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Constrained Least Squares Detector for
OFDM/SDMA-Based Wireless Networks

Steven ThoenStudent Member, IEEB.uc Deneire Member, |IEEE Liesbet Van der Perre,
Marc Engels Member, IEEEand Hugo De ManFellow, IEEE

Abstract—The two major obstacles toward high-capacity its delay spread. Due to the envisaged high data rates, the mul-
indoor wirfele_ss network_s are dis_tortion due_to the ind(_)or channel tiple paths give rise to intersymbol interference (I1SI), which
and the limited bandwidth which necessitates a high spectral jjstorts the signal and results in a frequency-selective channel

efficiency. A combined orthogonal frequency division multiplexing . . : _ . L
(OFDM) / spatial division multiple access (SDMA) approach can response. OFDM modulation with cyclic prefix insertion miti

efficiently tackle both obstacles and paves the way for cheap, 9ates ISI by extending the symbol period as the data is multi-
high-capacity wireless indoor networks [27], [26]. The channel plexed on orthogonal subcarriers [2]. As such, it converts a fre-
distortion due to multipath propagation is efficiently mitigated quency selective channel into a number of parallel flat fading
with OFDM while the bandwidth efficiency can be increased channels which can be easily equalized with simple one-tap
with the use of SDMA. However, to keep the cost of an indoor gq,3jizers. Furthermore, the (de)modulation can be executed ef-

wireless network comparable to its wired counterpart's cost, .. . . ! .
low-complexity SDMA processors with good performance are of ficiently via the fast Fourier transform (FFT). Hence, OFDM is

special interest. In this paper, we propose a new multiuser SDMA the preferred modulation type for high-capacity WLAN appli-
detector which is designed for constant modulus signals. This cations and has been adopted in WLAN standards such as IEEE
constrained least squares (CLS) receiver, which deterministically 802.11a and ETSI Hiperlan Il [13].

exploits the constant modulus nature of the subcarrier modulation  second, SDMA provides high bandwidth efficiency which

to achieve better separation, is compared in terms of performance g orcja| because of spectral limitations. It is well known that

and complexity with the zero forcing (ZF) and the minimum h itv of irel be i dd icall
mean square error (MMSE) receiver. Additionally, since the CLS € capacity of a wireless system can be increased dramatically

detector relies on reliable channel knowledge at the receiver, by €mploying multiple antennas [8], [23], [29]. We propose to
we propose a strategy for estimating the multiple input multiple reuse the bandwidth within one cell by spatial division mul-
output (MIMO) channels. Simulations for a Hiperlan ll-based [13]  tiple access (SDMA) [26], [27] at the basestation. Due to the
case-study show that the CLS detector significantly outperforms uige angular spread of the received signals in indoor environ-
the ZF detector and comes close to the performance of the MMSE ments, we cannot rely on beamforming and wideband SDMA is

detector for QPSK. For higher order M-PSK, the CLS detector . . .
outperforms the MMSE detector. Furthermore, the estimation needed. Essentially, SDMA separates multiple simultaneously

complexity for the CLS detector is substantially lower than that transmitting users based on their different spatial signatures by
for the MMSE detector which additionally requires estimation of  processing the signals received at an antenna array.

the noise power. Finally, a combined OFDM/SDMA approach can benefit
Index Terms—Adaptive antennas, antenna diversity, channel from the advantages of both OFDM and SDMA to enable a
estimation, orthogonal frequency division multiplexing (OFDM), high-capacity WLAN. Furthermore, the inherent parallelism
space division multiple access (SDMA). of OFDM allows per-subcarrier SDMA processing, resulting
in a considerably lower implementation cost compared to
single-carrier SDMA. A vast number of possible multiuser
detection algorithms has originated in the CDMA context [28],

IRELESS local access networks (WLANS) provide usefll of which can be applied to solve the individual SDMA
mobility and inexpensive network installation and reproblems on the subcarriers. For a cost-efficient WLAN, we are
configuration compared to their wired counterparts. Howevesiterested in low-complexity multiuser detectors that exhibit

in order to be competitive with wired LANSs, future WLANSgood performance.

should offer both high capacity and low cost. The design of |n this paper, we derive a new detector which is designed
such high-capacity low-cost wireless networks is complicatggecifically for constant modulus signals and hence is ap-
by spectral limitations and distortion due to the indoor channgllicable to M-PSK signals. The constant modulus property
First, orthogonal frequency division multiplexing (OFDM)of transmitted symbols historically has been exploited first
provides an elegant solution to the distortion problem. The igia the Constant Modulus Algorithm proposed by Godard
door channel features multipath propagation, characterized[lg]. This algorithm has been applied extensively in various
forms and scenarios for achieving blind beamforming [1] and

Manuscript received February 26, 2001; revised September 4, 2001;acce&géjahzatlon (See [14] fand references therem)' .An analytlc.al
January 16, 2002. The editor coordinating the review of this paper and approvignstant modulus algorithm has been proposed |n.[25]- In .thIS
it for publication is C. Tellambura. paper however, the constant modulus property is exploited

The authors are with Resonext Communications, Technologielaan 4, 3 iniati ;
' - 3Q9dterministically and channel knowl i med t
Belgium and with IMEC, Katholieke Universiteit Leuven, Leuven 3001, Bel- te stcally a d channe 0 Edge s assumed to be

gium (e-mail: steven.thoens@resonext.com). available at the receiver side. The proposed constrained least
Digital Object Identifier 10.1109/TWC.2002.806377 squares (CLS) detection algorithm, which essentially is a linear

. INTRODUCTION

1536-1276/03%$17.00 © 2003 IEEE



130 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 2, NO. 1, JANUARY 2003

] B I R [T "
' {1] b5 T yi[1]— At
%—— s [t] PO—>@- rlt] & It nlt] SDMA __;,[[11}]
.Tl[l’\/'] . § : § - | N k
gy /- (BT
. : BS
| g1 [t ’ ;:0:|L X :
zV (1] 3 E yall]
s s [t #O—@-ralt] 1€ IE H- 3]
2V [N]+ 5 B . ‘ SDMA ~UTAT
T g L B I

