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Abstract

Isometric subgraphs of hypercubes are known as partial cubes. These graphs have first been
investigated by Graham and Pollack [4] and Djokovit [3]. Several papers followed with various
characterizations of partial cubes. In this paper, we prove that a subdivision of a complete graph of
order n (n > 4) is a partial cube if and only if this one is isomorphic to S(K,) or there exist n — 1
non-subdivided edges of K, adjacent to a common vertex in the subdivision and the other edges of
K, are subdivided an odd number of times.

Introduction

For a graph G, the distance dg(u,v) between vertices u and v is defined as the number of edges on
a shortest uv-path. A subgraph H of G is called isometric if and only if dg(u,v) = dg(u,v) for all
u,v € V(H). Isometric subgraphs of hypercubes are called partial cubes. Partial cubes have first been
investigated by Graham and Pollak [4] and Djokovit [3]. Later, several characterizations were shown
using a relation defined on the edges set or constructive operations. Partial cubes have found different
applications, for instance, in [5], interesting applications in chemical graph theory were established.
Clearly, partial cubes are bipartite. The simple way to obtain a bipartite graph is to subdivide every
edge of G by a single vertex. Such a graph is a subdivision of G and denote S(G). However, the main
question is how to determine which subdivision is a partial cube. In this paper, we are dealing with
subdivisions of complete graphs. Our goal is to determine among all the subdivisions of a complete
graph, which ones are partial cubes. Until now, low-density graphs had been studied (trees, cycles,
wheels). We have decided to see what we could say on the other side of the problem, with high-density
graphs, and their most known representatives : complete graphs.

In literature, the subdivision of a given graph has been treated as partial cubes and important results
were provided. The subdivided wheels result was interesting since it consists in answering in negative
a question of Chepoi and Tardif [2] whether partial cubes are precisely bipartite graphs with convex
intervals :
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In [6], the authors characterize the partial cubes that are subdivided wheels (see 2).

In this paper we prove a conjecture due to Aider, Gravier and Meslem [1] which characterizes all the
subdivisions of a clique that are a partial cube. Either it is S(K,,), or one of the vertices has no incident
subdivided edge and all other edges are subdivided an odd number of times.

1 Preliminary definitions and main result

We only consider finite, simple, loopless, connected and undirected graphs G—(V,E) where V is the
vertex set and E is the edge set. A subgraph of G is a graph having all its vertices and edges in G.
The neighborhood of a vertex u, denoted by N(u), counsists in all the vertices v which are adjacent to
u. Given a subset S of V', the induced subgraph (S) of G is the maximal subgraph of G with vertex set
S. A complete graph of order n, denoted K, is a graph having n vertices such that each two distinct
vertices are adjacent.

A walk is a sequence of vertices vy, vs, ..., v, and edges v;v;41, 1 < i < n—1. A path on n vertices,
denoted P,, is a walk on n different vertices. A closed walk, in which all vertices (except the first and the
last) are different, is a cycle. The cycle on n vertices is denoted C,,. For a graph G, the distance dg(u,v)
between vertices u and v is defined as the number of edges on a shortest uv-path (or wv-geodesic). A
subgraph H of G is called isometric if dg(u,v) = dg(u,v) for all distinct vertices v and v in V(H).
The vertex set of the n-cube (or the hypercube) @,, consists of all n-tuples by, ba, ..., b, with b; € {0, 1}.
Two vertices are adjacent in @, if the corresponding tuples differ precisely in one place. @, is a bipartite
graph. An isometric subgraph of @, is called partial cube. A graph G is an isometric embedding in the
hypercube if it is isomorphic to a partial cube. A subdivision of a graph G, noted sub(G), is a graph
obtained from G by adding vertices to the edges of G. A vertex v in G which is adjacent to all its
neighbors of G in sub(G) is said universal in sub(G) . That means that all the edges of G incident to
v, are not subdivided. S(G) is the subdivision of G where each edge of G contains exactly one added
vertex.

