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Isometri
 embeddings of subdivided 
omplete graphs in thehyper
ubeLaurent Beaudou Sylvain Gravier Kahina Meslem12 De
ember 2006Abstra
tIsometri
 subgraphs of hyper
ubes are known as partial 
ubes. These graphs have �rst beeninvestigated by Graham and Polla
k [4℄ and Djokovi�
 [3℄. Several papers followed with various
hara
terizations of partial 
ubes. In this paper, we prove that a subdivision of a 
omplete graph oforder n (n ≥ 4) is a partial 
ube if and only if this one is isomorphi
 to S(Kn) or there exist n − 1non-subdivided edges of Kn adja
ent to a 
ommon vertex in the subdivision and the other edges of
Kn are subdivided an odd number of times.Introdu
tionFor a graph G, the distan
e dG(u, v) between verti
es u and v is de�ned as the number of edges ona shortest uv-path. A subgraph H of G is 
alled isometri
 if and only if dG(u, v) = dH(u, v) for all

u, v ∈ V (H). Isometri
 subgraphs of hyper
ubes are 
alled partial 
ubes. Partial 
ubes have �rst beeninvestigated by Graham and Pollak [4℄ and Djokovi�
 [3℄. Later, several 
hara
terizations were shownusing a relation de�ned on the edges set or 
onstru
tive operations. Partial 
ubes have found di�erentappli
ations, for instan
e, in [5℄, interesting appli
ations in 
hemi
al graph theory were established.Clearly, partial 
ubes are bipartite. The simple way to obtain a bipartite graph is to subdivide everyedge of G by a single vertex. Su
h a graph is a subdivision of G and denote S(G). However, the mainquestion is how to determine whi
h subdivision is a partial 
ube. In this paper, we are dealing withsubdivisions of 
omplete graphs. Our goal is to determine among all the subdivisions of a 
ompletegraph, whi
h ones are partial 
ubes. Until now, low-density graphs had been studied (trees, 
y
les,wheels). We have de
ided to see what we 
ould say on the other side of the problem, with high-densitygraphs, and their most known representatives : 
omplete graphs.In literature, the subdivision of a given graph has been treated as partial 
ubes and important resultswere provided. The subdivided wheels result was interesting sin
e it 
onsists in answering in negativea question of Chepoi and Tardif [2℄ whether partial 
ubes are pre
isely bipartite graphs with 
onvexintervals :
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In [6℄, the authors 
hara
terize the partial 
ubes that are subdivided wheels (see 2).In this paper we prove a 
onje
ture due to Aïder, Gravier and Meslem [1℄ whi
h 
hara
terizes all thesubdivisions of a 
lique that are a partial 
ube. Either it is S(Kn), or one of the verti
es has no in
identsubdivided edge and all other edges are subdivided an odd number of times.1 Preliminary de�nitions and main resultWe only 
onsider �nite, simple, loopless, 
onne
ted and undire
ted graphs G=(V ,E) where V is thevertex set and E is the edge set. A subgraph of G is a graph having all its verti
es and edges in G.The neighborhood of a vertex u, denoted by N(u), 
onsists in all the verti
es v whi
h are adja
ent to
u. Given a subset S of V , the indu
ed subgraph 〈S〉 of G is the maximal subgraph of G with vertex set
S. A 
omplete graph of order n, denoted Kn, is a graph having n verti
es su
h that ea
h two distin
tverti
es are adja
ent.A walk is a sequen
e of verti
es v1, v2, ..., vn and edges vivi+1, 1 ≤ i ≤ n − 1. A path on n verti
es,denoted Pn, is a walk on n di�erent verti
es. A 
losed walk, in whi
h all verti
es (ex
ept the �rst and thelast) are di�erent, is a 
y
le. The 
y
le on n verti
es is denoted Cn. For a graph G, the distan
e dG(u, v)between verti
es u and v is de�ned as the number of edges on a shortest uv-path (or uv-geodesi
). Asubgraph H of G is 
alled isometri
 if dG(u, v) = dH(u, v) for all distin
t verti
es u and v in V (H).The vertex set of the n-
ube (or the hyper
ube) Qn 
onsists of all n-tuples b1, b2, ..., bn with bi ∈ {0, 1}.Two verti
es are adja
ent in Qn if the 
orresponding tuples di�er pre
isely in one pla
e. Qn is a bipartitegraph. An isometri
 subgraph of Qn is 
alled partial 
ube. A graph G is an isometri
 embedding in thehyper
ube if it is isomorphi
 to a partial 
ube. A subdivision of a graph G, noted sub(G), is a graphobtained from G by adding verti
es to the edges of G. A vertex v in G whi
h is adja
ent to all itsneighbors of G in sub(G) is said universal in sub(G) . That means that all the edges of G in
ident to
v, are not subdivided. S(G) is the subdivision of G where ea
h edge of G 
ontains exa
tly one addedvertex.
Wk be the k-wheel, that is, the graph obtained as a join of the one vertex graph K1 and all the verti
esof the 
y
le Ck. We denote the 
entral vertex of Wk by u and the remaining verti
es by w1, ..., wk.
Wk(m1, ..., mk; n1, ..., nk) is the graph obtained by subdividing edges of Wk, where mi is the number ofverti
es added on the edge wiwi+1, and ni the number of verti
es added on the inner edge uwi. SeeFig. 1(a).Our proposal is to demonstrate the following theorem 
onje
tured in [1℄Theorem 1. Let G be a subdivision of a 
omplete graph Kn (n ≥ 4). G is a partial 
ube if and only ifeither G is isomorphi
 to S(Kn) or G 
ontains a universal vertex u and the number of added verti
esto ea
h edge no in
ident to u in Kn is odd.2 Proof of the main resultIn this se
tion, we provide the validity of the Theorem 1. Thus, we use the following terminology toprove this theorem. G is a subdivision of Kn also denoted as sub(Kn). A vertex u in G is said prin
ipalin G if u belongs to Kn (it has not been added to subdivide an edge). We have to note that in ourproof, we only use prin
ipal verti
es. We will be interested about paths that join prin
ipal verti
es in
G. Thus, a path of order n, Pn(x1, x2, . . . , xn) is a path that joins prin
ipal verti
es x1, x2,. . .,xn in G.An edge that joins two prin
ipal verti
es in G, x and y is said plain (it has not been subdivided). Wedenote by G\u the subdivision of Kn−1 indu
ed by V (G)\u. For ea
h x, y and z prin
ipal verti
es in
G, we say that x sees y if the path joining these verti
es in G is geodesi
.Noti
e that in our �gures, a line (resp. a dotted line) represents a geodesi
 (resp. no geodesi
) pathbetween two prin
ipal verti
es in G. A bold line represents a plain edge. A dashed line represents asubdivided edge with undetermined status.
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2.1 Proof of the su�
ient 
onditionTheorem 2. [6℄ Let k ≥ 3. Then a subdivided k-wheel W is a partial 
ube if and only if W is isomorphi
to Wk(m1, ..., mk; 0, ..., 0), where mi is odd for i = 1, ..., k, or W = W3(1, 1, 1; 1, 1, 1).Proposition 3. [8℄ For any n ≥ 1, S(Kn) is a partial 
ube.Lemma 4. [1℄ Let G be a subdivision of Kn (n ≥ 4) where ea
h edge in Kn is an isometri
 path in G.
G is a partial 
ube if and only if G 
ontains a universal vertex and the other edges of Kn have exa
tlyone added vertex or G is isomorphi
 to S(Kn).A

