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Abstract—The combination of space–time block coding (STBC)
and direct-sequence code-division multiple access (DS-CDMA)
has the potential to increase the performance of multiple users in a
cellular network. However, if not carefully designed, the resulting
transmission scheme suffers from increased multiuser interfer-
ence (MUI), which dramatically deteriorates the performance.
To tackle this MUI problem in the downlink, we combine two
specific DS-CDMA and STBC techniques, namely single-carrier
block transmission (SCBT) DS-CDMA and time-reversal STBC.
The resulting transmission scheme allows for deterministic max-
imum-likelihood (ML) user separation through low-complexity
code-matched filtering, as well as deterministic ML transmit
stream separation through linear processing. Moreover, it can
achieve maximum diversity gains of ( + 1) for every
user in the system, irrespective of the system load, where
is the number of transmit antennas, the number of receive
antennas, and the order of the underlying multipath channels.
In addition, it turns out that a low-complexity linear receiver
based on frequency-domain equalization comes close to extracting
the full diversity in reduced, as well as full load settings. In this
perspective, we also develop two (recursive) least squares methods
for direct equalizer design. Simulation results demonstrate the
outstanding performance of the proposed transceiver compared
to competing alternatives.

Index Terms—Block transmission, direct-sequence code-division
multiple access (DS-CDMA), equalizer design, frequency-selec-
tive fading channels, multiple-input–multiple-output (MIMO),
space–time block coding (STBC).

I. INTRODUCTION

D IRECT-SEQUENCE code-division multiple access
(DS-CDMA) has emerged as the predominant multiple

access technique for third-generation (3G) cellular systems
because it increases capacity and facilitates network planning
in a cellular network. In the downlink, these systems rely
on the orthogonality of the spreading codes to separate the
different user signals. However, for increasing chip rates, the
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time-dispersive nature of the multipath channel destroys the
orthogonality amongst users, giving rise to multiuser interfer-
ence (MUI). Chip-level equalization completely or partially
restores the orthogonality and, hence, allows to suppress the
MUI; see, e.g., [1] and [2]. However, this requires multiple
receive antennas (two for chip rate sampling in a single-cell
context) to guarantee a zero-forcing (ZF) solution for any set of
well-conditioned channels [3]. On the other hand, single-carrier
block transmission (SCBT) DS-CDMA, recently proposed
as chip-interleaved block-spread (CIBS) CDMA in [4], only
requires a single receive antenna because it effectively deals
with the frequency-selectivity of the channel through zero
padding (ZP) the chip blocks. Moreover, SCBT-DS-CDMA
preserves the orthogonality amongst users regardless of the
underlying multipath channel, which enables deterministic
maximum-likelihood (ML) user separation through low-com-
plexity code-matched filtering [4]. Increased equalization
flexibility and reduced complexity are other benign prop-
erties that favor SCBT-DS-CDMA for broadband downlink
transmission compared to conventional DS-CDMA [5]. How-
ever, the spectral efficiency and, hence, the user data rate of
single-input–single-output (SISO) SCBT-DS-CDMA systems
is limited by the received signal-to-noise ratio (SNR).

As opposed to SISO systems, multiple-input–multiple-output
(MIMO) systems that employ transmit and receive
antennas, have been shown to realize an -fold capacity
increase in rich scattering environments [6]–[8], where

is called the multiplexing gain. Both
spatial multiplexing and space–time coding (STC) are popular
MIMO communication techniques that do not require any
channel state information (CSI) at the transmitter. On the
one hand, spatial multiplexing (SM), also known as BLAST,
achieves high spectral efficiencies by transmitting independent
data streams from the different transmit antennas [9] (see,
also [10]). SM requires, however, at least as many receive as
transmit antennas ( ), which seriously impairs cost-ef-
ficient implementations at the mobile station. On the other
hand, STC achieves high quality-of-service (QoS) through
diversity and coding gains by introducing both spatial and tem-
poral correlations between the transmitted signals [11]–[13].
As opposed to SM, STC enables cheap implementations at
the mobile station, since it supports any number of receive
antennas. In this perspective, space–time block coding (STBC)
techniques, introduced in [12] for transmit antennas,
and later generalized in [13] for any number of transmit
antennas, are particularly appealing because they facilitate ML
detection with simple linear processing. However, these STBC
techniques have been originally designed for frequency-flat
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Fig. 1. Base station transmission scheme.

fading channels exploiting only multiantenna diversity of order
. Therefore, time-reversal (TR) STBC techniques, orig-

inally proposed in [14] for single-carrier serial transmission,
have been recently combined with SCBT in [15] and [16] for
signalling over frequency-selective fading channels. While [15]
only exploits multiantenna diversity, [16] exploits multiantenna
as well as multipath diversity and achieves maximum diversity
gains of order over frequency-selective fading
channels, where is the order of the underlying multipath
channels.