Fig. 1. System model for OFDM/SDMA in the uplink.

detector, is analyzed in terms of performance and complexiB. OFDM/SDMA System Setup

The proposed algorithm is benchmarked against two otherrne hroposed OFDM/SDMA system consists of several user
well-known receivers, namely the zero forcing (ZF) and thgrminals and one basestatiB& Each of the users has a single
minimum mean square error (MMSE) detector [28], SinCgntenna in order to keep the cost of the user terminals low, while
they also belong to the class of linear receivers. We show thgt pasestation has an array fantennas. In each framé;
the CLS detector, by explicitly taking the constant modulugsers are assigned which can simultaneously transmit OFDM
character of the signals into account, can construct an optifggdqylated symbols to the basestation. The basestation then sep-
linear transformation which for our case study outperformgates the streams of theusers by processing the signal vectors
the ZF and comes close to (and for higher order constellatioqgeived at its antenna array, resulting it/gold bandwidth
outperforms) the MMSE linear transformations in terms g se.
average bit error rate (BER). The system under consideration is schematized in Fig. 1
Since the CLS detector relies on knowledge of the chanighich represents th& simultaneous users and the basestation
propagation characteristics of the simultaneously transmittiggs Each usen feeds its data*[n] in blocks of N symbols into
users, these parameters need to be estimated in practical §49y-tap inverse FFT (IFFT) operator to obtain the time-domain
tems. Therefore, we propose a low complexity pilot-based mdlequence™[t]. A cyclic extension of length. is inserted into
tiple-input multiple-output (MIMO) channel estimator whichthe sequence, which is then converted to a serial stream. The
can be designed to tradeoff pilot overhead and complexity wigsulting sequende“[N — L + 1] - - - s*[N] s“[1] - - - s*[N]] is
estimation accuracy. With this estimator, accurate estimatiofgnsmitted through thel convolutional channelg|], with
can be achieved such that the performance degradation of §h@] the baseband representation of the multipath channel
SDMA detectors due to nonideal channel knowledge is smalfrom useru to antennas. At the basestation, each antenna
The proposed CLS detector has the additional advantage thaeives the convolutional mixturé [t] = 2521 gut] * s“[t]
the estimation complexity is substantially lower than for thand an AWGN termw, [t]. Subsequently, the operations of the
MMSE detector, which also requires estimation of the averagansmitter are inverted. After discarding the cyclic prefix and
noise power. Since the estimation complexity is an order of magking the N-tap FFT of each received signal, we end up with
nitude higher than the processing complexity, the gain in thereceived sequenceg[n] on each subcarrier. These signals
overall basestation complexity is shown to be substantial.  y,[n] are then postprocessed by the basestation to separate the
This paper is organized as follows. In Section Il, the systedistinct users and to provide estimai&gn] for the transmitted
model is defined. Section Il derives the proposed Constrainggmbolsz*[n].
Least Squares detector. Section IV describes the proposeif I is larger than the channel length and the users are prop-
channel and noise power estimation strategy. Section V amaly symbol synchronized,the linear channel convolution is
lyzes the performance of the detection algorithms both wittbserved as cyclic by the basestation. Thus, in the frequency
perfect channel knowledge and in combination with channgbmain it becomes equivalent to multiplication with the discrete
parameter estimation. Finally, some conclusions are drawnHRourier transform of the channél![n]. Then, we can write for

Section VI. each subcarrien
y1[n] hiln] - h{In]7 [a'ln] n1[n]
ll. SYSTEM MODEL L= T R
A. Notations ya[n] ha[n] o hY[n] a¥[n] na(n]
In this paper, normal letters indicate scalar quantities, bold- ¥["] Hin] x[n] n[n]
face letters represent vectors, and boldface capitals indicate ma- )

; T
tr|C?5- FurthermorgX de_nOteS the transpose of a matkX  inote that the cyclic prefix length can be designed robustly to provide syn-
while X* denotes its conjugate transpose. chronization margin.
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TABLE | constant modulus constellation such as M-PSK. For notational
WLAN CASE-STUDY SPECIFICATION simplicity, the index: is dropped in this section.
Network capacit 48 Msymbols/s L
User Signaﬁgg razle 12 Mszmbols/s A. Derivation of the CLS Detector
Number of subcarriers N =64 In this paper we assume i.i.d. AWGN on all antennas. The
Number of data subcarriers Ny =48 derivations can, however, be generalized to the colored Gaussian
Numli};ﬂ;‘csgiﬁxtaiﬁ;g:?users % ilf qoise scer_1ario by the use of a noise p_re-\_/vhit_ener [21]. The op-
N bL £ antennas ’ A4 timal multiuser detector for each carrier is given by the max-
umbper ot an

imum likelihood (ML) detector [21], [27], [28] which mini-
mizes the log-likelihood function (x) given by

Clearly, due to the OFDM modulation, the SDMA problem
falls apart in multiple parallel SDMA problems which can
be solved independently per subcarrier, as depicted in Fig.qler the set of possible constellation poimtsvhich are in the
Hence, the SDMA processing is transformed iltdoSDMA setSuyr = {144, 1—j, —1+j, —1 — j}U for QPSK. The
processors running’ + L times slower than the time-domainyy; yetector is thus givé7n by ’ ’
symbol rate. A generic SDMA processor calculates estimates
#*[n] for the transmitted symbols*[n], using the received Xx=arg min |[H-x—yl|>. ()
ya[n] and an estimat#I[n] of the channel coefficients matrix x€SmL
Hin]. In this paper, we derive a new SDMA processor, nameh/s is well known, the main disadvantage of the ML detector
the CLS detector where the estimaig4n] are constrained to is its complexity: the number of points iy grows expo-
be constant envelope, and assess its performance. Furthermpéﬁtia”y with the. number of usef$ and witﬁ the constellation

since the performance of any SDMA detector depends heavcl) Her

on the precision of its channel estimate, we developed . . . .
P P aThe main target of the CLS multiuser receiver proposed in

MIMO channel estimator. This estimator, which is described. . . .
in Section 1V, allows accurate estimation of the channels ofzi is paper, is to reduce the detection complexity yet try to take