ording to Proposition 3, a graph G isomorphi
 to a S(Kn) is a partial 
ube. Thus, it remains toshow that a subdivided 
omplete graph G = sub(Kn) having a universal vertex u and odd added verti
esto ea
h edge of Kn not in
ident to u is a partial 
ube, for ea
h n ≥ 4. Let n ≥ 4, and let G be su
ha graph. Thanks to Lemma 4, we 
an embed the subdivision of Kn with u as universal vertex andexa
tly one added vertex to ea
h edge not in
ident to u in a hyper
ube. Then, su

essively, for ea
hedge of G whi
h is subdivided more than on
e, we pro
eed as follows. We 
onsider that the 
urrentgraph 
an be embedded in Qm. Let x and y be the prin
ipal verti
es of the subdivided edge, and let ussuppose that this edge is subdivided 2k + 1 times (k > 1). We remove the subdivision vertex from thegraph and we assume that the 
omponents of x, u and y in Qm are : x = (a1, a2, . . . , ai, aj , . . . , am),
u = (a1, a2, . . . , ai, aj , . . . , am), y = (a1, a2, . . . , ai, aj , . . . , am). We embed the same graph where theedge xy is subdivided 2k + 1 times in Qm+k. In fa
t, the �rst m 
omponents of ea
h vertex in theembedding whi
h belongs to Qm are the same in Qm+k and the remaining ones are null. For ea
h
i = 1, ..., 2k + 1, we 
an attribute to the vertex vi the following 
omponents in Qm+k:







