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Abstract. We give a theoretical design for a locally resonant two-dimensional
cylindrical structure involving a pair of C-shaped voids in an elastic medium
which we term as double ‘C’ resonators (DCRs) and imbedded thin stiff bars,
that displays the negative refraction effect in the low frequency regime. DCRs
are responsible for a low frequency band gap which hybridizes with a tiny gap
associated with the presence of the thin bars. Using an asymptotic analysis,
typical working frequencies are given in closed form: DCRs behave as Helmholtz
resonators modeled by masses connected to clamped walls by springs on either
side, while thin bars behave as a periodic bi-atomic chain of masses connected
by springs. The discrete models give an accurate description of the location and
width of the stop band in the case of the DCR and the first two dispersion bands
for the periodic thin bars. We then combine our asymptotic formulae for arrays
of DCR and thin-bars to design a composite structure that displays a negative
refraction effect and has a negative phase velocity in a frequency band, and thus
behaves in many ways as a negative refractive acoustic medium (NRAM). Finite
element computations show that at this frequency, a slab of such NRAM works
as a phononic flat superlens whereas two corners of such NRAM sharing a vertex
act as an open resonator and can be used to confine sound to a certain extent.
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1. Introduction

1.1. Optical metamaterials

In 1967, Veselago wrote a visionary paper in which materials with simultaneously negative
permittivity (ε) and magnetic permeability (µ) were shown to have a negative refractive
index [1]. It was shown by a ray analysis that a slab of such a negative refractive index material
(NIM) can act as a flat lens that imaged a source on one side to a point on the other. But
this result remained as an academic curiosity for almost thirty years, until Pendryet al [2, 3]
proposed designs of structured materials which would have effectively negativeε andµ. The
experimental demonstration of a negative refractive index at GHz frequencies [4] provided a
fillip to research in this area (see [5, 6] for recent reviews). One should note that these materials
are structured at subwavelength lengthscales (typically one tenth of the wavelength) and it is
possible to regard them as homogeneous and describe their response by dispersive effective
medium parameters (see [7] for a comprehensive survey on homogenization theory). Potential
applications of negative refraction came when Pendry [8] demonstrated that the Veselago slab
lens not only involves the propagation waves but also the evanescent near-field components of
a source in the image formation. It was also shown that two corners of NIM combined in a
checkerboard fashion can act as a unique resonator [9]–[12].

1.2. Acoustic metamaterials

In 2000, Liu et al [13] provided the first numerical and experimental evidence of localized
resonant structures for elastic waves in three-dimensional (3D) arrays of thin coated spheres.
This work paved the way towards acoustic analogous of electromagnetic metamaterials.
Movchan and Guenneau [14] subsequently proposed to use arrays of cylinders with a split
ring cross-section as building blocks for 2D localized resonant structures. Li and Chan [15]
independently proposed a similar type of negative acoustic metamaterial. In a recent work, Fang
et al [16] experimentally demonstrated a dynamic effective negative stiffness for a chain double
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‘c’ resonator (DCR) for ultrasonic waves. Miltonet al [17] provided a thorough mathematical
frame for such effects including cloaking. Interestingly, similar localization effects have also
been observed experimentally by Russellet al [18] at megahertz frequencies in sonic band gap
crystal fiber preforms with defects.

In this paper, we improve the design of acoustic metamaterials we proposed in [14] by
using a new design that combines the cylindrical DCR with thin stiff sheets. We further show
that sound displays a negative refraction effect at the interface of this metamaterial with a
homogeneous medium and also has oppositely oriented group and phase velocities in the sense
of a negative refractive acoustic medium (NRAM). Further, a flat slab of this metamaterial
can focus light in the manner of the Veselago lens [1] and the image of the source has
sub-wavelength resolution [8]. We also show that sound can be confined by putting together
two corners of the NRAM in a checkerboard fashion.

1.3. Set-up of the spectral problem

As a preamble to the phenomenological analysis of the problem, we shall recall briefly its
finite element set-up. Thanks to the cylindrical geometry of the problem, elastodynamic waves
(governed by the vector Navier equations), decouple into anti-plane shear waves and in-plane
coupled pressure and shear waves [19]. In this paper, we focus on the analysis of anti-plane
shear waves. For this, we invoke the harmonic acoustic wave equation with derivatives taken in
generalized sense

∇ · (µ(x, y)∇U (x, y)) +ρ(x, y)ω2U (x, y) = 0, (1)

whereρ, µ andU are functions of spatial variables satisfying the usual conditions for self-
adjointness, boundedness and ellipticity of the wave operator, i.e. there exist two real positive
constantsm andM such thatM > µ, ρ >m > 0.

Due to the periodicity of the lattice, it is customary to require that the eigenfunctions be of
the Floquet–Bloch type, i.e.