U users for allA antennas based on OFDM training Symbolgdvantage of the fact that all users apply constant modulus sig-
transmitted at the start of a signaling frame nals. This is achieved by expanding the minimization interval

for the log-likelihood function from the optimal sét,,, to all
C. OFDM/SDMA Case Study points which lie on the spheneHg = UE, (assumi_ng that
] ] each user has symbol enerfjy). This set of points, which con-

For analyzing the performance and complexity of the prains the optimal se$,,,, fulfills the constant modulus crite-
posed CLS receiver and the MIMO channel estimator, we utilizgyy Note that this optimization interval is much tighter than
a specific case study which consists of a basestation equipRg&l optimization interval for the ZF multiuser detector (or the
with .four antennas and up to four simult_aneously. transmit.tirlfbcorrelator in the CDMA context), which spans the entire hy-
mobile users. The OFDM-based ETSI Hiperlan Il indoor wiréserplanex [28], [30]. Furthermore, its optimization interval is
less LAN standard [13] is used for all physical layer parameteigso tighter than the interval for the generalized MMSE detector

Each user signals at 12 Msymbols/s, resulting in a total netwqag] where the optimization interval is given byx < UE,.
capacity of 48 Msymbols/s. The main parameters for the caserpe CLS receiver is thus given by o

study are summarized in Table I.
For the coded results presented in this paper, we apply bit-in- x=arg min [H-x— y||§ 4)
terleaved coded modulation [3] using the Hiperlan |l rate 1/2 xHx=UE,

constraint length 7 convolutional code with generator polyn@ynich constitutes a least squares problem with the additional

A(x) = |H - x - y||; )

mials g1 = 1330ct andg> = 17loct. Additionally, the constraint that the transmitted signals should have a constant
Hiperlan Il interleaver was used for interleaving the coded bit§odulus. The final estimation of the users’ bits is then given by
before modulation. slicing x.

The standardized Hiperlan 1l channel A [13], which models

typical indoor environment channels with a number of Rayleigh. Mathematical Specification of the CLS Detector

distributed taps and an rms delay spread of 50 ns is used to a.%ropping the term in the log-likelihood function which is

sess the performance. The channels are assume(_j block t|meﬁ|q-a function ofx, the CLS minimization problem (4) can be
variant and uncorrelated amongst the antennas in the basesia-

L Wwritten as
tion’s antenna array.
min x7Rx — 2Re(x?Hy)
I1l. CLS DETECTOR * =
) ] o ] st.x"x=UF, (5)
In this section, the principles of the CLS multiuser detector
proposed in this paper are discussed. This multiuser detecigth the channel autocorrelation matix = H”H. The La-

is applicable to flat-fading MIMO scenarios where constargrangiant(x, A) for this minimization problem is
modulus signals are employed. We concentrate in this section

on QPSK signals. The derivation holds however for anyC(x, A) = x”"Rx — 2Re(x"H"y) + A (x"x — UE;) . (6)
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Straightforward derivation gives the following solution for

| compute \*
x=(R+Ayyy) 'Hy @ tr
Ecus nll— -] Sl z1[n (]
where A has to be calculated such that the constant modul - Ul ., v : v |
constraint is fulfilled. The solution in (7), which generates - ' '

linear equalizeEc s, is similar to the MMSE detector [18], yalnl— — el Z_:[%]]%_@[”]_ —V[n]
[27], [28] and the generalized MMSE detector [30]. Whega:

o2 | E, with o2 the noise power, the CLS receiver reduces tgg- 2. Flowgraph for the CLS receiver.

the MMSE detector. For the generalized MMSE detector, the

optimal \ is computed iteratively over the interwalf x < UE, Sinceg(e) = UE, for ¢ = o,|7,|//UEs, the starting point
[30]. Note thatin (7) it is assumed implicitly thB+ Ay < i given by

full rank, which is the case provided that does not equal one

of the eigenvalues dR. We will show later on, however, that A= g2 o[y, | (12)
the filters corresponding to these eigenvalues cannot be valid " VUE,
solutions.

In order to compute the constrained least squares filtgr; Wil have $(\°) > U E,. Sinceg’(\) < 0 and¢”(X) > 0in I,
as given by (7), the optimal value for has to be found. The @pplying Newton’s method starting fron? results in conver-
problem of finding this optimak can be substantially simplified 9ence inl. The iterations are stopped when
since the CLS receiver described by (5) constitutes a quadrati-
cally LS problem [7],[9], [11], [12] for which a similar approach
ZZ (I:g rLlpl c; sp;figr?(z]sc\:/alljr]) %goiozvji?‘.[?{)t l:; énglfge rzg‘g\t/jéarr C\giuv(\a/hereTit is the stopping threshold which can be set to the re-

. ired accuracy.
alternatively be expressed as quire S .
y P Finally, the estimation of the transmitted constant modulus
r vector is given by
arg min ||2-X-§y|}=arg min E (0:% —7:)°
E, x"x=U

xHx= H

|p(\) —UE| < Ty (13)

= ®) % = VE(\). (14)

- __ H = __ H .
wherey = U”y, X = Vix andr < Uls the rank of the .,y y05ing all the previous results, Fig. 2 shows a flow-

c?a}rlmleJl r_natr||_>H. Furthermﬁ_relq_ri are_tthe (real)tsmgr:ﬂar \t/r?ll:eti raph for the CLS detector. Note that all of the computations
of It Lsing Lagrange multipliers, 1t Is easy to show tha uring data processing only require ttien SVD, given by

solution forx is given by H = U, %, V¥ [L1, p. 72], instead of the full SVD. f < U,
() = c2fi~|y_73x ie1er ©) this reduces the processing complexity.
g;