Until now, research on STBC techniques has mainly fo-
cused onpoint-to-pointMIMO communication links, thereby
neglecting the multiple-access technique in the design of the
transmission scheme. Given the recent success of DS-CDMA,
this clearly justifies the need for a transceiver that combines
STBC with DS-CDMA. However, if not designed properly,
the resulting communication scheme suffers from an-fold
increase of the MUI, which has a detrimental effect on the
performance.

In this paper, we combine TR-STBC with SCBT-DS-CDMA
for point-to-multipoint(downlink) frequency-selective fading
MIMO communication links. The proposed transceiver pre-
serves the orthogonality amongst users, as well as transmit
streams regardless of the underlying multipath channels.
This allows for deterministic ML user separation through
low-complexity code-matched filtering, as well as determin-
istic ML transmit stream separation through linear processing.
Moreover, applying ML Viterbi equalization for every transmit
stream separately guarantees symbol recovery. Therefore,
maximum diversity gains of can be achieved
for every user in the system,irrespective of the system load.
We will pursue, however, a slightly suboptimal approach that
combines the transmit stream separation and equalization steps
into one singlelinear equalization step. This enables the use
of low-complexity equalizer design algorithms that circumvent
the need for explicit channel estimation. In this perspective,
we propose two [recursive (R)] least squares (LS) methods
for direct equalizer design that act on a per-tone basis in the
frequency-domain (FD). Both methods exploit the presence
of a code-division multiplexed pilot (CDMP) (similar to the
common pilot channel (CPICH) in 3G systems [17]) but differ
in the amount of additionala priori information they assume
to determine the equalizer coefficients. Moreover, they benefit
from the ML user separability of the proposed transceiver.

Another alternative to remove MUI deterministically in
a ST-coded multiuser setup has been recently reported in
[18]. The transceiver of [18] combines generalized multi-
carrier (GMC) CDMA, originally developed in [19], with

the STBC techniques of [13] but implemented on a per-car-
rier basis. However, similar to all MC systems, single-user
GMC-CDMA transmissions generally suffer from high
peak-to-average-power-ratio (PAPR), which requires expensive
radio frequency (RF) front-ends and/or additional signal pro-
cessing to compensate for the nonlinear effects introduced by
the front-end.1 As opposed to [18], our transceiver is based on
SCBT-DS-CDMA which allows for perfectly constant-mod-
ulus (CM) single-user transmissions, at least if we replace the
zeros by known symbols [4], [20].

II. DOWNLINK TRANSCEIVERDESIGN

Let us consider the downlink of a ST block-coded
SCBT-DS-CDMA system with active mobile stations.
The base station is equipped with transmit (TX) antennas
whereas the mobile station of interest is equipped with
receive (RX) antennas. In the following, we will first describe
the base station transmitter design followed by the channel
model and the mobile station receiver design.

A. Transmitter Design

The block diagram in Fig. 1 describes the ST block-coded
downlink SCBT-DS-CDMA transmission scheme (where
only the th user is explicitly shown), that transforms the

user data symbol sequences and the pilot
symbol sequence into ST block-coded multiuser chip
sequences with a rate . For conciseness,
we limit ourselves to the case of transmit antennas
and briefly discuss the more general case of transmit
antennas at the end of Section II. Referring back to Fig. 1, the

th user’s data symbol sequence (similarly for the pilot
symbol sequence ) is first demultiplexed into parallel
lower rate sequences .
Unlike the traditional approach of symbol spreading that
operates on a single symbol, we apply here block spreading
that operates on a block of symbols; block spreading has
also been used in, e.g., [4] and [21]. Specifically, each of the
sequences is serial-to-parallel converted into
blocks of symbols, leading to the symbol block sequences

that are
subsequently spread by a factor with the user composite
code sequence (pilot composite code sequence ).
For example, is the multiplication of a short orthogonal
Walsh–Hadamard spreading code that is mobile station specific

1There exist special cases of GMC-CDMA that have no PAPR problem, but
they constitute a special SCBT-DS-CDMA design [19].
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Fig. 2. Initial part of mobile station reception scheme.