Wi be the k-wheel, that is, the graph obtained as a join of the one vertex graph K7 and all the vertices
of the cycle C;. We denote the central vertex of Wy by w and the remaining vertices by wi, ..., wg.
Wi(ma, ..., mg;ny, ..., ng) is the graph obtained by subdividing edges of Wy, where m; is the number of
vertices added on the edge w;w;+1, and n; the number of vertices added on the inner edge uw;. See
Fig. 1(a).

Our proposal is to demonstrate the following theorem conjectured in [1]

Theorem 1. Let G be a subdivision of a complete graph K,, (n > 4). G is a partial cube if and only if
either G is isomorphic to S(K,,) or G contains a universal vertex u and the number of added vertices
to each edge no incident to u in K, is odd.

2 Proof of the main result

In this section, we provide the validity of the Theorem 1. Thus, we use the following terminology to
prove this theorem. G is a subdivision of K, also denoted as sub(K,,). A vertex u in G is said principal
in G if u belongs to K,, (it has not been added to subdivide an edge). We have to note that in our
proof, we only use principal vertices. We will be interested about paths that join principal vertices in
G. Thus, a path of order n, P, (x1,x2,...,x,) is a path that joins principal vertices x1, xa,...,2, in G.
An edge that joins two principal vertices in G, z and y is said plain (it has not been subdivided). We
denote by G\u the subdivision of K, _; induced by V(G)\u. For each z, y and z principal vertices in
G, we say that x sees y if the path joining these vertices in G is geodesic.

Notice that in our figures, a line (resp. a dotted line) represents a geodesic (resp. no geodesic) path
between two principal vertices in G. A bold line represents a plain edge. A dashed line represents a
subdivided edge with undetermined status.



2.1 Proof of the sufficient condition

Theorem 2. [6] Let & > 3. Then a subdivided k-wheel W is a partial cube if and only if W is isomorphic
to Wi(myq,...,mg;0,...,0), where m; is odd for i = 1,....,k, or W = W5(1,1,1;1,1,1).

Proposition 3. [8] For any n > 1, S(K,) is a partial cube.

Lemma 4. [1] Let G be a subdivision of K,, (n > 4) where each edge in K, is an isometric path in G.
G is a partial cube if and only if G contains a universal verter and the other edges of K, have ezactly
one added vertex or G is isomorphic to S(Kp).

According to Proposition 3, a graph G isomorphic to a S(K,,) is a partial cube. Thus, it remains to
show that a subdivided complete graph G = sub(K,,) having a universal vertex u and odd added vertices
to each edge of K, not incident to u is a partial cube, for each n > 4. Let n > 4, and let G be such
a graph. Thanks to Lemma 4, we can embed the subdivision of K,, with v as universal vertex and
exactly one added vertex to each edge not incident to u in a hypercube. Then, successively, for each
edge of G which is subdivided more than once, we proceed as follows. We consider that the current
graph can be embedded in @,,. Let x and y be the principal vertices of the subdivided edge, and let us
suppose that this edge is subdivided 2k 4 1 times (k > 1). We remove the subdivision vertex from the
graph and we assume that the components of z, v and y in @, are : =z = (a1,a2,...,a:,aj,...,am),
u = (a1,a2,...,8;,05,...,0m), y = (a1,a2,...,4,aj,...,an). We embed the same graph where the
edge xy is subdivided 2k + 1 times in Q,,4+%. In fact, the first m components of each vertex in the
embedding which belongs to @, are the same in @Q,,+; and the remaining ones are null. For each
i=1,...,2k 4+ 1, we can attribute to the vertex v; the following components in Q,,t:

i times
—— .

v; = (a1,a9,...,0,a5,...,4m,1,...,1,0,...,0) 1<i<k

v; = (a1,a2,...,0;,8,...,4m,1,1,...,1,1) 1=k+1

v; = (a1,a2,. .., 0,5,y Ay 0,...,0 J1,...01) k+2<i<2k+1
——

i—k—1 times

The distances between vertices from the precedent embedding are preserved. Besides it is straightforward
to see that a shortest path from any vertex of the precedent embedding to a vertex v; goes through
x or y so that the resulting graph is also a partial cube. By doing this transformation for every edge
subdivided more than once, we obtain that GG is a partial cube.

2.2 Proof of the necessary condition

We will proceed by induction. We first study the subdivisions of K4 and Kj.