C. Analysis for High SNR

To determine the Lagrange parametewe define ) o )
In the noiseless case, it is straightforward to show that the

r 21— 12 . . . . . .
e 5 o? |yl optimal solution is given by = 0. Given thaty = H - x since
$(A) = IRz = Z; lo? + A2 (10)  ho noise is presen$;(0) becomes
. T —_ 2
and search for a solution {{\) = UE. If X equals—o7, j = Ui\ =12 — ell2 —
1---7, theng()\) = co. Hence, the eigenvalues Bf cannot be Z ) Illz = [z = UF. (15)

valid solutions of the CLS detector, as stated previously. =t

Expanding (10) results in a polynomial with ordet Solving Clearly, the constant modulus criterion is fulfilled. The estima-
this polynomial give2r roots ;. In [7] and [9], it was shown tion x is then given by
that the global minimum is achieved by the maximedl! root
A*. Hence, only this root needs to be computed. x=R7'H"y (16)
Sinceg(—c?) = co and¢(co) = 0, it is clear that\* € T .
with I the interval |—o2, co]. As ¢()) is monotonously which corresponds to the ZF detector [28], [27], [30].
decreasing on this interval, this unique real root can be found . )
with standard root-finding techniques. In this paper, Newton[- Relationship With the MMSE Detector
method is used because of its fast convergence. A “good’Since the expression for the CLS detector in (7) is so similar
starting point\ is found by boundings(\) onI as follows:  to the one for the MMSE detector, it seems that the estimate

- i 1o of the CLS detector is a scaled version of the estimate of the

pA=—02+¢€) = Z % MMSE detector. Here, we show however that both estimates are
1 (07 —ok+e) only co-linear under very specific channel conditions. Hence, in

o2|7, |2 general, the CLS detector will provide different estimates for the

25 =9, €>0. (11) transmitted symbols than the MMSE detector.
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TABLE I TABLE I
INITIALIZATION OPERATION COUNT PERSUBCARRIER PROCESSINGOPERATION COUNT PERSUBCARRIER
Singular Value Decomposition Filter 1 Root Filter 2
multiplications N, (6U3 + 2UA) + 3402 - £ multiplications rA 27 + 3rNy rU
additions  N,(4U% + U%A) + 3AU? — &~ 'addltlgns r(ﬁ -1 ; 47'11\2'uN 6U ((Jr —;27
data transfers N, (27U + 18U%A) + 184U - 2U3 data ransfers  6rA —3r Sr + 12rNiy 6rl -

In order forxcpg to be colinear withkyysg, it must hold For the case study in Section 1I-C, the initialization phase
that requires 2.2 k multiplications, 1.45 k additions, and 12.5 k data
transfers per subcarrier wheév, is assumed to be equal to 4.

2) Processing: The processing consists of three steps. First,
the received symbolg[n] need to be filtered witfU#[n], la-

If ||%nmuselle = VUES, the MMSE detector is the solution tobeledfilte_r 1, to obtainy[n]. Then, th.e. desired rpdi* is com-
the CLS problem in (4) and both detectors are identical. In geputed using Newton's method requirifg, iterations. Finally,

eral, this can however not be guaranteed for the MMSE detectg results are filtered witV, [n], labeledfilter 2, to obtainx.
and it must hold that The approximateprocessing complexity for each subcarrier is

shown in Table Ill. Note that, for Newton’s method, all opera-

2@ = UE, 5 Uiz , Vi=1---r. (18) tions and data transfers are strictly real, reducing its complexity
o2+ X |xummskllz 02 + 02 /E; significantly.

However, since\ is a constant, these relations can only hold in Cléarly, the order of the overall processing complexity is

the degenerate case wher 1 orin the case when allsingular  ©(U4), which is the same as for the MMSE detector and the

valuess; are equal to a constamt Note that the first case occursZF detector [27], [28]. In the case where= U = A, the 2

when there is only one user. Then, all linear detectors result4p 4 filters in the CLS detector require twice the complexity

maximum ratio Combining (MRC) and perform identically. of the A x A MMSE or ZF.fllt.ers. Addltlonally, there is some
In the second case, the channel matrix possesses orthog8Ng/head due to the root finding.

columns and both the CLS detector and the MMSE detector™0r the case study from Section Il, the processing per subcar-
simplify to a channel matched filtd¥ followed by a scaling rier requires 32 multiplications, 24 additions, and 168 complex
factor. The optimal* in this specific case is given by data transfers for the filtering, assuming the channel matrix to

be full rank. Additionally,8 + 28 V;; real flops an®0 + 48 N;;
N o < lyllz 0) (19) real data transfers are required for the root finding. In our sim-
o VUE, ’ ulations, where the thresholl; was set to 10!, the average
number of required iterations was 3.4.

XcLs _ XMMSE a7)
UE; I%ymse||2

E. Complexity Analysis

In this section, we derive the complexity of the CLS detector
in terms of the number of complex operations and data transfersThe CLS detector derived in the previous section relies on
The number of data transfers is an indicative number for ti§8annel knowledge and therefore needs an accurate channel
amount of memory/register transfers, which often dominate tRgtimation strategy. In this section, we discuss a low-complexity
implementation complexity. MIMO channel estimator for OFDM/SDMA based on pilot

A difference is made between the initialization step, whegymbols, in contrast with the channel estimator in [17] which
the SDMA processors are set up, and the data processing $t8¢s the decoded signals as a reference. Our estimator allows
when the actual SDMA processing is done. The former is calotultiple channel vectorh*[n] to be estimated simultaneously

lated only once per frame while the latter is performed for eve@ a subcarrien, opposed to the pilot symbol-based estimators
OFDM symbol. proposed in [15], [26] which require the users to utilize disjunct

1) Initialization: The CLS receiver requires thesubcarriers during estimation. Furthermore, it does not rely on
generation of the thin SVD of each channel matriR specific channel model as in [6], making it more robust.
H[n] = U;n]Z1[n]VI[n]. The approximate complexity First, the pattern of these pilot symbols is discussed. Second,
for this initialization using Kogbetliantz’s iterative algorithmthe estimation algorithm is analyzed.
[4], [11], [16] is shown in Table Il for each subcarrier. In the
derivation, the channel matrix was assumed to be full rank. A. Pilot Pattern

In Table II, N, stands for the number ofsiveepSwhich pitferent pilot patterns for estimating the channel matrices
are executed to obtain the required accuracy. It was proven-ih pe devised [6], [15], [19], [26]. Since indoor channels vary
[20] that Kogbetliantz's algorithm converges quadratically ifery siowly with time, we assume block time-invariant channels
the case of disjunct singular values. In practice, quadratic CQfkq rely on burst processing with periodic updating of the de-

vergence is observed for all cases and only a moderate numgfion filters [26]. Hence, at the start of a frame, pilot symbols
of sweepshV; is needed.