vi = (a1, a2, . . . , ai, aj , . . . , am,

i times
︷ ︸︸ ︷

1, . . . , 1, 0, . . . , 0) 1 ≤ i ≤ k

vi = (a1, a2, . . . , aj , aj, . . . , am, 1, 1, . . . , 1, 1) i = k + 1

vi = (a1, a2, . . . , ai, aj , . . . , am, 0, . . . , 0
︸ ︷︷ ︸

i−k−1 times, 1, . . . , 1) k + 2 ≤ i ≤ 2k + 1The distan
es between verti
es from the pre
edent embedding are preserved. Besides it is straightforwardto see that a shortest path from any vertex of the pre
edent embedding to a vertex vi goes through
x or y so that the resulting graph is also a partial 
ube. By doing this transformation for every edgesubdivided more than on
e, we obtain that G is a partial 
ube.2.2 Proof of the ne
essary 
onditionWe will pro
eed by indu
tion. We �rst study the subdivisions of K4 and K5.2.2.1 First stepsWe have the following results 
on
erning the subdivision of a 
omplete graph:The theorem for K4 is 
ontained in Theorem 2 (a 3-wheel is isomorphi
 to K4).Proposition 5. [1℄ Let G be a subdivision of K5. G is a partial 
ube if and only if G is isomorphi
 to
S(K5) or G 
ontains a universal vertex u and the number of the added verti
es to ea
h edge no in
identto u in K5 is odd.2.2.2 Useful minor resultsProposition 6. Let x, y be prin
ipal verti
es of G, then a xy-geodesi
 is either isomorphi
 to P2 or P3.Proof. Clearly, there exists p ≥ 2 su
h that a xy-geodesi
 is isomorphi
 to Pp.For a 
ontradi
tion, assume that p ≥ 4 ; we now 
onsider the �rst four verti
es of geo(x, y) : x, x1, x2and x3. They indu
e in G an isometri
 subdivision of K4 (see Fig.2(a)). Then, by Theorem 2, either
{x, x1, x2, x3} is isometri
 to S(K4) (impossible be
ause P (x, x3) would be isometri
), either there is a3



universal vertex in it. But P (x, x2) 
annot be a plain edge be
ause dG(x, x2) = dG(x, x1)+dG(x1, x2) ≥
2. Besides, P (x1, x3) 
annot be a plain edge for the same reason, so that there is no universal vertex inthis subgraph whi
h is a 
ontradi
tion.

xx1

x2 x3

(a) vw

x y

a

1
b(b)Figure 2:From now on, for any x and y prin
ipal verti
es of G, we will note x → y if P (x, y) is geodesi
 and

x
v
−→ y if the path along x, v and y is a xy-geodesi
.Remark 2.1. If G is a partial 
ube, then G is also bipartite, and all its 
y
les are even.Lemma 7. If P (x, y) is plain and y → v then a xv-geodesi
 is 
ontained in 〈x, y, v〉.Proof. For a 
ontradi
tion let us suppose that x

w
−→ v for some w distin
t from x, y and v. We denoteby a the distan
e between y and v, and b the distan
e between x and v (see Fig.2(b)). Then we musthave b < a + 1 (else, x

y
−→ v). Moreover, if b ≤ a − 1, the sequen
e y, x, w, v would be a yv-geodesi
isomorphi
 to P4, whi
h is impossible by Proposition 6. Finally, we have b = a that leads to an odd
y
le of length 2a + 1 whi
h is also impossible.2.2.3 Proof of the indu
tionWe 
an now suppose that there exists n ≥ 6 su
h that the partial 
ube G is a subdivision of Kn.Moreover, by Lemma 4 we 
an assume that G is not isomophi
 to S(Kn), and that the theorem isproven for any m < n.Proposition 8. If there exists u of G a prin
ipal vertex, su
h as G\u is isometri
, then there exists auniversal vertex in G.Proof. As G\u is isometri
 in G whi
h is a partial 
ube, G\u is also a partial 
ube. With the indu
tionhypothesis, there exists x ∈ G\u a universal vertex in G\u or G\u is isomorphi
 to S(Kn−1).We �rst 
onsider the 
ase when P (u, v) is isometri
 for any v ∈ G\u.