2.2.1 First steps

We have the following results concerning the subdivision of a complete graph:
The theorem for K, is contained in Theorem 2 (a 3-wheel is isomorphic to Kjy).

Proposition 5. [1] Let G be a subdivision of K5. G is a partial cube if and only if G is isomorphic to
S(K5) or G contains a universal vertex u and the number of the added vertices to each edge no incident
to u in Ky is odd.

2.2.2 Useful minor results

Proposition 6. Let x,y be principal vertices of G, then a xy-geodesic is either isomorphic to Py or Ps.

Proof. Clearly, there exists p > 2 such that a zy-geodesic is isomorphic to P,.

For a contradiction, assume that p > 4 ; we now consider the first four vertices of geo(z,y) : x, 21, x2
and z3. They induce in G an isometric subdivision of K4 (see Fig.2(a)). Then, by Theorem 2, either
{z, 1, 22,23} is isometric to S(K,) (impossible because P(x,x3) would be isometric), either there is a



universal vertex in it. But P(x,22) cannot be a plain edge because dg(z, x2) = dg(x,21) +dg (21, 2) >
2. Besides, P(x1,23) cannot be a plain edge for the same reason, so that there is no universal vertex in

this subgraph which is a contradiction.
O

Figure 2:

From now on, for any = and y principal vertices of G, we will note x — y if P(z,y) is geodesic and
x = y if the path along z,v and y is a zy-geodesic.

Remark 2.1. If G is a partial cube, then G is also bipartite, and all its cycles are even.
Lemma 7. If P(z,y) is plain and y — v then a zv-geodesic is contained in (x,y,v).

Proof. For a contradiction let us suppose that  — v for some w distinct from z,y and v. We denote
by a the distance between y and v, and b the distance between z and v (see Fig.2(b)). Then we must
have b < a + 1 (else, = Y, v). Moreover, if b < a — 1, the sequence y, z,w,v would be a yv-geodesic
isomorphic to Py, which is impossible by Proposition 6. Finally, we have b = a that leads to an odd

cycle of length 2a + 1 which is also impossible.
O

2.2.3 Proof of the induction

We can now suppose that there exists n > 6 such that the partial cube G is a subdivision of K,.
Moreover, by Lemma 4 we can assume that G is not isomophic to S(K,), and that the theorem is
proven for any m < n.

Proposition 8. If there exists u of G a principal vertez, such as G\u is isometric, then there exists a
universal vertex in G.

Proof. As G\u is isometric in G which is a partial cube, G\u is also a partial cube. With the induction
hypothesis, there exists x € G\u a universal vertex in G\u or G\u is isomorphic to S(K,_1).
We first consider the case when P(u,v) is isometric for any v € G\u.

e If G\u is isomorphic to S(K,—1), let us prove that u is universal in G. As G is not isomophic to
S(K,,) there exists v € G\u such that P(u,v) is not subdivided exactly once.

Let y, z be vertices in G\{u,v} (n > 6, so that we can assume that u,v,y, z are distinct), then
(u,v,y, z) is clearly isometric in G. Therefore, it is a partial cube and a subdivision of K4 not
isomorphic to S(K4) because of P(u,v). Then, by Theorem 2, u is the only possible universal
vertex in this subgraph and P(u,v), P(u,y) and P(u, z) are plain edges. Therefore,  is a universal
vertex in G (see Fig.3(a)).

o If there exists € G\u universal in G\u ; as n > 6, there exist y, z € G\u distinct.

As x is universal in G\u, we can assume that a shortest path from y to z is contained in (x,y, z).
Therefore, (u,z,y, z) is isometric in G and, as a subdivision of K4, it contains, by the Theorem 2,
a universal vertex which must be x (it cannot be isomorphic to S(K4) because of the plain edge
P(z,y)). Therefore, P(u,z) is a plain edge and z is a universal vertex in G (see Fig.3(b)).
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Figure 3:

Let us now consider the case when there exists a € G principal vertex, such that P(u, a) is not isometric.
Let us demonstrate that G\u is not isomorphic to S(K,_1) by contradiction. Let us suppose it is, and
let = be a vertex of G\u that minimize dg(u,x). There exists b € G\{u,a,z} (n > 6). We can assume
that u = a, and either u — b or u = b. These four vertices induce an isometric subdivision of K, in G.
But P(u,a) is at least subdivided twice (or it would be isometric). Therefore, it neither is isomorphic
to S(K4) nor has a universal vertex which is impossible (see Fig. 4(a))

Figure 4:

G\u contains then a universal vertex x.