IV. CHANNEL ESTIMATION

3For simplicity, some lower order terms have been neglected in the com-
2For simplicity, only the highest order terms have been retained. plexity of Newton’s method.
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for channel estimation are transmitted. These estimates serv user user
initialize the detection filters which are held constant for the re A ek B Lol uz2 uzd o uzd
of the frame. We have also ignored the effects of timing and fr X X o IR R
guency offsets on the system by assuming that they have b 2] x x 2 x X X
well taken care of by using timing and frequency estimationar 3 % % 3|« % %
correction. o y o y y
The pilot patterns employed in this paper, are a combin'E £
tion of frequency interlacing (using FDMA) and spatial overla'§ > X X 8 3| x X X
(using CDMA). Let the number of simultaneously transmittine 6| x X 6 X X X
users on a subcarrier during estimation be denoteld pyhere 7 9 9 11 9 9
K < U < A. Note that the number of simultaneous user
K during the estimation phase is not necessarily equal to t X X SLx | x X

number of user#/ during data transmission mode. This allows () (b)

a trqdeoff of estimation accuracy vy|th pilot overhead and COTBiy. 3. Frequency interleaving pattern f6r=

plexity. Thus, on a certain subcarrier, a sefdlusers are spa-

tially overlaid allowing their combined channel matrix to be esi
|

4andN = 8.

. X . . sers. The numbéP of pilots per OFDM symbol for each user
timated simultaneously. On different subcarriers, however, d 'given by P P y

ferent sets of users are transmitting jointly. Hence, the user set
are frequency interleaved. Finally, for each user channel esti- p— N-K 23)
mates on each subcarrier have to be computed based on the ini- U

tial estimations obtained on the pilot subcarriers. where we assume for simplicity th&t is an integet. In order

1) Spatial Overlay: For spatial overlay of the users, we ont, maximally spread th@ pilots over the available subcarriers,
struct an orthogonal matri& with dimensionsk” x .J such that e subcarriers assigned to user 1 are

CCT = Ik, k. To achieves this, the rows 6f are chosen as
orthogonal Walsh-Hadamard code®f lengthJ > K. The Nl N
estimation approach in [15], [26] corresponds to the trivial case P P|’
K = 1. The parametef, which determines the estimation over- - . .

head in terms of OFDM symbols, can be varied to tradeoff e\%_here| : | here indicates rounding to_the clos_e_st integer. Then,
timation accuracy and pilot overhead. The minimal valud of the carriers for user are found by cyclically shifting the pattern

L of the first user ovetr, — 1 subcarriers.
for any K > 2, however, is given b . )
yr > 9 y Exemplary frequency interleaving patterns fér= 4 and

K N = 8 are shown in Fig. 3(a) wherE = 2 and in Fig. 3(b)
J=4 {ZW , K>2 (20)  wherek = 3.

Finally, each user may apply a frequency code on the assigned
as Walsh—Hadamard matrices exist only for valiés> 2 for  subcarriers. However, the same code has to be used by all users
which mod(K, 4) = 0. Here,[-] denotes rounding up to thein the set in order not to disturb the orthogonality within the
closest integer. The pilot pattern on subcarrieis then given set. This code can be optimized to different ends. For example,

-

ik N (24)

ey

by the code can be chosen to possess a low peak-to-average power
. « L ratio so as to minimize the nonlinearities of the receiver and the
hiln] -+ hi [n] c* [n] transmitter chains during channel estimation.
Yn] = : . : +Ni[n] (21)

B. Channel Estimation

q] SK K
N Wi [n] v ha [ i,[i, The processing in (22) delivers initial noisy estimates of the
Hin] Cln] channels for each user on a set of subcarriers. For the SDMA
processing, the estimation noise needs to be suppressed and
channel estimates for all users on tNg subcarriers that ac-
tually transmit data are needed. The initial channel estimates
flg [n] for useru on antenna as given by (22) can be written as

wheres" is theuth user in the user sét on subcarrier.. The
initial channel estimatioI[n] is obtained by right multiplying
the received samples with the mat@¥'[n] as follows:

Hn] = Y[n]-CT[n] = J- E,-H[n]+N[n]-CT[n] (22
N'[n]

synchronization, the spreading codesvith length .J deliver O the pilot subcarriers of th&’ x N FFT matrixQ. Further- -
a J-fold increase in SNR. The estimation based on HadamdRP'e.g; [t] is the time-domain channel impulse response which

codes has the additional advantage of not requiring multiplica@s & limited lengtfd/. We make use of a frequency smoothing
tions. and interpolation filter that tries to optimally exploit the limited

2) Frequency |nter|eaVing_W9 assume the pilot OF_DM 4f this is not the case, then not all users can be assigned the same number of
symbols to be completely filled by pilots from the differenbilots and slight pilot pattern irregularities occur.

o] =5 Qe B ) e
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channel length in order to significantly decrease the estimation TABLE IV
noise. To this end, (25) can be rewritten as TOTAL CHANNEL ESTIMATION OPERATION COUNT
o u u gu[t] w Code removal
hy[n]=J - E;- [ ph| pn] "o +ng'[n] (26) multiplications -
additions NgAK(J - 1)
where the matriQ;, is separated in & x M matrix Qy;, com- data transfers 3N4AK(J ~ 1)
posed of theM columns corresponding to the channel and a ML Filters

multiplications UAM (N4 + P)
additions UAM(P —1)+UAN4(M —1)
data transfers 6U AM (N4 + P) — 3UA(M + Ng)

P x (N — M) matrixQy, composed of the remaining columns.