U (x + 1, y + 1) = U (x, y)ei(kx+ky), (2)

wherekx andky are components of the so-called Bloch vectork which lies within the Brillouin
zoneY∗

= [0, π ]2.
Solving this spectral problem amounts to looking for the countable set of real positive

eigenvaluesω and associated non-zero eigensolutionsU of finite energy within the periodic
cell Y = [0; 1]2 for a fixed Bloch vectork within reciprocal space.

The implementation within the finite element package is fairly straightforward. We first
multiply equation (1) by a smooth test functionV and using Green’s formula, we obtain the
so-called weak form of the acoustic equation:

−

∫
Y

µ∇U · ∇V dx dy +
∫

∂Y
µ

(
∂U

∂n
V −

∂V

∂n
U

)
dl +ω2

∫
Y

ρU V dx dy = 0. (3)

This expression is then discretized using test functionsV taking values on nodes of a triangular
mesh of the basic cellY. From equation (3), we note that setting traction free boundary
conditions on an inclusion amounts to assuming Neumann (natural) homogeneous data, whereas
ideal contact conditions are such that the quantitiesU andµ∂U/∂n are preserved across the
interfaces.
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To enforce Floquet–Bloch conditions in equation (3), it is enough to link values ofV
on opposite sides of the basic cellY [20]. The finite element formulation was implemented
in FEMLAB (COMSOL Multiphysics package), which requires some changes in the readily
available boundary conditions. We now wish to discuss this in conjunction with our main
numerical results on band diagrams.

1.4. Main numerical results on the band structures of the metamaterials

The numerical results presented in this paper were obtained for a matrix material defined
by normalized elastic parametersρ = 1 (mass density) andµ = 1 (shear modulus or first
Lamé coefficient). Let us further assume that the other Lamé coefficient for this material is
λ = 2.3 (pressure modulus), even though it does not appear within the governing equation
(3) for shear waves. In this case, the elastic material parameters used are those of fused
silica, ρ = 2.2× 103 kg m−3, µ = 16.05× 109 Pa andλ = 31.15× 109 Pa. The elastic material
considered is micro-structured. It displays two types of inclusions, some of which are C-shaped
voids (which are freely vibrating) and the others are highly stiff thin elongated material of
densityρ = µ = 140 (which are clamped). Reinforced fibers such as carbon nanotubes are a
good candidate for such a stiff phase since such values forρ andµ lie within the theoretical
bounds for realizable effective elastic material parameters [7]. We note that the wave speed
c =

√
ρ/µ is conserved throughout interfaces (no impedance mismatch). Note that the Poisson

ratio ν(µ, λ) of the corresponding material ought to be within reasonable bounds (thereforeλ

cannot take any possible value). In the case of fused silica, it is aroundν = 0.3. Interestingly,
Milton [7] has shown that a Poisson ratioν can be as close as one wants to−1 (whenν < 0
the material shrinks/expands in one direction when compressed/stretched in the orthogonal
direction). Let us now outline our main numerical results.

We now wish to compute the band structure diagrams of this elastic meta-material. In
order to find corresponding Bloch modes in FEMLAB, some changes have to be performed
with respect to readily available boundary conditions (Dirichlet, Neumann or periodic ones). A
scalar discrete fieldU (x, y) on the square cellY with Floquet–Bloch conditions relates the left
and the right sides. The set of nodes is separated in three subsets: the nodes on the left side,
i.e. with x = 0, corresponding to the column array of unknownul, the nodes on the right
side i.e. withx = 1, corresponding to the column array of unknownur , and the internal nodes
i.e. with x ∈ (0, 1), corresponding to the column array of unknownu. One has the following
structure for the matrix problem (corresponding in fact to natural boundary conditions in
FEMLAB i.e. Neumann homogeneous boundary conditions):

A

 u
ul

ur

 = b, (4)

whereA is the square Hermitian matrix of the system andb a column array. The solution
to be approximated by FEMLAB is a discrete Bloch function satisfying (2). It is convenient
to re-express this Floquet–Bloch condition asU (x, y) = U](x, y)ei(kxx+ky y), whereU] is Y-
periodic and in particularU](x + 1, y) = U](x, y). This way, one can write thatU (1, y) =

U](1, y)ei(kx+ky y)
= U (0, y)eikx , so that the relation between the left and the right sides is

ur = uleikx . Consequently, the set of unknowns can be expressed in FEMLAB in function of
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the reduced setu andul thanks to: u
ul

ur

 = P
(

u
ul

)
with P =

I 0
0 I
0 Ieikx

 , (5)

whereI and0 are identity and null matrices, respectively with suitable dimensions. The finite
element equations related to the eliminated nodes have now to be taken into account. Thanks
to the periodicity of the structure, an element located on the left of the right side of the basic
cell Y corresponds to an element on the left of the left side of the basic cell. Therefore, their
contributions (i.e. equations corresponding tour ) must be added to the equations corresponding
to ul with the correct phase factor e−ikx . This amounts to multiplying the matrix system by the
Hermitian conjugatēP of P.