• If G\u is isomorphi
 to S(Kn−1), let us prove that u is universal in G. As G is not isomophi
 to
S(Kn) there exists v ∈ G\u su
h that P (u, v) is not subdivided exa
tly on
e.Let y, z be verti
es in G\{u, v} (n ≥ 6, so that we 
an assume that u, v, y, z are distin
t), then
〈u, v, y, z〉 is 
learly isometri
 in G. Therefore, it is a partial 
ube and a subdivision of K4 notisomorphi
 to S(K4) be
ause of P (u, v). Then, by Theorem 2, u is the only possible universalvertex in this subgraph and P (u, v), P (u, y) and P (u, z) are plain edges. Therefore, u is a universalvertex in G (see Fig.3(a)).

• If there exists x ∈ G\u universal in G\u ; as n ≥ 6, there exist y, z ∈ G\u distin
t.As x is universal in G\u, we 
an assume that a shortest path from y to z is 
ontained in 〈x, y, z〉.Therefore, 〈u, x, y, z〉 is isometri
 in G and, as a subdivision of K4, it 
ontains, by the Theorem 2,a universal vertex whi
h must be x (it 
annot be isomorphi
 to S(K4) be
ause of the plain edge
P (x, y)). Therefore, P (u, x) is a plain edge and x is a universal vertex in G (see Fig.3(b)).4
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(b)Figure 3:Let us now 
onsider the 
ase when there exists a ∈ G prin
ipal vertex, su
h that P (u, a) is not isometri
.Let us demonstrate that G\u is not isomorphi
 to S(Kn−1) by 
ontradi
tion. Let us suppose it is, andlet x be a vertex of G\u that minimize dG(u, x). There exists b ∈ G\{u, a, x} (n ≥ 6). We 
an assumethat u
x
−→ a, and either u → b or u

x
−→ b. These four verti
es indu
e an isometri
 subdivision of K4 in G.But P (u, a) is at least subdivided twi
e (or it would be isometri
). Therefore, it neither is isomorphi
to S(K4) nor has a universal vertex whi
h is impossible (see Fig. 4(a))

a b

x

u

(a) a

K

L

x

u

(b)Figure 4:
G\u 
ontains then a universal vertex x.We 
an split verti
es of G\u in two non-empty sets K 
ontaining the prin
ipal verti
es y su
h that
P (u, y) is isometri
 and L 
ontaining prin
ipal verti
es y su
h that P (u, y) is not isometri
 (for instan
ewe know that a ∈ L and x ∈ K, see Fig. 4(b)).Let us prove that x ∈ K. For a 
ontradi
tion, let us assume that x ∈ L. Then we 
an 
hoose y a nearestvertex of u (therefore, u → y and y ∈ K). This implies that u

y
−→ x as P (x, y) is plain. Now let us pi
kanother vertex z in K if it is possible or in L if K = {y}. Clearly (x is universal in G\u), we have either

y → z or y
x
−→ z. z 
an be in K or in L :

• If z ∈ K, then 〈u, x, y, z〉 is an isometri
 subdivision of K4 whi
h implies that P (y, z) is plain.We have then a triangle (x, y, z) and we know we 
annot have any odd 
y
le. Therefore, this isimpossible (see Fig.5(a)).
• If z ∈ L, then K = {y} so that u

y
−→ z. Therefore, 〈x, u, y, z〉 is an isometri
 subdivision of K4whi
h implies that y is universal in it. It would mean that (x, y, z) is a triangle (see Fig.5(b)).This 
ontradi
ts the fa
t that G is a partial 
ube.We 
an now assume that x ∈ K. Let us prove that P (u, x) is plain. For that, we 
onsider a geodesi
between u and a. It goes through K by a vertex y.