In [5] and [26], the ML estimation of the channel coefficients
on the Ny data subcarriers using the initial channel estimates
h¥[n] was shown to be given by

In the special case where pilots are available oVadlubcar-

.U 1 u u uw L u [ u
ha [71] = JE dh -~ ( th : Qph) ) prfi'ha [TL] (27) rierS, (29) reduces to
EE{[L 2
o M
. : , MSEZ[n] = —2— - —. 30
whereQy, is aNg x M matrix composed of the first/ ele- aln] J-E; N (30)

ments of thelV; rows corresponding to the data subcarriers of L i )

the FFT matrixQ. The ML filter E%,, effectively removes part The ML filter in thls case allows for a noise power redu_ctlon of
of the estimation noise and interpolates the channel estimated'd4!Y - All the noise that falls out of the first/ samples in the
the P pilot carriers to obtain estimations on all data subcarriefd1€ domain corresponding g [1] in (26) is rejected and only
This ML filter corresponds to the modified least squares chanrtBf N0ise which is added tgf;[¢] is retained.

estimator first derived by van de Beekal.in [24], which can _ 2) Noise Power Estimation Performancétis easy to show
also handle nonconstant modulus pilot symbols. Note that 4t for the noise power estimatiar, described in the Ap-

same ML filter can be used for all channeldh® corresponding Pe”dix' ,it hold_s tha€ {5.} = oy, which implies that the es
to a certain uset timator is unbiased. Furthermore, the MSE of the estimator is

given by

C. Noise Power Estimation 4
~2 On

For the MMSE detector, an estimate of the autocorrela- MSE (6;) = AU(P = M)’ (31)
tion of the received signals on each subcarrier is required.
In [18], where an MMSE approach closely related to
MMSE-OFDM/SDMA was proposed, the correlations of th&. Estimator Complexity Analysis

received signals are estimated directly. In our experlments,l) Channel Estimation ComplexityThe total complexity of

however, we estimated the noise power and used this togettp]eé' complete channel estimation strategy, which consists of the

with the channel estimations to compute the MMSE filterg s, agamard code removal in (22) and the filtering with the

ic::rt(ahcélﬁr'g;eng&se power estimator that was used is descr'tﬁleilters EY,, in (27), is given in Table_ IV._ |
o reduce the complexity of the ML filtering, which clearly
is the most demanding part, the filter was separated in two fil-
_ _ ters, namelyQy, and(Qu Qu,)~' Qe , which were applied
In this section, we study the performance of the proposg@nsecutively. For some parameter values, however, it may be
channel and noise power estimators in terms of mean squa{gre interesting to directly apply the total filt&y, .
error (MSE). Note that the ML filters can be applied even more efficiently

1) Channel Estimation Performanceézrom (26) and (27), py interpreting them as the concatenation of a partial IEET ,
we find that a weighting matrix(Q]’jH Q})~!, and a partial FFTQ} [5].
Sur 1 v 1 u wH u\—1 ~uH These (I)FFT matrices can then be pruned to remove the un-
ha [’IL] - ha [n] + - Es th (Qph ph) ph n, [n] necessary branches [5], [22]

(28) The case study of Section Il requires, respectively, 2.3 k flops

Since the second term constitutes a Gaussian noise term, 4g 6.9 k data transfers for the code removal and 48.1 k flops
proposed channel estimator is unbiased. The MSE on subcarggf 144.4 k data transfers for the ML filters, wh&n= 4.

D. Estimator Performance Analysis

n for useru and antenna is given by 2) Noise Power Estimation Complexitythe complexity of
o2 . the noise power estimation algorithm, which consists of the fil-
MSEG[n] = 55 dan[n]- (Qu-QY,)  alnln]™ (29) tering withEY; in (33) and the estimation in (34), is shown in
® Table V.

whereqy, [n] is the row ofQY, corresponding to subcarrier When K = 4, the case study of Section I, requires 49.6 k
The MSE differs for each subcarrier and is a function of thitops and 148.9 k data transfers, respectively. Thus, the noise
pilot pattern which has been used. The pilot pattern proposestimator in this case is as complex as the channel estimator dis-
in Section IV-A spreads the pilots as evenly as possible for alissed in Section IV-E1. This additional complexity is however
users and thereby aims to balance the MSE on all subcarriersnly required for the MMSE detector. The CLS detector does
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TABLE V 10" . R T T "—E—CLS
ToTAL NOISE POWER ESTIMATION OPERATION COUNT ; ; X ;AFMSE
Filters
multiplications UAP(P - M)
additions UAP - 1)(P - M) 2
data transfers 6UAP(P — M) — 3AU(P — M) T
Estimation g
multiplications UA(P - M) po
additions UAP-M-1) qu;
data transfers 6UA(P - M)—-3UA =
§
<
10°
-8- CLS
—+— MMSE
|- ZF

20 25 30

15
Eb/No (dB)

Fig.5. Average BER versus SNR for OFDM/SDMA using 8-PSK with perfect
channel knowledge.

the ZF detector was shown in [29] to correspond to the perfor-
mance of QPSK signaling over a Rayleigh fading channel with
(A — U + 1)-fold diversity [21]. Note that all the detectors in
Fig. 4 achieve the same order of diversity- U + 1.

Higher order PSK constellations lead to a higher spectral ef-
ficiency while still possessing a constant amplitude. Hence, the
proposed detector can intrinsically be applied to M-PSK signals
as well. Fig. 5 shows the performance with ideal channel knowl-
edge when employing 8-PSK instead of QPSK#oe 2 - - - 4.
Fig. 4. Average BER versus SNR for OFDM/SDMA using QPSK with perfedror U = 4, the CLS detector outperforms the ZF detector by
channel knowledge. 2.5 dB forBER = 102 and performs better than the MMSE
for higher SNR. Here as well, the differences are smaller for

not require knowledge of the noise power and hence its estini@wer U.

tion complexity typically is substantially lower. Finally, in Fig. 6, the performance is shown with ideal
channel knowledge when employing 16-PSK &br= 2 - - - 4.