Finally, the linear system to be solved in FEMLAB is:

P̄AP
(

u
ul

)
= P̄b, (6)

where it should be noted that the matrix system is still Hermitian. To sum up, the implementation
of Floquet–Bloch conditions in FEMLAB amounts to transforming a generalized eigenvalue
problem (with natural boundary conditions)Au = λBu into an eigenvalue problem with
Floquet–Bloch conditions according toP̄APu′

= λP̄BPu′.
We will consider our structures to have an axis of invariance so that effectively our models

become 2D. Numerical results for the case of a pair of C-shaped voids (shown in figure1)
which we term as DCR, are reported as a band diagram on figure2. One can see a band gap
in the normalized frequency interval [1.1; 1.4], hence which is below the Bragg regime. The
convex shape of the second curve is typical for a low frequency local resonance band that falls
within the first Bragg zone (heavy photon bands in electromagnetism which arise usually due
to Mie or plasmon resonances). For the case of a stiff inclusion with ideal contact conditions
which is shaped as a thin elongated bar, we can see in the right hand panel of figure4, a band gap
within the interval [2.6; 3.3]. The concave curvature of the second dispersion curve means there
is multiple scattering at play here. We were able to tune down the frequency of this acoustic
gap by taking a high-contrast inclusion (yet preserving the wave number across the interface).
If we now combine these two types of inclusions (DCR and a non-intersecting stiff thin bar)
within a cell, we observe that the second propagating band on figure5 falls neatly within the
gap of figure2: this is the result of hybridization of eigenfields associated with the two types of
inclusions. Most importantly, the slope of the second curve is negative for directions of Bloch
vector sitting within0M . Hence, we are in possession of an acoustic metamaterial that should
display negative refraction within the low frequency regime.

2. Phenomenological analysis

These numerical results presented above motivate the following phenomenological discussion.

2.1. Modeling of DCR using multi-structures

Firstly, let us try to gain some insight into the mechanics of the problem by using asymptotic
methods. Such tools enable us to reduce the partial differential equation (1) to certain ordinary
differential equation in a thin domain supplied with appropriate boundary conditions.
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Figure 1. (a) A model of DCR consisting of a large rigid disk4 and two
thin ligaments5( j )

ε of length l j and thicknessεh j , j = 1, 2; (b) the DCR is
a Helmholtz oscillator consisting of two springs connected to a mass at one
end and fixed at the other end; (c) square array of DCR and associated first
Brillouin zone 0Mk; (d) the DCR is a LC resonator with inductancesL j =

ρl j /h j and capacitanceC = meas(4)/ρc2, with c =
√

ρ/µ the sound speed
in a matrix of densityρ and shear modulusµ. The resonant frequency is then
ω =

√
1/{(L1 + L2)C}.

We model the DCR as a multi-structure, in a way similar to what was done in [14] (see
also [21] for the full mathematical details in the analogous case of transverse electric waves
propagating within thin-walled photonic crystal fibers).

We denote by� the double-split rings as shown figure1 to preserve the twofold symmetry.
Formally,

� =

{
a <

√
x2 + y2 < b

}
\

N⋃
j =1

5
( j )
ε , (7)

wherea andb are functions of variablesx andy unless the rings are circular and

5( j )
ε =

{
(x, y) : 0 < x < l j , |y| < εh j /2

}
, (8)

is a thin ligament of lengthl j between the ‘ends of the letter C’. Here,εh j the thickness of
the j th bridge, withε a small positive non-dimensional parameter. In our case, we have two
thin-bridges5(1)

ε and5(2)
ε .

To derive the asymptotic expansions, we introduce the scaled variableξ = y/ε so that
ξ ∈ (−h j /2, h j /2) within 5( j )

ε and∂2v/∂y2
= 1/ε2∂2v/∂ξ2.

In 5
( j )
1 , the wave equation (1) takes the rescaled form{

µ

(
1

ε2

∂2

∂ξ2
+

∂2

∂x2

)
+ρ

ω2

c2

}
U = 0 , (9)
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where the derivatives are taken in classical sense (µ is constant in the thin-bridge). The fieldU
is approximated in the form

U ∼ U (0)(x, y) + ε2U (1)(x, y). (10)

To leading order we obtain (see (3), (9) and (10))

∂2U (0)

∂ξ2
= 0, |ξ | < h j /2,

∂U (0)

∂ξ

∣∣∣∣
ξ=±h/2

= 0. (11)

Hence,U (0)
= U (0)(x) (it is ξ -independent). Assuming thatU (0) is given, we derive that the

functionU (1) satisfies the following model problem on the scaled cross-section of51