(pilot specific) and a long overlay scrambling code that is base
station specific. At this point, it is important to note that all

parallel symbol block sequences are spread by thesame
composite code sequence. For each of theparallel streams,
the different user chip block sequences and the pilot chip block
sequence are added, resulting into theth multiuser chip block
sequence

(1)

For future discussions, we find it convenient to also de-
fine the th user’s total data symbol block sequence

(similarly for the total pilot symbol
block sequence ) and the total multiuser chip block

sequence .
Unlike the traditional approach of performing ST encoding

at the symbol level (see, e.g., [12] and [13]), we perform ST
encoding at the block level (see also Fig. 1); this was also
done in, e.g., [15], [16], and [22]. Following the TR-STBC
approach for single-user point-to-point SCBT [16], we apply
the TR-STBC approach to SCBT-DS-CDMA. Our ST encoder
operates in the time-domain (TD) at the chip block level rather
than at the symbol block level and takes the two multiuser chip
blocks to output the following 2 matrix of
ST coded multiuser chip blocks

(2)

where is a permutation matrix implementing a TR
followed by a cyclic shift over positions [16]. At each time
interval , the ST coded multiuser chip blocks and
are forwarded to the first and the second transmit antenna, re-
spectively. From (2), we can easily verify that the transmitted
multiuser chip block at time instant from one antenna
is the time-reversed conjugate of the transmitted multiuser chip
block at time instant 2 from the other antenna (with a pos-
sible sign change). For frequency-flat fading channels, symbol
blocking is not necessary, so and , and the
ST encoder of (2) reduces to the well-known Alamouti scheme
[12]. However, for frequency-selective fading channels, the per-
mutation matrix is necessary to facilitate the exploitation
of both multiantenna, as well as multipath diversity [16].

At each transmit antenna , the zero padding
transmit matrix , with , pads a
zero postfix of length to : , the

Fig. 3. Final part of mobile station reception scheme.

purpose of which will be clarified later. Finally, the resulting
transmitted multiuser chip block sequence is par-
allel-to-serial converted into the corresponding scalar sequence

.

B. Channel Model

The transmit antennas at the base station together with
the receive antennas at the mobile station create a MIMO
channel with entries. Adopting a discrete-time baseband
equivalent model, the chip-sampled received signal at theth
receive antenna is the superposition of a channel-dis-
torded version of the signals from the transmit antennas,
and can be written as

(3)

where is the chip-sampled finite-impulse response
(FIR) channel from the th transmit antenna to the th
receive antenna including the effect of transmit and receive
filters, is the order of , and denotes
the additive Gaussian noise at theth receive antenna, which
we assume to be additive white Gaussian noise (AWGN) with
variance . Furthermore, we define as the upperbound on
the channel orders: . can be well
approximated by , where is the maximum
delay spread within the given propagation environment [23].

C. Receiver Design

The block diagrams in Figs. 2 and 3 describe the recep-
tion scheme for the mobile station of interest (which we
assume to be the th one), which transforms the different
received sequences into an estimate of the
desired user’s data symbol sequence . Referring back to
Fig. 2 and assuming perfect synchronization, at each receive
antenna , the received sequence
is serial-to-parallel converted into its corresponding block
sequence .
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From the scalar input–output relationship in (3), we can derive
the corresponding block input–output relationship as

(4)

where is the
noise block sequence, is a lower triangular
Toeplitz matrix with entries , and

is a upper triangular Toeplitz matrix with en-
tries (see, e.g., [19] for a
detailed derivation of the single-user SISO case). The time-dis-
persive nature of the multipath channel gives rise to so-called
interblock interference (IBI) between successive blocks, which
is modeled by the second term in (4). The receive
matrix completely preserves each block of :

. Unlike classical OFDM sys-
tems, that eliminate the IBI by discarding the cyclic prefix at
the receiver, here the IBI is entirely dealt with at the trans-
mitter. Indeed, by choosing the length of the zero postfix to
be at least the maximum channel order , we obtain

, so the IBI is completely removed.
Moreover, the zero postfix of the previous block acts
as a cyclic prefix of the current block , so that the Toeplitz
matrix can be safely replaced by the circulant
matrix through the identity

. In this way, we obtain a sim-
plified block input–output relationship in the TD

(5)

where is the corresponding
noise block sequence. Note that circulant matrices can be diag-
onalized by fast Fourier transform (FFT) operations [24], en-
abling simple per-tone frequency-domain (FD) equalization.

1) Space–Time Decoding:Following a similar approach as
in [16] for point-to-point SCBT, ST decoding is performed in
the TD at the chip block level rather than at the symbol block
level. From the ST code design in (2), we can easily verify that

(6)

(7)

which can be interpreted as TR ST coding with permutation ma-
trix (rather than ) applied to the zero-padded block se-
quences and (rather than to the block
sequences and themselves). We can now consider
two consecutive chip blocks and both sat-
isfying the TD block input–output relationship of (5), and de-
fine and
(see, also, Fig. 2). Aiming at low-complexity FD processing,
we transform and into the FD by defining

and , where
is the FFT matrix (see also Fig. 2). By exploiting

the ST code structure of (6) and (7) like in [16], we arrive at the
following FD block input–output relationship after ST decoding

(8)

where is a diagonal matrix,
is the FD channel response evaluated on the FFT grid,
stacks the corresponding noise block sequences, and where

and follow from (2).
From the structure of in (8), we can deduce that our

transceiver preserves the orthogonality amongst transmit
streams for each tone separately regardless of the underlying
multipath channel. This allows for deterministic ML transmit
stream separation through linear processing, assuming perfect
CSI. A similar property was also encountered in the classical
Alamouti scheme but only for point-to-point frequency-flat
fading MIMO channels [12].