We can split vertices of G\u in two non-empty sets K containing the principal vertices y such that
P(u,y) is isometric and L containing principal vertices y such that P(u,y) is not isometric (for instance
we know that a € L and = € K, see Fig. 4(b)).

Let us prove that « € K. For a contradiction, let us assume that x € L. Then we can choose y a nearest,
vertex of u (therefore, u — y and y € K). This implies that v < z as P(x,y) is plain. Now let us pick
another vertex z in K if it is possible or in L if K = {y}. Clearly (z is universal in G\u), we have either
y—zory-—z zcanbein K orin L :

o If z € K, then (u,x,y,2) is an isometric subdivision of K4 which implies that P(y, z) is plain.
We have then a triangle (z,y,2) and we know we cannot have any odd cycle. Therefore, this is
impossible (see Fig.5(a)).

o If z € L, then K = {y} so that u % z. Therefore, (z,u,y, z) is an isometric subdivision of K,
which implies that y is universal in it. It would mean that (x,y,z) is a triangle (see Fig.5(b)).
This contradicts the fact that G is a partial cube.

We can now assume that € K. Let us prove that P(u,z) is plain. For that, we consider a geodesic
between u and a. It goes through K by a vertex y.

o If y # x, then (u, z,a,y) is an isometric subdivison of K ; « is the only universal vertex that can
be chosen so that P(u,x) is plain.

e Ifr=y



Figure 5:

— let us pick b another vertex of K if it exists. Then we also have an isometric subdivision of
K, with (a,z,b,u). Once more, x has to be the universal vertex in it and P(u,z) is plain
(see Fig.6(a)).

— if |K| =1, let us pick b in L. Then u Z, b and by the way we have an isometric subdivision
of K4 with (a,x,b,u). = has to be the universal vertex and P(u, z) is plain(see Fig.6(b)).

Figure 6:

We now have proven that there exists a universal vertex in G. O

We still have to consider the case when there is no w in G such that G\u is isometric.

Proposition 9. If G is a partial cube, then there exists u in G such that G\u is isometric in G.

Proof. Let us suppose that there is not any u in G that can be removed. It means that, for any vertex
u in G, there exist vertices z,y in G such that z - y is the only zy-geodesic.

Definition 2.1. For the rest of the proof, we will classify vertices x of K as follows (see also Fig.7):

e x has type L if there exists y in K such that u = y.

x has type T if there exists y in L such that u = y.
x has type C if there exist y, z in K such that y = z.
x has type A if there exist y,z in L such that y = z.

x has type R if there exist y in K and z in L such that y = z.

Remark 2.2. Clearly, every vertex of K has one of these types. Moreover, there is no vertex with only
type L because P(u,y) is also geodesic, and G\z would be isometric ; we have supposed it was not.

Lemma 10. There is no vertex with type C in K.



Figure 7:

Proof. Let us suppose that there exists a vertex z in K such that y % z where y and z are in K. The
subdivided K4 -(u,z,y, z)- is isometric. Hence, neither z nor y is universal vertex in this sub(K}4) since
de(y,z) > 2. The vertex u is not universal too, otherwise y 2, 2 is not geodesic. Consequently z is
universal in sub(K}).

Now, let us show for each vertex ¢ in K distinct from z,y and z, if z sees ¢ then P(z,t) is plain. In
fact, if z sees ¢, let us denote a = dg(z,t) ; then dg(u,t) = a (See Fig.8(a)). On the one hand,
a—2<dg(u,t) < a+ 2 otherwise a ut-geodesic or a zt-geodesic would be isomorphic to P, (forbidden
by Proposition 6). On the other hand, dg(u,t) € {a — 1,a + 1} otherwise the cycle (u, z,t, z) would be
odd, and by Remark 2.1, G would not be a partial cube.