ForBER = 1072 andU = 4, the CLS detector now outper-
_ forms the MMSE detector by 1.5 dB and the ZF detector by
A. Results With Ideal Channel Knowledge more than 2 dB. For all/, the CLS detector performs better

Fig. 4 shows the performance of the CLS receiver for the caé@n the MMSE detector for higher order constant modulus
study defined in Section 1I-C when the users employ QPSK &gignals, indicating that the linear transformation corresponding
suming ideal channel knowledge. As a reference, the perf@p-the MMSE detector does not necessarily lead to the lowest
mance of the ZF detector and the MMSE detector are shovigER of all possible linear transformations. By taking the
All curves are plotted fof/ = 2---4. WhenU = 1, all detec- constant modulus nature of the signals as a constraint, it is
tors reduce to MRC [21] as stated before and behave identicafigssible to construct a better linear transformation via the CLS
Therefore, these curves have not been plottedIFer 4, the detector, which computes this transformation in a nonlinear
CLS receiver performs within 1 dB of the MMSE detector antfshion.
outperforms the ZF detector by 3 dB, indicating that better de- o
tection is achieved by constraining the norm of the estimat&d Results With Channel Estimation
transmit vector. For lowet/, the differences between the de- All the following results focus on the cage= A = 4 as this
tectors become smaller. For all simulations, the stopping criteads to the highest spectral efficiency.
rion T;; for Newton’s method was set t~! which requires 1) Uncoded ResultsFor U = 4, a spectral overlay factor
on the average only 3.4 iterations irrespective of the SNR. D& = 1 does not fulfill the condition® > M needed for re-
to the rapid convergence of Newton’s method, the maximulable estimation. Therefore, in Fig. 7, the performance of the
number of iterations which was encountered in the simulatioakorithms with both QPSK and 16-PSK is shown when the
was only 7. Hence, the worst case processing delay incurrectivannel estimation algorithmis included fér= 2. Clearly, the
the CLS detection is limited. Furthermore, the processing delpgrformance order of the algorithms is unchanged when com-
could be lowered even more by limiting the maximum numbegrared to Fig. 4. The performance of the algorithms with per-
of iterations at a penalty in performance. The performance ffact channel knowledge is plotted in dotted line. For QPSK, all

1
®

Average Bit Error Rate

20 25

10 15
Eb/No (dB)

V. PERFORMANCEANALYSIS
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Fig. 6. Average BER versus SNR for OFDM/SDMA using 16-PSK with-ig. 8. Average BER versus SNR for OFDM/SDMA with channel estimation

perfect channel knowledge. for K = 3 andU = 4.
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Fig. 7. Average BER versus SNR for OFDM/SDMA with channel estimatiofig. 9. Average BER versus SNR for OFDM/SDMA with channel estimation
for K = 2 andU = 4. for K = 4 andU = 4.

algorithms lose 4 dB in performance compared to their ide@PSK, both the ZF and the CLS detector now lose 2 dB in per-

performance. For 16-PSK, the CLS detector has a 4.5-dB p@rmance compared to their ideal performance while the MMSE

formance penalty but, for highdt, /Ny, still outperforms the detector has a performance gap of only 1 dB. For 16-PSK, the

MMSE detector, which has a 3.5-dB performance penalty. TIS detector degrades by 1.9 dB, the ZF detector by 1.5 dB and

expected IengtM of the time-domain impulse response, whiclthe MMSE detector by 1.2 dB. Settidg = 3 is only interesting

is a design parameter for the smoothing filter in (27), was siebm a complexity point of view since the same pilot overhead

equal to the length of the cyclic prefix, i.e., 16 samples. For amists as forK = 4 but less channel samplds per user are

OFDM system, it holds that the channel lengths are expectaehilable. However, the lower values &f and P in this case

not to exceed this length if the cyclic prefix was designed propesult in a lower estimation complexity.

erly. The minimum code length is, in this case, equal to 2, In Fig. 9, the performance of the algorithms with QPSK and

resulting inP = 24 channel samples per user. Additionallyl6-PSK is shown whedl = 4 with a code length] = 4,

for the MMSE detector the noise power is estimated using ttie = 48 channel samples per user, and 768 noise samples. For

estimation algorithm discussed in the Appendix. In this cas®PSK, both the ZF and the CLS detector now lose 1 dB in

AU(P — M) = 4 x 4 x 8 = 128 noise samples are available. performance while the MMSE detector has a performance gap
In Fig. 8, the performance of the algorithms with QPSK anaf 0.5 dB. For 16-PSK, the CLS detector, which has a perfor-

16-PSKis shownwheR = 3, resultinginacode length =4, mance degradation of 1.5 dB, outperfoms the MMSE detector

P = 36 channel samples per user, and 576 noise samples. Bpi0.8 dB.
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ig.11. Average PER versus SNR for coded OFDM/SDMA using 16-PSK for

Fig. 10. Average BER versus SNR for coded OFDM/SDMA using 16-PS " 4 andl — 4.

for K = 4 andU = 4.

. VI. CONCLUSION
2) Coded Resultsin Fig. 10, the performance of the three

detectors is shown when channel coding is included. The curvedn this paper, we proposed a new low-complexity multiuser
are plotted for a fully loaded uplinkU = 4) using 16-PSK detector and applied it to a combined OFDM/SDMA approach
and channel estimation with = 4. Soft Viterbi decoding was that combines OFDM for efficient multipath propagation mit-
performed using the simplified log likelihood metrics in [3, egigation with SDMA for bandwidth reuse. The proposed CLS
9]. For the MMSE detector, the results for two different mefeCeiver was analyzed in terms of complexity and performance.
rics are plotted. The first metric only takes the noise enhancddditionally, we proposed a combined OFDM/SDMA channel
ment of the MMSE filter into account for computing the equivand noise power estimation approach. The simulations for a
alent noise power and neglects the residual multiuser interféfiPerlan Il-based case study indicated that the CLS detector
ence. This way, knowledge of. is not required as this commonC0Omes within 1 dB of the MMSE d_etector for the spectrally ef-
factor in the log-likelihood metrics can be dropped. The secofigiént caselU = A = 4 when using QPSK. For 8-PSK, the
metric computes the equivalent noise power as the sum of faeS detector outperforms the ZF detector by approximately 2
enhanced noise power and the power of the residual interfereAgsand performs better than the MMSE detector for higher SNR.
(which is thus assumed to be Gaussian distributed). The MMEEr 16-PSK, the proposed detector is more than 2 dB better than
detector with the simplified metric performs worse than the z#f€ ZF detector and 1.5 dB better than the MMSE detector. Fur-
detector for higher SNR since the interference power has bdBgrmore, simulations show that the performance degradation
neglected. The second metric performs substantially better fft the CLS detector due to estimation can be lowered to ap-

equivalent noise power. strategy at a low pilot symbol overhead. The results including