Stacking the contributions of the RX antennas

, finally leads to the following per-RX-
antenna FD data model:

(9)

where is the per-RX-antenna channel

matrix, and is the corre-
sponding noise block sequence.

2) FD Equalization: Although one could argue that a max-
imum diversity transmission scheme, like the one we propose
here, is only useful when an ML receiver is applied, we will
show in the following that it is also useful when a suboptimal
receiver is applied. Unlike the approach followed by [25], that
applies ML linear transmit stream separation followed by ML
Viterbi equalization, we combine these operations into one
single linear equalization step, at the expense of some loss in
ML optimality. As will be shown in Section III, this suboptimal
approach enables the use of low-complexity per-tone equalizer
design algorithms that circumvent the need for explicit channel
estimation.

Defining the per-tone input block and the per-tone output
block as

(10)

(11)

where permutes a per-TX-antenna ordering into a per-tone
ordering and where permutes a per-RX-antenna ordering
into a per-tone ordering, we obtain the following per-tone data
model:

(12)

where is the per-tone noise block. The per-tone
channel matrix is a block diagonal matrix, given by

(13)
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Looking at (8)–(11), it is important to note that each of the
2 submatrices , with , retains the

orthogonality amongst transmit streams on a particular tone
, similarly to the Alamouti scheme for frequency-flat fading

channels [12].
Armed with the model of (12), we can now discuss different

equalization options that recover the multiuser chip block se-
quence . Since ML Viterbi equalization, as used in [25],
requires exponential complexity in the channel order, we will
only focus on low-complexity linear alternatives. A first possi-
blity is to apply a ZF chip equalizer [26]

(14)

which completely eliminates the interchip interference (ICI) at
the expense of excessive noise enhancement. A second possi-
blity is to apply a minimum mean-square error (MMSE) chip
equalizer [26], that explicitly takes into account the noise and
balances ICI eliminination with noise enhancement. The MMSE
chip equalizer is expressed as

(15)

where is the input covariance matrix,
and is the AWGN variance. From (14) and (15), it is also
clear that reduces to at high SNR.

It is important to note that the block diagonal per-tone struc-
ture of the channel matrix in (13) is also reflected in both the
ZF equalizer matrix , as well as the MMSE equalizer matrix

. So, both (14) and (15) actually captureparallel and
independent equalizers: , where
is a size 2 matrix that recovers the two parallel streams
on the th tone only, with (see also Fig. 2).

3) User-Specific Detection:Stacking consecutive chip
blocks into , we
obtain the symbol block level equivalent of (12)

(16)

where and are similarly defined as . From (8) and
(10), we also have

(17)

where stacks consecu-
tive chip blocks , is the compound
FFT matrix, and is the compound zero
padding transmit matrix. From (1), it is also clear that

(18)

where the multiuser data symbol matrix
stacks the total data symbol blocks of the different active

users at theth symbol block instant. The active multiuser code
matrix stacks the composite code
vectors of the different active users at theth symbol block in-
stant, where is the

th user’s composite code vector used to spread its total data
symbol block . The total pilot symbol block and the
pilot composite code vector are similarly defined as
and , respectively. For future discussions, we find it conve-
nient to also define theinactivemultiuser code matrix

that stacks the unused com-
posite code vectors , with .
It is important to note that , , and together form
an orthonormal basis of the-dimensional code space.

Starting from (16), the obtained chip equalizer matrix,
whether ZF or MMSE, may subsequently be used to extract the
desired user’s total data symbol block

(19)

where the estimate of the FD multiuser chip block matrix

is transformed to the TD by the com-
pound inverse fast Fourier transform (IFFT) matrix and has
its zero postfix removed by the transpose of the compound ZP
transmit matrix . The resulting estimate of the TD multiuser

chip block matrix is finally descram-
bled and despread with the desired user’s composite code
vector to obtain an estimate of the desired user’s total
data symbol block . These operations are alternatively
represented by Fig. 2 (see right-hand side) and Fig. 3.