• If y 6= x, then 〈u, x, a, y〉 is an isometri
 subdivison of K4 ; x is the only universal vertex that 
anbe 
hosen so that P (u, x) is plain.
• If x = y 5
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x

u
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x

u

(b)Figure 5:� let us pi
k b another vertex of K if it exists. Then we also have an isometri
 subdivision of
K4 with 〈a, x, b, u〉. On
e more, x has to be the universal vertex in it and P (u, x) is plain(see Fig.6(a)).� if |K| = 1, let us pi
k b in L. Then u

x
−→ b and by the way we have an isometri
 subdivisionof K4 with 〈a, x, b, u〉. x has to be the universal vertex and P (u, x) is plain(see Fig.6(b)).

x a

b

u

x a

b

u

(a) x b

y

u

x b

y

u

(b)Figure 6:We now have proven that there exists a universal vertex in G.We still have to 
onsider the 
ase when there is no u in G su
h that G\u is isometri
.Proposition 9. If G is a partial 
ube, then there exists u in G su
h that G\u is isometri
 in G.Proof. Let us suppose that there is not any u in G that 
an be removed. It means that, for any vertex
u in G, there exist verti
es x, y in G su
h that x

u
−→ y is the only xy-geodesi
.De�nition 2.1. For the rest of the proof, we will 
lassify verti
es x of K as follows (see also Fig.7):

• x has type L if there exists y in K su
h that u
x
−→ y.

• x has type I if there exists y in L su
h that u
x
−→ y.

• x has type C if there exist y, z in K su
h that y
x
−→ z.

• x has type Λ if there exist y, z in L su
h that y
x
−→ z.

• x has type R if there exist y in K and z in L su
h that y
x
−→ z.Remark 2.2. Clearly, every vertex of K has one of these types. Moreover, there is no vertex with onlytype L be
ause P (u, y) is also geodesi
, and G\x would be isometri
 ; we have supposed it was not.Lemma 10. There is no vertex with type C in K.
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u
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y(b) I

xy z

u(
) C

x

y z

u(d) Λ

xy

z

u(e) RFigure 7:Proof. Let us suppose that there exists a vertex x in K su
h that y
x
−→ z where y and z are in K. Thesubdivided K4 -〈u, x, y, z〉- is isometri
. Hen
e, neither z nor y is universal vertex in this sub(K4) sin
e

dG(y, z) ≥ 2. The vertex u is not universal too, otherwise y
x
−→ z is not geodesi
. Consequently x isuniversal in sub(K4).Now, let us show for ea
h vertex t in K distin
t from x,y and z, if z sees t then P (z, t) is plain. Infa
t, if z sees t, let us denote a = dG(z, t) ; then dG(u, t) = a (See Fig.8(a)). On the one hand,

a − 2 < dG(u, t) < a + 2 otherwise a ut-geodesi
 or a zt-geodesi
 would be isomorphi
 to P4 (forbiddenby Proposition 6). On the other hand, dG(u, t) 6∈ {a − 1, a + 1} otherwise the 
y
le (u, z, t, x) would beodd, and by Remark 2.1, G would not be a partial 
ube.Consider now an xt-geodesi
. It is not x
z
−→ t otherwise z would have type C and thus, P (u, z) wouldbe plain giving birth to a triangle, (z, u, x). Consequently, dG(x, t) ≤ a. Furthermore, this xt-geodesi
has a length at least a − 1 otherwise we would not have z

x
−→ t (a shorter way would exist through x.

dG(x, t) 6= a otherwise the verti
es (x, t, z) would make an odd 
y
le in G, whi
h is a 
ontradi
tion.Consequently, dG(x, t) = a − 1. Moreover, we 
an assume that x → t, otherwise there would be a
zt-geodesi
 going through four prin
ipal verti
es of G, whi
h is forbidden by Proposition 6. 〈x, z, t, u〉is an isometri
 subdivision of K4 whi
h 
annot be isomorphi
 to S(K4) (P (x, z) is plain). There mustbe a universal vertex whi
h 
an only be x (or else, it would lead to triangles). Thus P (x, t) is plain and
a = 2.Now, let us 
onsider the type of vertex y in K.

• The vertex y is not of type C otherwise we would have P (u, y) plain that would lead to a trianglewhi
h is forbidden.
• If the vertex y has type I, then there exists a vertex v in L su
h that u

y
−→ v. A xv-geodesi
 is
ontained in 〈x, y, v〉 thanks to Lemma 7. Then, the subdivided K4 - 〈u, y, x, v〉 - is isometri
.The verti
es u and v are not universal sin
e P (u, v) is not isometri
. The vertex x 
an not beuniversal, otherwise we would not have u

y
−→ v. If y is a universal vertex in sub(K4) then G
ontains a triangle (y, x, u). Contradi
tion. Consequently, y is not a vertex of type I.