Consider now an zt-geodesic. It is not z = t otherwise z would have type C and thus, P(u, z) would
be plain giving birth to a triangle, (z,u,z). Consequently, dg(z,t) < a. Furthermore, this xt-geodesic
has a length at least a — 1 otherwise we would not have z % t (a shorter way would exist through .
dg(x,t) # a otherwise the vertices (x,t,z) would make an odd cycle in G, which is a contradiction.
Consequently, dg(z,t) = a — 1. Moreover, we can assume that @ — ¢, otherwise there would be a
zt-geodesic going through four principal vertices of G, which is forbidden by Proposition 6. (x, z,t,u)
is an isometric subdivision of K, which cannot be isomorphic to S(K4) (P(x,z) is plain). There must
be a universal vertex which can only be x (or else, it would lead to triangles). Thus P(z,t) is plain and
a=2.

Now, let us consider the type of vertex y in K.

e The vertex y is not of type C otherwise we would have P(u,y) plain that would lead to a triangle
which is forbidden.

e If the vertex y has type Z, then there exists a vertex v in L such that u Lov A zv-geodesic is
contained in (z,y,v) thanks to Lemma 7. Then, the subdivided K4 - (u,y,z,v) - is isometric.
The vertices u and v are not universal since P(u,v) is not isometric. The vertex x can not be
universal, otherwise we would not have u % v. If y is a universal vertex in sub(K4) then G
contains a triangle (y, z,u). Contradiction. Consequently, y is not a vertex of type Z.

e Let us show that the vertex y is not of type A. If there exists two vertices v and w in L, such that
v % w, then a zv-geodesic (resp. zw-geodesic) is contained in (x,v,y) (resp. {(x,w,y)), thanks
to Lemma 7. Consequently, the subdivided K4 - (x,y,v,w) - is isometric. The vertex v (resp.
w) is not universal otherwise (x,y,v) (resp. (z,y,w)) is a triangle in G. This is a contradiction.
The vertex x is not universal otherwise G contains a triangle (z,y,v). If y is a universal vertex
in sub(K4), then the distance between u and v is less or equal than 3. If it is 3, we would have a
uv geodesic going through u, z,y,v which would be isomorphic to Py, this is forbidden. If it is 2,
an odd cycle will arise, which also forbidden. If it is 1, v would not be in L which contradicts our
hypothesis. Finally, we can assume that y has not the type A.

e The vertex y is not of type R. If y has type R, then either ¢ Y vorz L v where t is a vertex in
K different than x, y and z and v is a vertex in L. In the first case, a tz-geodesic going through
t,x,y,v is isomorphic Py (see Fig.8(b)). This is a contradiction. In the second case, we cannot
have u % v, otherwise y would have type Z treated above. Neither can we have u = v (else,
the sequence u, x,y,v would be a geodesic isomorphic to Py). Then there exists t in K such that



ub v (see Fig. 8(c)). Let a be the distance between v and y. We denote [ the distance between
wand v. Then | < a + 1, else we would have u -5 v which contradicts precedent conclusions.
Moreover, a — 1 < [, else we would have a yv-geodesic going through y,u,, v isomorphic to Py
which is forbidden. Finally, to avoid odd cycle, we must have | = a. But d(z,v) = a + 1, thus
a xv-geodesic going through x,u,t,v is isomorphic to P;. This is a contradiction. Therefore, y
cannot have type R.

We conclude that the vertex y has none of the types C,Z, A /R, Contradiction to the previous lemma.

Consequently, the vertex z is not of type C.
O

Figure 8:

Proposition 11. Fach vertex a of L sees exactly one vertex of K

Proof. Existence : We just have to consider a ua-geodesic, it goes through K by visiting a vertex x
which is seen by a.

Unicity : For a contradiction, let us suppose that a sees two distinct vertices x and y of K. We can
suppose that v - a. Furthermore, as it exists we can consider that (a,u,z,y) realize : © = a, a — y
and dg(u, x) + dg(z,a) + dg(a, y) is minimum for G and w.