In the above procedure, we have first applied equalization
at the chip block level followed by despreading with the de-
sired user’s composite code vector. However, we might inter-
pret (19) differently by reversing the order of these operations,
sofirst performing the despreading followed by equalization at
the symbol block level. From (17) and (18), we can easily derive
that

(20)

where is the permuted version of
the multiuser data symbol matrix after ZP and FFT pro-
cessing, and likewise for the
total pilot symbol block . So, despreading (16) with the de-
sired user’s composite code vector leads to the following
single-user data model

(21)

because of the orthonormality between the user and the pilot
composite code vectors at each symbol instant. From (21), we
can also conclude that our transceiver preserves the orthogo-
nality amongst users regardless of the underlying multipath
channels andsuccesfully converts (through despreading) a
multiuser chip block equalization problem into a single-user
symbol block equalization problem. Similarly to (14) and (15),
we can then obtain ZF and MMSEsymbolblock equalizers
that act on a per-tone basis in the FD. Note that a classical
DS-CDMA transmission scheme does not possess this nice
property.

Throughout Section II, we have limited our discussion to the
case of transmit antennas and any number of receive
antennas . However, our transceiver design can be easily ex-
tended to the general case of transmit antennas by re-
sorting to the generalized complex orthogonal designs (GCOD)
of [13]. The difference is that the GCOD should be defined at
the chip block level rather than at the scalar symbol level. In
general, a GCOD of size depends on different
multiuser chip blocks, where is the number of independent
transmit streams, is the time span (measured in number of
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chip block instants), and is the rate of the ST
code. Previously, we implicitly assumed that

, resulting in an Alamouti-like scheme with .
For , ST code designs for SCBTs have been
derived in [25]. In the end, we obtain the same per-tone data
model of (12). Hence, the ZF and MMSE equalizers that we
have developed in Section II-C2, as well as the equalizer de-
sign methods of Section III are directly applicable here as well.
So, both (14) and (15) still capture parallel and independent
equalizers: , where is now a size

matrix that recovers the parallel streams on
the th tone only.

III. PRACTICAL EQUALIZER DESIGN

Until now, we have assumed perfect CSI at the receiver to cal-
culate either ZF [see (14)] or MMSE [see (15)] type of equal-
izers. However, in practice the receiver needs to acquire and/or
update CSI before the actual equalization and detection can take
place. In the following, we derive two equalizer design methods,
that directly determine the equalizer coefficients without having
to estimate the channel first. LS methods for burst processing as
well as recursive least squares (RLS) methods for adaptive pro-
cessing are discussed.

Starting from (16) and assuming the channel matrixto have
full column rank and the input matrix to have full row rank,
the matrix , for which in the absence of
noise, is the ZF equalizer matrix given by (14). In the presence
of noise, we have to solve the corresponding LS minimization
problem, which we denote for convenience as

(22)

where we consider consecutive symbol block instants
, corresponding to a burst length of

data symbols per user. Two distinct ways exist to solve this
minimization problem. The first way constrains the equalizer
matrix to be fixed over the entire burst length (under the
assumption that the channel matrix remains constant as
well) and leads to an LS type of burst processing algorithm.
The second way updates the chip equalizer matrix from
one symbol block instant to the next and leads to a RLS type of
adaptive processing algorithm. Note that a numerically stable
square root information (SRI) type of RLS algorithm can be
easily derived from its corresponding LS algorithm. Such an

algorithm consists of a triangular QR decomposition (QRD)
updating step and a triangular back substitution step [27].

Substituting (20) into (22), leads to (23), shown at the bottom
of the page, which is an LS problem in both the per-tone equal-
izer matrix and the per-tone multiuser total data symbol ma-
trix . Taking (23) as a starting point, we will develop in
the following two equalizer design methods, that differ in the
amount ofa priori information they exploit to determine the
equalizer coefficients. The first method, coined CDMP-trained,
only exploits the presence of a CDMP. The second method,
coined semi-blind, additionally exploits knowledge of the un-
used composite code vectors in any practical CDMA system.

A. CDMP-Trained Equalizer

The CDMP-trained equalizer is calculated from the per-tone

output matrices based on the knowledge of the pilot
composite code vectors and the per-tone total pilot
symbol blocks . By despreading (23) with the pilot
composite code vector and by relying on the orthonor-
mality of the user and the pilot composite code vectors at each
symbol instant, we obtain

(24)

which can be interpreted as follows. The equalized per-tone
output matrix is first despread with the pilot composite
code vector . The resulting equalized per-tone output ma-
trix after despreading should then be as close as
possible in a LS sense to the per-tone total pilot symbol block

.

B. Semi-Blind Equalizer

Compared to the CDMP-trained equalizer, the semi-blind
equalizer additionally exploits knowledge of the inactive
multiuser code matrices . By despreading (23) with
the pilot composite code vector and the inactive multiuser
code matrix , respectively, we obtain (25), shown at the
bottom of the page, where is a weighting factor.2 The LS
problem of (25) consists of two different parts: a training-based
part and a fully blind part. On the one hand, the training-based
part, described by the first term of (25), corresponds to the
CDMP-trained equalizer of (24). On the other hand, the fully
blind part, described by the second term of (25), can be

2Note that for� = 1(25) is equivalent to (23).