• Let us show that the vertex y is not of type Λ. If there exists two verti
es v and w in L, su
h that
v

y
−→ w, then a xv-geodesi
 (resp. xw-geodesi
) is 
ontained in 〈x, v, y〉 (resp. 〈x, w, y〉), thanksto Lemma 7. Consequently, the subdivided K4 - 〈x, y, v, w〉 - is isometri
. The vertex v (resp.

w) is not universal otherwise (x, y, v) (resp. (x, y, w)) is a triangle in G. This is a 
ontradi
tion.The vertex x is not universal otherwise G 
ontains a triangle (x, y, v). If y is a universal vertexin sub(K4), then the distan
e between u and v is less or equal than 3. If it is 3, we would have a
uv geodesi
 going through u, x, y, v whi
h would be isomorphi
 to P4, this is forbidden. If it is 2,an odd 
y
le will arise, whi
h also forbidden. If it is 1, v would not be in L whi
h 
ontradi
ts ourhypothesis. Finally, we 
an assume that y has not the type Λ.

• The vertex y is not of type R. If y has type R, then either t
y
−→ v or x

y
−→ v where t is a vertex in

K di�erent than x, y and z and v is a vertex in L. In the �rst 
ase, a tx-geodesi
 going through
t, x, y, v is isomorphi
 P4 (see Fig.8(b)). This is a 
ontradi
tion. In the se
ond 
ase, we 
annothave u

y
−→ v, otherwise y would have type I treated above. Neither 
an we have u

x
−→ v (else,the sequen
e u, x, y, v would be a geodesi
 isomorphi
 to P4). Then there exists t in K su
h that7



u
t
−→ v (see Fig. 8(
)). Let a be the distan
e between v and y. We denote l the distan
e between

u and v. Then l ≤ a + 1, else we would have u
y
−→ v whi
h 
ontradi
ts pre
edent 
on
lusions.Moreover, a − 1 ≤ l, else we would have a yv-geodesi
 going through y, u, t, v isomorphi
 to P4whi
h is forbidden. Finally, to avoid odd 
y
le, we must have l = a. But d(x, v) = a + 1, thusa xv-geodesi
 going through x, u, t, v is isomorphi
 to P4. This is a 
ontradi
tion. Therefore, y
annot have type R.We 
on
lude that the vertex y has none of the types C,I, Λ ,R, Contradi
tion to the previous lemma.Consequently, the vertex x is not of type C.

y x z t

u

a

(a) z x y t

u

v(b) z x y t

u

v

a(
)Figure 8:Proposition 11. Ea
h vertex a of L sees exa
tly one vertex of KProof. Existen
e : We just have to 
onsider a ua-geodesi
, it goes through K by visiting a vertex xwhi
h is seen by a.Uni
ity : For a 
ontradi
tion, let us suppose that a sees two distin
t verti
es x and y of K. We 
ansuppose that u
x
−→ a. Furthermore, as it exists we 
an 
onsider that (a, u, x, y) realize : u

x
−→ a, a → yand dG(u, x) + dG(x, a) + dG(a, y) is minimum for G and u.Claim 12. 〈u, a, x, y〉 is an isometri
 subdivision of K4 in G.

u

yxx′

aa′Figure 9:Proof. For a 
ontradi
tion, let us suppose that it is not isometri
. It would mean that there exists a′prin
ipal vertex of G distin
t from u and a su
h that x
a′

−→ y. Thanks to the Lemma 10, we 
an assumethat a′ ∈ L (otherwise it would have type C). Moreover, we are sure that dG(u, x)+dG(x, a′)+dG(a′, y) <

dG(u, x) + dG(x, a) + dG(a, y). As (a, u, x, y) is a minimum for this quantity, it means that a ua′-geodesi
 does not go through x or y. There exists a vertex x′ in K distin
t from the others su
h8