Claim 12. (u,a,z,y) is an isometric subdivision of K, in G.

Figure 9:

Proof. For a contradiction, let us suppose that it is not isometric. It would mean that there exists a’

principal vertex of G distinct from u and a such that z @, y. Thanks to the Lemma 10, we can assume
that o’ € L (otherwise it would have type C). Moreover, we are sure that dg (u, 2)+dg(x,a’)+dg(a’,y) <
de(u,z) + dg(x,a) + dg(a,y). As (a,u,z,y) is a minimum for this quantity, it means that a wa'-
geodesic does not go through x or y. There exists a vertex ' in K distinct from the others such



that u % a’(see Fig.9). We then have : u =, a, o — y and dg(u,z’) + dg(2',d’) + da(a’,y) <
de(u,z) + dg(x,a) + dg(a,y). This is a contradiction that proves our Claim 12.
O

The induction hypothesis for n = 4 implies that = or y is universal in this sub(K4) (it cannot be
isomorphic to S(K4) since P(u,a) is not geodesic and thus it is at least subdivided twice). Let us
assume x is this universal vertex, then P(a,y) and P(u,y) are both subdivided exactly once as they
are geodesics (they cannot be plain because it would lead to a triangle, see Fig.10(a)). We will now
demonstrate that this case can never happen, by using the following Lemma, :

Figure 10:

Lemma 13. There are no vertices x and y in K such that P(x,u) and P(x,y) are plain.

Proof. For a contradiction, let us suppose it was possible. Thus, we consider a type of y, which cannot
be C by Lemma 10.

ay has type Z : then there exists b € L such that u Y, b. The distance between u and b is then
d(y,b) + 2. Then the sequence u,z,y,b would also be a ub-geodesic. But the Proposition 6 forbids
geodesics isomorphic to Py;. This contradicts the type Z for y.

y has type A : then there exist b and ¢ in L such that b 2, ¢. By Lemma 7, we know that a xb-geodesic
and a xc-geodesic are contained in (x,y,b,c). Then the subdivision of K4 induced is isometric and
distinct from S(K4) so that it has a universal vertex which can either be z or y (else it would lead
to a triangle). If z is universal, then P(b,y) and P(c,y) are both subdivided twice because they are
geodesics (they cannot be plain to avoid triangles, see Fig.10(b)). This contradicts b 2 ¢ ; there is a
shorter walk through x. If y is universal (see Fig.10(c)), let us suppose dg(u,c) = 3, then u,x,y,c is a
uc-geodesic isomorphic to Py which is impossible by Proposition 6 ; therefore, dg(u,c) = 2 (it cannot
equal 1 because ¢ € L). The geodesic of length 2 and the walk of length 3 between u and ¢ induce an
odd cycle of length 5. We can then assume there is no y with type A.

y has type R : then there exists b € L and ¢ € K such that t 2 b.

e If t = x, we denote by [ the distance between y and b. Then dg(z,b) =1+ 1. A ub-geodesic cannot
goes through z (it would be isomorphic to a P, forbidden by Proposition 6) or y (it would have
type ). Therefore, there exists a vertex z in K such that u = b, we denote by p the distance
between u and b. Then p > [, else, the sequence x,u, z,b would be a geodesic isomorphic to Py.
Besides, p <1+ 1, else, we would have u 2 b and y would have type Z. Therefore p = [+ 1 which
is also impossible because it induces an odd cycle (b, y, u, z) of length 2 + 3 (see Fig.11(a)).

o If ¢t # x, let [ be the distance between y and t. We then study dg(z,t), denoted by p (see
Fig.11(b)). On the one hand, p <, else we would have a path of length [ + 1 between = and ¢
going through y and thus, it would have type C forbidden by Lemma 10. Furthermore, p cannot
equal ! because it would lead to an odd cycle (x,t,y) of length 2 + 1. On the other hand we
know that p > | — 2 because P(t,y) is a ty-geodesic. By consequence, p = [ — 1 ; which implies
that [ > 2 (it means, P(y,t) is not plain). From this we can also conclude that z — ¢ because if
we had z 5 t, the path (y,x,v,t) of length [ would then be a geodesic isomorphic to Py which

is impossible (by Proposition 6). Finally, (y,x,b,t) is an isometric sub(K}) in G. It cannot be



S(K4) because P(z,y) is plain ; and, as P(y,t) is not plain, z must be the universal vertex in this
subgraph. Then dg(t,b) < da(t,z) + da(z,b) =2 <1 < dg(t,y) + da(y,b) = da(t,b). This is a
contradiction.