(23)

(25)
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interpreted as follows. The equalized per-tone output matrix
is first despread with the inactive multiuser code

matrix . The resulting equalized per-tone output matrix
after despreading should then be as small as
possible in a LS sense, which actually corresponds to a min-
imum output energy (MOE) criterion. In addition, it suggests
that the inactive composite code vectors can be interpreted as
virtual pilot composite code vectors that continuously carry
zerovirtual pilot symbols.

The previous discussion justifies why this equalizer design
method can be classified as a semi-blind method. The weighting
factor controls the importance of the fully blind part relative
to the training-based part. Giving equal importance ( ) to
both the training-based and the fully blind part does not neces-
sarily lead to the best performance. Similar observations were
made for semi-blindchannelestimation algorithms in [28] and
[29]. For , the semi-blind equalizer reduces to the CDMP-
trained equalizer of (24). For , the semi-blind equalizer
converges to the purely blind equalizer. Clearly, an optimal
should exist that leads to the best performance. However, a de-
tailed analysis of is beyond the scope of this paper. As will
be demonstrated in Section IV, like in [29], gives close
to optimal performance. It is also worth noting that for a fully
loaded system, so when , all composite code vec-
tors are in use and the fully blind term of (25) becomes obso-
lete. This means that for a fully loaded system the semi-blind
approach reduces to the regular CDMP-trained approach.

Similar CDMP-trained, semi-blind and purely blind methods
for traditional DS-CDMA were studied in [2], [3], and
[30]–[32]. However, here the block despreading operations

and deterministically remove the
MUI caused by any other signals and succesfully convert a chip
block equalization problem into an equivalent symbol block
equalization problem [see also (21)].

C. Complexity Comparison

With the number of equalizer taps per tone and
per transmit stream (see the end of Section II), we evaluate the
operation count of the two RLS adaptive equalizers, in terms
of multiply/accumulates. A multiply/accumulation is an opera-
tion of the type that involves one complex multi-
plication, one complex addition, three complex reads and one
complex write. Hence, the number of corresponding data trans-
fers is four times the number of multiply/accumulates. Also, we
only account for the updating phase, where the new values of
the equalizer coefficients are determined. The detection phase,
where these equalizer coefficients are used to detect the desired
user’s symbol block, is common to both adaptive equalizers.
Both phases are executed continuously at a rate ,
where is the symbol rate.

According to (24), the RLS CDMP-trained updating consists
of three computational steps per time update, namely first a
pilot despreading step, then a triangular QRD-updating step,
and finally a triangular backsubstitution step. On the one hand,
the pilot despreading step only requires operations.
On the other hand, both the triangular QRD-updating and
the triangular backsubstitution step require
operations. Overall, the RLS CDMP-trained updating requires

operations, involving a complexity
of . It is important to note however that these
operations need to be executed at a rate which is times
smaller than the symbol rate . According to (25), the virtual
pilot despreading step and the triangular QRD-updating step of
the RLS semi-blind updating are ( ) times more complex
than their respective counterparts in the RLS pilot-trained
updating. Overall, the RLS semi-blind updating requires

operations, involving a complexity of . For
specific values, we refer to the end of the next section.

IV. SIMULATION RESULTS

We consider the downlink of a ST block-coded
SCBT-DS-CDMA system with, unless otherwise stated,

transmit antennas at the base station and
receive antennas at the mobile station of interest. Each
user’s quaternary phase-shift keying (QPSK) modulated
data symbol sequence is demultiplexed into par-
allel lower rate sequences. Choosing the initial block length

, these sequences are block spread by a real orthogonal
Walsh–Hadamard spreading code of length along with
a complex random scrambling code. The ST encoder spans a
time interval of chip block instants, resulting in a rate

. Furthermore, we assume that each channel
is FIR with, unless otherwise stated, order and Rayleigh
distributed channel taps of equal variance .
In this way, the average received power is normalized with re-
spect to the number of transmit, as well as the number of receive
antennas. To satisfy the postfix condition , we choose
its length , and correspondingly the transmitted block
length . The ST block-coded multiuser chip
sequences are transmitted at the chip rate MHz, re-
sulting in a symbol rate kHz.
In the following, we simulate the average bit-error rate (BER)
versus the average received SNR over 500 Monte Carlo channel
realizations for three different test cases.