that u
x′

−→ a′(see Fig.9). We then have : u
x′

−→ a′, a′ → y and dG(u, x′) + dG(x′, a′) + dG(a′, y) <

dG(u, x) + dG(x, a) + dG(a, y). This is a 
ontradi
tion that proves our Claim 12.The indu
tion hypothesis for n = 4 implies that x or y is universal in this sub(K4) (it 
annot beisomorphi
 to S(K4) sin
e P (u, a) is not geodesi
 and thus it is at least subdivided twi
e). Let usassume x is this universal vertex, then P (a, y) and P (u, y) are both subdivided exa
tly on
e as theyare geodesi
s (they 
annot be plain be
ause it would lead to a triangle, see Fig.10(a)). We will nowdemonstrate that this 
ase 
an never happen, by using the following Lemma :
yx

a

u

(a)
u

x y

b c(b)
u

x y

b c(
)Figure 10:Lemma 13. There are no verti
es x and y in K su
h that P (x, u) and P (x, y) are plain.Proof. For a 
ontradi
tion, let us suppose it was possible. Thus, we 
onsider a type of y, whi
h 
annotbe C by Lemma 10. y has type I : then there exists b ∈ L su
h that u
y
−→ b. The distan
e between u and b is then

d(y, b) + 2. Then the sequen
e u,x,y,b would also be a ub-geodesi
. But the Proposition 6 forbidsgeodesi
s isomorphi
 to P4. This 
ontradi
ts the type I for y.
y has type Λ : then there exist b and c in L su
h that b

y
−→ c. By Lemma 7, we know that a xb-geodesi
and a xc-geodesi
 are 
ontained in 〈x, y, b, c〉. Then the subdivision of K4 indu
ed is isometri
 anddistin
t from S(K4) so that it has a universal vertex whi
h 
an either be x or y (else it would leadto a triangle). If x is universal, then P (b, y) and P (c, y) are both subdivided twi
e be
ause they aregeodesi
s (they 
annot be plain to avoid triangles, see Fig.10(b)). This 
ontradi
ts b

y
−→ c ; there is ashorter walk through x. If y is universal (see Fig.10(
)), let us suppose dG(u, c) = 3, then u, x, y, c is a

uc-geodesi
 isomorphi
 to P4 whi
h is impossible by Proposition 6 ; therefore, dG(u, c) = 2 (it 
annotequal 1 be
ause c ∈ L). The geodesi
 of length 2 and the walk of length 3 between u and c indu
e anodd 
y
le of length 5. We 
an then assume there is no y with type Λ.
y has type R : then there exists b ∈ L and t ∈ K su
h that t

y
−→ b.

• If t = x, we denote by l the distan
e between y and b. Then dG(x, b) = l+1. A ub-geodesi
 
annotgoes through x (it would be isomorphi
 to a P4 forbidden by Proposition 6) or y (it would havetype I). Therefore, there exists a vertex z in K su
h that u
z
−→ b, we denote by p the distan
ebetween u and b. Then p > l, else, the sequen
e x, u, z, b would be a geodesi
 isomorphi
 to P4.Besides, p ≤ l + 1, else, we would have u

y
−→ b and y would have type I. Therefore p = l + 1 whi
his also impossible be
ause it indu
es an odd 
y
le (b, y, u, z) of length 2l + 3 (see Fig.11(a)).

• If t 6= x, let l be the distan
e between y and t. We then study dG(x, t), denoted by p (seeFig.11(b)). On the one hand, p ≤ l, else we would have a path of length l + 1 between x and tgoing through y and thus, it would have type C forbidden by Lemma 10. Furthermore, p 
annotequal l be
ause it would lead to an odd 
y
le (x, t, y) of length 2l + 1. On the other hand weknow that p > l − 2 be
ause P (t, y) is a ty-geodesi
. By 
onsequen
e, p = l − 1 ; whi
h impliesthat l ≥ 2 (it means, P (y, t) is not plain). From this we 
an also 
on
lude that x → t be
ause ifwe had x
v
−→ t, the path (y, x, v, t) of length l would then be a geodesi
 isomorphi
 to P4 whi
his impossible (by Proposition 6). Finally, 〈y, x, b, t〉 is an isometri
 sub(K4) in G. It 
annot be9



S(K4) be
ause P (x, y) is plain ; and, as P (y, t) is not plain, x must be the universal vertex in thissubgraph. Then dG(t, b) ≤ dG(t, x) + dG(x, b) = 2 ≤ l < dG(t, y) + dG(y, b) = dG(t, b). This is a
ontradi
tion.This means y 
annot not have any of the mandatory types. It �nishes the proof of Lemma 13We then have proven the Proposition 11, ea
h vertex a of L sees exa
tly one vertex x of K; besides, wehave u
x
−→ a whi
h is the only ua-geodesi
 (if not, any other ua-geodesi
 would be isomorphi
 to P4).