This means y cannot not have any of the mandatory types. It finishes the proof of Lemma 13
O

We then have proven the Propositionall, each vertex a of L sees exactly one vertex z of K; besides, we

have u % a which is the only ua-geodesic (if not, any other ua-geodesic would be isomorphic to Py).
O

Figure 11:

We will now prove that |K| = 1.

For this, we will proceed by contradiction. Thus, let us suppose that there exist x and y distinct vertices
of K. Both must have a type R,Z or A (by Remark 2.2 and Lemma 10). Each one of these types, implies
that « and y sees at least one vertex in L. Let a be a vertex such that x sees a. Then we consider a
shortest path from a to y. It cannot be direct because of Proposition 11. It cannot go through z, else
it would induce an isometric subdivision of K4 and z would be universal : P(x,u) and P(z,y) would

then be plain which is forbidden by Lemma 13. So there exists b in L such that a LR y. As b sees y we
can assume that u < b. We may then consider that (z,a,y,b) are the vertices of that kind (x,y € K,

abel,usa, udbanda LN y) that minimize the quantity dg(z,a) + dg(a,b) + dg(b,y).
Claim 14. (u,x,y,a,b), is isometric.

Proof. 1f the subdivided K5 -(u, x,y, a, b)- is not isometric, then any shortest xb-path does not belong to
this sub(K). According to Proposition 11, the vertex b does not see any other vertex in K than y. Then,

there exists a vertex a’ in L such that b *- z. Since x is the unique vertex of K that x sees (Proposition

11), then u = o’. Therefore, u — a’,u % b and b , x. Furthermore, dg(x,a’) + dg(a’,b) + dg(b,y) <
dg(z,a) + dg(a,b) + dg(b,y). Contradiction to the hypothesis. Our Claim is proven. O

Then, this subdivision of K5 is a partial cube and by the induction hypothesis, it is either isomorphic
to S(K5) or has a universal vertex. It cannot be isomorphic to S(K35) because P(u,a) would then be
a ua-geodesic and it is not. By consequence it must have a universal vertex which can neither be u (it
does not see a), nor a or b (they do not see u), nor = or y (then we would have P(z,u) and P(x,y)
plain which is forbidden by Lemma 13). Thus, this subgraph is not a partial cube which contradicts our
hypotheses.

As a conclusion, we can assume |K| = 1 and then, u sees only one vertex in G which means that no
geodesic goes through it. It implies that G\u is isometric. This contradicts our hypothesis. Finally, we

have proven Proposition 9.
O
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We then have a universal vertex u in G and to avoid odd cycles, there has to be an odd number of added
vertices in edges that are not incident to u.
Consequently, the Theorem 1 is proven.

2.3 A corollary

Corollary 15. Let sub(G) be a subdivision of a graph such that each edge contains odd added vertices.
K is a graph obtained from sub(G) by joining a vertex u adjacent to each principal vertex of sub(G).
Then, K is a partial cube.

Proof. The proof is included in the sufficient condition. We first embed isometrically the star with u as
a central vertex. Then, we can add isometrically every odd paths between two vertices of G following
the construction made in Paragraph 2.1.

O

Conclusion

A brief summary of the proof could be the following. We first prove that if a vertex can be removed
isometrically, we then have a universal vertex thanks to the induction hypothesis. Then we still have
to prove that we can always remove a vertex. We consider that if every vertex is needed, they all have
a type among C, A , R , Z. We prove that none can have type C. After that, we exhibit an isometric
subdivision of K4 to show that any vertex of L cannot see two vertices of K. And we conclude by finding
an isometric subdivision of K5 that cannot have any universal vertex and is distinct from S(K5).

In the end, we have a structural characterization of every subdivisons of complete graphs that are partial
cubes.
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