A. Comparison With the Optimal ML Diversity Bound

We test the proposed transceiver, employing a cascade
of TR-STBC and SCBT-DS-CDMA at the transmitter and
applying MMSE FD equalization based on perfect CSI at the
receiver, for three different MIMO system setups ( ):
the (1,1) setup, the (2,1) setup with TX diversity only, and the
(2,2) setup with both TX and RX diversity. The system is fully
loaded supporting active users. No pilot is present. The
performance of each setup is compared with its corresponding
optimal ML performance bound for -fold
diversity over Rayleigh-fading channels [23].

Fig. 4 depicts the results for frequency-selective channels
with channel order . Fixing the BER at 10 and focusing
on the proposed transceiver, the (2,1) setup outperforms the
(1,1) setup by 6 dB. The (2,2) setup achieves on its turn
a 3.5-dB gain compared to the (2,1) setup. Comparing the
simulated performance of the proposed transceiver with its
corresponding ML diversity bound, it incurs a 4-dB loss for
the (1,1) setup, but only a 0.4-dB loss for the (2,2) setup. So,
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Fig. 4. Multiuser performance for channel orderL = 1.

the larger the number of TX and/or RX antennas, the better the
proposed transceiver with linear receiver processing succeeds in
extracting the full diversity of order .

Fig. 5 shows the same results but now for frequency-selective
channels with channel order . Again fixing the BER at
10 and focusing on the proposed transceiver, the (2,1) setup
outperforms the (1,1) setup by 4 dB, whereas the (2,2) setup
achieves on its turn a 2-dB gain compared to the (2,1) setup. So,
compared to Fig. 4, the corresponding gains are now smaller
because of the inherently larger underlying multipath diversity.

B. Comparison With Other ST-Coded CDMA Transceivers

In the following, we compare four different ST-coded CDMA
transceivers. The first transceiver (T1) applies the ST-coded
DS-CDMA transmission scheme that was proposed for the
UMTS and the IS-2000 WCDMA standards, also known as
space–time spreading (STS) [33]. At the receiver, a space–time
RAKE is applied similar to the time-only RAKE discussed in
[33], but instead of using a time-only maximum ratio combiner
(MRC) based on exact CSI, we use aspace–timeMRC based
on exact CSI. The bandwidth efficiency of the first transceiver
supporting users can be calculated as , where

is the length of the Walsh–Hadamard spreading codes.
The second transceiver (T2) employs a cascade of the clas-

sical downlink DS-CDMA transmission scheme and TR-STBC
[34]. At the receiver, a time-domain ST chip equalizer is ap-
plied similar to the ones discussed in [34], but instead of using
a chip equalizer that is trained with the pilot, we use an ideal
MMSE chip equalizer based on perfect CSI. The bandwidth ef-
ficiency of the second transceiver supporting users can be
determined as , where is the initial
block length, and is the length of the zero postfix.

The third transceiver (T3) is the one proposed in Section II
that combines the SCBT-DS-CDMA transmission scheme with
TR-STBC. At the receiver, a frequency-domain MMSE equal-
izer based on perfect CSI is used. The bandwidth efficiency
of our transceiver supporting users can be calculated as

.

Fig. 5. Multiuser performance for channel orderL = 3.

The fourth transceiver (T4) combines the classical multi-
carrier (MC) DS-CDMA transmission scheme with the STBC
techniques of [13], but implemented on a per-tone basis
[35], [36]. At the receiver, the ST block decoding as well as
the MMSE equalization are performed in the frequency-do-
main based on exact CSI. The bandwidth efficiency of the
fourth transceiver supporting users can be determined as

, where is the number of tones, and
is the length of the cyclic prefix.
In order to make a fair comparison between the four trans-

ceivers, we should force their bandwidth efficiencies to be the
same . This leads to the following rela-
tionship between the number of users to be supported by the
different transceivers

(26)
With , , and , we can derive that

and . It is important
to remark that for this comparison no pilot is present.

Fig. 6 compares the performance of the four transceivers for
a small system load with and .
Also shown in the figure is the optimal ML performance bound
for -fold diversity over Rayleigh fading
channels [23]. T2 and T3 have similar performance with a small
advantage for T3 over T2 at high SNR. They both come close
to extracting the full diversity, so both multiantenna as well as
multipath diversity. As opposed to T2 and T3, T1 does not suc-
ceed in extracting the full diversity: at a BER of 10it incurs
a 3.8-dB loss compared to T3. Likewise, T4 does not succeed
in extracting the full diversity either since it only exploits mul-
tiantenna diversity: at a BER of 10 it incurs a 3.4-dB loss
compared to T3.

Fig. 7 depicts the same curves but now for a large system
load with and . Since both
T3 and T4 are MUI-free ST-coded CDMA transceivers, their
performance remains unaffected by the MUI. So, even at large
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Fig. 6. Comparison for small system load.

