsic Q factor
�i.e., only limited by diffraction and external coupling� Q�

int

for a microdisk waveguide side coupled without internal
losses �37�

1

Q�
int =

1

Q�
diff�1 +

P�
G

P�
rad� , �38�

where Q�
diff is the Q factor diffraction limited, P�

G the power
carried by the waveguide and P�

rad the power radiated outside
the microdisk for a given polarization. Note that here we
calculate the value of Q�

diff by
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Q�
diff =

�E�
inside

P�
rad , �39�

where E�
inside is the energy stored in the microdisk, see �37�.

Since Q�
diff is always very large, we will consider that

Q�
e =Q�

int. We can calculate P�
G�mx� for the different modes

and for the two frequencies we link the overall external Q
factor Q�

e to the external Q factors calculated for each mode
Q�

e �mx�:

1

Q�
e = �

mx=0

s� 1

Q�
e �mx�

�40�

with s�=2 and s2�=3. We will consider here that the incom-
ing FF mode corresponds to mx=0 so we have Q�

e�=Q�
e �mx

=0� since ��� corresponds to the coupling coefficient from
the fundamental mode �mz=0� of the bus waveguide to the
FF WGM. Otherwise, Q�

e takes into account the two modes
of the bus waveguide since the resonant FF can escape from
the microcavity coupling with these two modes. Figure 4
represents Q�

e �mx� and Q2�
e �mx� �calculated from Eq. �38�� as

a function of d. First, we can notice that for mx=0 the fields
are well confined both at FF and SH frequencies and Q�

e

reach their intrinsic limits Q�
diff for d�400 nm. As expected,

Q�
e increase with d because the evanescent coupling also

increases. In the case of FF, Q�
e �mx=0��Q�

e �mx=1� for large
values of d since the confinement is weaker for mx=1 than
for mx=0. For low values of d, even the mode with mx=1 is
less confined than the fundamental mode �mx=0�, we have
Q�

e �mx=0��Q�
e �mx=1�. This can be attributed to the large

propagation constant mismatch between the mode indexed
by mx=1 and the FF WGM. The overall values Q�

e �white
circles� and Q2�

e �white squares� are also represented. We can
notice that Q2�

e �Q2�
e �mx=2� for all the values of d since

Q2�
e �mx = 2� � Q2�

e �mx = 1� � Q2�
e �mx = 0� . �41�

It is then possible to calculate the value of � /�0 as a
function of d �Fig. 5� using Eq. �34� and considering

�0 = �K�2�Ain�2. �42�

The ratio � /�0 represents the enhancement factor due to the
double resonance for different values of internal losses or
internal quality factors at FF and SH field frequencies. We
can see that the conversion efficiency can reach an optimal
value depending on the internal losses. This demonstrates
that from a practical point of view, an optimal coupling can
be chosen for given overall losses. Defining the overall Q
factor Q� as

1

Q�

=
1

Q�
e +

1

Q�
0 , �43�

in the case of Q2�
0 =Q�

0 =7.5�104 �values compatible with
recent achievements of AlGaAs microdisks �24��, we obtain
an optimal coupling distance d�185 nm, Q��8700 and
Q2��28 000, this gives us a conversion efficiency equal to
1% for an external FF power of 130 �W and a vertical FF
mode thickness equal to h �39�.

IV. CONCLUSION

We have derived CMT for SHG in microdisk resonators
adapting the results of Ref. �29� to the case of WGMs. We
also proposed a simple way to achieve combination of modal
and quasi-phase-matching in WGM resonators. This can be
applied to the case of isotropic III-V semiconductors grown
along the commonly used �001� crystallographic direction
combining the advantages of resonant fields enhancement
and waveguiding fields confinement. We would like to em-
phasize the crucial role of the coupling between the micro-
disk and the bus waveguide and overall optical losses. An

FIG. 4. External Q factors as a function of distance between the
microdisk and the bus waveguide d. For FF frequency Q�

e �mx� is
represented for the two possible modes �mx=0,1�, for SH, fre-
quency Q2�

e �mx� is represented for the three possible modes
�mx=0,1 ,2�. The overall values Q�

e and Q2�
e are also shown �white

circles and squares, respectively�.

FIG. 5. Enhancement factor � /�0 as a function of the distance
between the bus waveguide and the microdisk calculated for differ-
ent values �Q�

0 ,Q2�
0 � of internal Q factors: �i� solid triangles

�7.5�104 ,7.5�104�, �ii� white circles �4�104 ,7.5�104�, �iii�
white triangles �7.5�104 ,4�104�, �iv� solid circles �4�104 ,4
�104�.
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external tuning parameter �such as temperature, for example�
will have to be found to reach experimentally the double
resonance condition as it is done with the incident angle
in the vertical access approach �16,19�. When this condition
will be fulfilled, this configuration could be used to
obtain micron-size integrated parametric devices such as
converters or generators. Second order nonlinear microdisk
coupled with waveguides could be used to integrate the
all-optical processing function proposed by Cojocaru et al.
�40�. Adaptation of this approach to materials grown on InP

could present the possibility of monolithic integration with
communication lasers at 1.3 and 1.55 �m �41�.
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