u

x zy

b

l p(a)
x

y
t

b

l

p

x
y

t

b(b)Figure 11:We will now prove that |K| = 1.For this, we will pro
eed by 
ontradi
tion. Thus, let us suppose that there exist x and y distin
t verti
esof K. Both must have a type R,I or Λ (by Remark 2.2 and Lemma 10). Ea
h one of these types, impliesthat x and y sees at least one vertex in L. Let a be a vertex su
h that x sees a. Then we 
onsider ashortest path from a to y. It 
annot be dire
t be
ause of Proposition 11. It 
annot go through x, elseit would indu
e an isometri
 subdivision of K4 and x would be universal : P (x, u) and P (x, y) wouldthen be plain whi
h is forbidden by Lemma 13. So there exists b in L su
h that a
b
−→ y. As b sees y we
an assume that u

y
−→ b. We may then 
onsider that (x, a, y, b) are the verti
es of that kind (x, y ∈ K,

a, b ∈ L, u
x
−→ a, u

y
−→ b and a

b
−→ y) that minimize the quantity dG(x, a) + dG(a, b) + dG(b, y).Claim 14. 〈u, x, y, a, b〉, is isometri
.Proof. If the subdivided K5 -〈u, x, y, a, b〉- is not isometri
, then any shortest xb-path does not belong tothis sub(K5). A

ording to Proposition 11, the vertex b does not see any other vertex in K than y. Then,there exists a vertex a′ in L su
h that b

a′

−→ x. Sin
e x is the unique vertex of K that x sees (Proposition11), then u
x
−→ a′. Therefore, u

x
−→ a′,u y

−→ b and b
a′

−→ x. Furthermore, dG(x, a′) + dG(a′, b) + dG(b, y) <

dG(x, a) + dG(a, b) + dG(b, y). Contradi
tion to the hypothesis. Our Claim is proven.Then, this subdivision of K5 is a partial 
ube and by the indu
tion hypothesis, it is either isomorphi
to S(K5) or has a universal vertex. It 
annot be isomorphi
 to S(K5) be
ause P (u, a) would then bea ua-geodesi
 and it is not. By 
onsequen
e it must have a universal vertex whi
h 
an neither be u (itdoes not see a), nor a or b (they do not see u), nor x or y (then we would have P (x, u) and P (x, y)plain whi
h is forbidden by Lemma 13). Thus, this subgraph is not a partial 
ube whi
h 
ontradi
ts ourhypotheses.As a 
on
lusion, we 
an assume |K| = 1 and then, u sees only one vertex in G whi
h means that nogeodesi
 goes through it. It implies that G\u is isometri
. This 
ontradi
ts our hypothesis. Finally, wehave proven Proposition 9.
10



We then have a universal vertex u in G and to avoid odd 
y
les, there has to be an odd number of addedverti
es in edges that are not in
ident to u.Consequently, the Theorem 1 is proven.2.3 A 
orollaryCorollary 15. Let sub(G) be a subdivision of a graph su
h that ea
h edge 
ontains odd added verti
es.
K is a graph obtained from sub(G) by joining a vertex u adja
ent to ea
h prin
ipal vertex of sub(G).Then, K is a partial 
ube.Proof. The proof is in
luded in the su�
ient 
ondition. We �rst embed isometri
ally the star with u asa 
entral vertex. Then, we 
an add isometri
ally every odd paths between two verti
es of G followingthe 
onstru
tion made in Paragraph 2.1.Con
lusionA brief summary of the proof 
ould be the following. We �rst prove that if a vertex 
an be removedisometri
ally, we then have a universal vertex thanks to the indu
tion hypothesis. Then we still haveto prove that we 
an always remove a vertex. We 
onsider that if every vertex is needed, they all havea type among C, Λ , R , I. We prove that none 
an have type C. After that, we exhibit an isometri
subdivision of K4 to show that any vertex of L 
annot see two verti
es of K. And we 
on
lude by �ndingan isometri
 subdivision of K5 that 
annot have any universal vertex and is distin
t from S(K5).In the end, we have a stru
tural 
hara
terization of every subdivisons of 
omplete graphs that are partial
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