Fig. 7. Comparison for large system load.

system load, T3 comes close to extracting the full diversity: e.g.,
at a BER of 10 it only incurs a 0.6-dB loss compared to the
optimal ML diversity bound. Unlike T3, T4 only exploits multi-
antenna diversity and incurs a 4-dB loss compared to the optimal
ML diversity bound. As opposed to T3, T2 does not determin-
istically remove the MUI (T2 completely suppresses the MUI
only at infinite SNR) and, therefore, fails in extracting the full
diversity: e.g., at a BER of 10 , T3 achieves a 2.4-dB gain
compared to T2. We also observe that T1 now performs poorly
compared to T2, T3, and T4: e.g., at a BER of 10 , T3
achieves a 12.3-dB gain compared to T1. In contrast with T3
and T4 that deterministically remove the MUI, and with T2 that
completely suppresses the MUI at infinite SNR, T1 does not
completely suppress the MUI at high SNR. Hence, T1 suffers
from a BER saturation level that increases with the system load

.

Fig. 8. Influence of� for I = 20 andI = 5 blocks, respectively.

C. Comparison of the Different Equalizer Design Methods

In order to test the equalizer design methods discussed in
Section III, we employ the same system parameters as before
(see the beginning of Section IV) with active users
and one CDMP, similar to the so-called CPICH [17] in forth-
coming 3G systems. Hence, the number of unused codes is

. As we already indicated in Section III-B,
the performance of our semi-blind equalizer is quite sensitive to
the choice of the weighting factor. Fixing the SNR to 10 dB,
Fig. 8 shows the influence of when and symbol
blocks are collected, respectively, to perform the LS equalizer
estimators. For , the semi-blind equalizer converges to the
CDMP-trained equalizer. For , the semi-blind equalizer
converges to the purely blind equalizer, that always performs
worse than the CDMP-trained equalizer. These simulation re-
sults also indicate that gives close to optimal perfor-
mance. Moreover, the optimum is more pronounced when only
a small number of symbol blocks is collected. Hence, we em-
ploy for the following test cases.

Fig. 9 shows the BER versus SNR results when and
symbol blocks are collected, respectively, to perform the

LS equalizer design methods. Collecting symbol blocks
and fixing the BER at 10 , the performance of the semi-blind
equalizer comes within 0.75 dB of the ideal MMSE equalizer
with perfect CSI. Moreover, the semi-blind equalizer performs
0.4 dB better than the CDMP-trained equalizer. Considering
only symbol blocks, the semi-blind equalizer outperforms
the CDMP-trained equalizer by 7 dB. The faster convergence
stems from the fact that the semi-blind equalizer additionally
exploits knowledge of the unused spreading codes, whereas the
CDMP-trained equalizer only exploits the presence of a CDMP.

With the number of equalizer taps per tone
and per transmit stream, the CDMP-trained and the semi-blind
adaptive equalizers are updated at a rate kHz.
On the one hand, the CDMP-trained adaptive equalizer requires
23 Mops/s and a data transfer bandwidth of 92Mwords/s.
On the other hand, the semi-blind adaptive equalizer requires
161 Mops/sand a data transfer bandwidth of 644Mwords/s.
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Fig. 9. Equalizer design withI = 20 andI = 5 blocks, respectively.

Hence, the semi-blind method involves a seven times higher
complexity than the CDMP-trained method.

V. CONCLUSION

To enable significant performance improvements compared
to 3G cellular systems, we have designed a novel ST block-
coded CDMA transceiver, that can yield gains of up to 12 dB in
full load situations. To this end, we have combined two specific
DS-CDMA and STBC techniques, namely SCBT-DS-CDMA
on the one hand and TR-STBC on the other hand. The resulting
transmission scheme allows for deterministic ML user separa-
tion through low-complexity code-matched filtering, as well as
deterministic ML transmit stream separation through linear pro-
cessing. Moreover, it can achieve maximum diversity gains of

for every user in the system, irrespective of the
system load. In addition, a low-complexity linear receiver based
on frequency-domain equalization approaches the optimal ML
performance (within 0.6 dB for a (2,2) system) and comes close
to extracting the full diversity in reduced as well as full load set-
tings. In this perspective, we have also proposed two (recursive)
LS based methods for direct equalizer design, coined CDMP-
trained and semi-blind, respectively. Both methods exploit the
presence of a CDMP and benefit from the ML user separability
through code-matched filtering. When collecting a large number
of symbol blocks, the semi-blind method only performs slightly
better than the regular CDMP-trained method and comes within
0.75 dB of the ideal MMSE equalizer. However, by addition-
ally exploiting knowledge of the unused spreading codes in a
practical CDMA system, the semi-blind method outperforms
the CDMP-trained method when only a small number of symbol
blocks is collected; gains of up to 7 dB for symbol blocks
have been established.
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