For the CLS detector, the interference of the users was r%:hannel estimation and convolutional coding with soft Viterbi

lected as no knowledge of is available. Simulations showed dee_coding when using 16-PSK indicate that the CLS detector can

g €dge o N . . ‘achieve 0.5 dB gain over the MMSE detector for a PER0O !
however, that the impact is negligible as the residual interfer- .
ence power is usually small compared to the noise enhangg—d more for higher SNRs.
JThe main advantage of the CLS detector compared to the

ment. Hence, the CLS detector does not require knowledge . : N L
o2 for decoding, in contrast to the MMSE detector where né\?&/ISE detector is the fact that its estimation complexity is sub-

lecting the residual interference power results in si nificaﬁ@mialIIy lower while in our case study it performs almost as
g g . P g d"’@l for QPSK and better for higher order M-PSK. Therefore,
performance degradation. The curves show that the coded £2 CLS detector in combination with OFDM/SDMA forms

detector performs slightly better than the MMSE detector for

high SNR with the best metric and outperforms the ZF detectﬁ? attractive tradeoff between complexity and performance for

by 1.6 dB forBER = 10-2. gh-speed indoor networks.

In Fig. 11, the average packet error rate (PER) after decoding
is shown for the same parameters as Fig. 10. The packets con-
sisted of 50 OFDM symbols corresponding to 9600 bits per user.
Although the difference in BER was small in Fig. 10, the CLS In this Appendix, a simple noise power estimation strategy
detector performs 0.5 dB better in terms of PER than the MMS&proposed that is necessary for the MMSE detector. The noise
detector with the second decoding metric fdox PER = power spectrum is assumed to be flat although the estimation
10~ while for higher SNRs the gain increases further. strategy can be extended to the colored noise scenario.

APPENDIX
NoOISE POWER ESTIMATOR
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Expression (26) can be rewritten as [17] Y.Li, L. J. Cimini, and N. R. Sollenberger, “Robust channel estimation
for OFDM systems with rapid dispersive fading channdEEE Trans.
Commun,.vol. 46, pp. 902-915, July 1998.

u _ u u u/
hiln] = J- E- Q- g4lt] + ng'[n]. (32) [18] Y. Liand N. R. Sollenberger, “Adaptive antenna arrays for OFDM sys-
tems with cochannel interferencéEE Trans. Communvol. 47, no.
The rank ofQ, is equal tamin (P, M) since this matrix can 2, pp. 217-229, Feb. 1999.

be easil shown to be full rank. For reliable channel estimation[19] R. Nilsson, O. Edfors, M. Sandell, and P. O. Borjesson, "An analysis of
y : ’ two-dimensional pilot symbol assisted modulation for OFDM,Pioc.

P should always exceed since the channelis assumed to have ICPWG July 1997, pp. 71-74.

M independent taps. Thus, the rankQ}j, is alwaysM and  [20] C. Paige and P. Van Dooren, “On the quadratic convergence of Kog-
v betliantz’s algorithm for computing the singular value decomposition,”

an orthonorma(P - M) x P blocking mamXE%L can be Linear Algebra Applicat.vol. 77, pp. 301-313, 1986.
constructed for whictEg; - Qg is a(P — M) x M matrix  [21] J. G. ProakisDigital Communications3rd ed. New York: McGraw-
with all-zero entries. The blocking matry; is given by any Hill, 1995. y _

[22] H. V. Sorensen and C. S. Burrus, “Efficient computation of the DFT
orthonormal basis for the null space@f), . Then, by projecting with only a subset of the input or output point$EEE Trans. Signal
the sampleh“ on ph we obtainP — M noise sampleA Processingvol. 41, p. 1184, Mar. 1993.

[23] I. E. Telatar, “Capacity of multi-antenna Gaussian chann&lst’ Trans.

. Telecommunyol. 10, pp. 585-595, Nov. 1999.
nY = E%; -h¥[n] = E%; - n%'[n]. (33)  [24] J.-J. van de Beek, O. Edfors, M. Sandell, S. K. Wilson, and P. O. Bér-

jesson, “On channel estimation in OFDM systems,Pioc. VTG vol.

. 2, 1995, pp. 815-819.
Note that also here the same filter can be used fot alhannels [25] A.-J.van der Veen and A. Paulraj, “An analytical constant modulus al-

fl}; corresponding to a certain ugserThe autocorrelation of the gorithm,” IEEE Trans. Signal Processingol. 44, pp. 1136—1155, May
noise samplea” is equal tas? - J - E, - I p_y, _an. For 1996.

p 2 d m s H{P—M)x(P—M) [26] P.Vandenameele, L. Van der Perre, M. G. E. Engels, B. Gyselinckx, and
each combination of antennand user, P— M noise samples H. J. De Man, “A combined OFDM/SDMA approacHEEE J. Select.
are available. The ML estimatiaf} for o2 is then given by Areas Communvol. 18, pp. 2312-2321, Nov. 2000.

[27] P. Vandenameele, S. Thoen, M. Engels, and H. De Man, “A combined
A U OFDM/SDMA approach for WLAN,” inProc. VTC SpringHouston,
52— 1 Z Z qu (34) TX, May 1999, pp. 1712-1716 _ _ _
n ng,- [28] S. Verdu,Multiuser Detection Cambridge, U.K.: Cambridge Univ.
AU(P M =lu= Press, 1998

[29] J. H. Winters, J. Salz, and R. D. Gitlin, “The impact of antenna diver-

sity on the capacity of wireless communication systentSEE Trans.

Commun.vol. 42, pp. 1740-1751, Feb./Mar./Apr. 1994.
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