∂2U (1)

∂ξ2
= −

∂2U (0)

∂x2
+

ω2

c2
U (0), |ξ | < h j /2

∂U (1)

∂ξ

∣∣∣∣
ξ=±h j /2

= 0, (12)

The condition of solvability for the problem (12) has the form

d2U (0)

dx2
+

ω2

c2
U (0)

= 0, 0 < x < l j . (13)

Hence, we have shown that to the leading order we can approximate the fieldU within the thin
bridge5( j )

ε by the functionU (0) which satisfies the wave equation in one-space dimension.
We now assume that the field is periodic over the macro-cell since it is localized. This

shows that the average of the eigenfield over the macro-cell vanishes. Indeed, letχ1 denote the
value of the field in the large body6 = {

√
x2 + y2 < l j } of the multi-structure� (union of the

two C-shaped voids) and letχ2 (which we normalize to 1) denote the value of the field within
the complementary area of the macro-cellY \ � excluding the ligaments. TakingV = 1 in (3),
we deduce that

ω2

∫
Y

ρU dx dy = −

∫
∂Y∪∂�

µ
∂U

∂n
dl = 0, (14)

sinceU is periodic on∂Y (and the normal anti-periodic) andU is traction free on∂�. This
shows that the average of the displacement fieldU over Y vanishes, hence by neglecting the
area of the thin bridges, we obtain

χ1S6 +χ2SY\� = O(ε). (15)

Since, we have two thin bridges, we have two separate eigensolutionsVj , j = 1, 2,
corresponding to the vibrations of the thin domains5( j )

ε

µV ′′

j (x) +ρω2Vj (x) = 0 , 0 < x < l j , (16)

Vj (0) = χ2 = −χ1
meas(4)

meas(Y \ �)
, (17)

µεh j V
′

j l j = Mω2Vj (l j ) , (18)

whereεh j andl j are the thickness and the length of the thin ligament5( j )
ε , andM is the mass

of the body4. The bridges are both connected to4, henceV1(l1) = V2(l2) = V , whereV is the
anti-plane displacement of the rigid body4. We note thatVj (0) is equal to a non-zero constant
unlike in [14] (in that case we assumed thatχ2 = 0, i.e.U = 0 where the bridges meet the region
outside�). Here, the constant is chosen in such a way that the average of the field over the basic
cell vanishes, as should be expected for a localized (stationary) field.
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Figure 2. Band diagram for an array of DCR as in figure1(c). On the vertical
axis, we represent the normalized wave frequencyωd/c, whered stands for the
pitch of the square array andc =

√
µ/ρ is the sound speed defined as in the

caption of figure1. On the horizontal axis, we represent the magnitude of the
Bloch vector describing the first Brillouin zone0M K described in figure1(c).
We can see a phononic band gap in the range of normalized frequenciesωd/c ∈

[1.14, 1.29], which is associated with the resonance of the split ring. In that
case the eigenfield is axi-symmetric and the inclusion moves as a rigid body
(as in figure6). The lower and upper-edge eigenfrequencies of the gapω1d/c
andω2d/c are both in excellent agreement with two asymptotic estimates (23)
and (22). The associated eigenfield is displayed in figure6(a).

The solution of the problem (16)–(18) has the form

Vj (x) = −
χ2{cos((ω/c)l j ) − 1}

sin((ω/c)l j )
sin

(ω

c
x
)

+χ2 cos
(ω

c
x
)

, (19)

wherec =
√

µ/ρ and the frequencyω is given as the solution of the following equation

ε

(
h1

cos(ωl1/c) − χ2

sin(ωl1/c)
+ h2

cos(ωl2/c) − χ2

sin(ωl2/c)

)
=

Mc

µ
ω, (20)

where we invoked Newton’s second law that states that total shear force is equal to mass times
shear wave acceleration. Looking at a first low frequency, we deduce an explicit asymptotic
approximation

ω ∼

√
εh1

l1
+

εh2

l2

√
µ

M

(
1 +

meas(4)

meas(Y \ �)

)
. (21)

This estimate actually holds for the frequency of the upper edge of the first phononic band gap
of figure2. It matches that of a LC resonant circuit as depicted in figure1(d).

We report in figure2 finite element computations for a periodic cell of side lengthd with
a double C-shaped void. The central disk has a radius of 0.3d and the two cuts have the same
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length 0.1d and a thickness 0.025d. Therefore, the frequency estimate is

ω2d/c = ω∗

2 ∼

√
0.05

0.1

√
1

π0.32

(
1 +

π0.32

1− π0.42

)
= 1.29, (22)

which is in excellent agreement with the finite element valueω2d/c = 1.2892 for the lowest
value point on the second dispersion curve on figure2 occurring at the0 point (where the Bloch
vectork vanishes). This provides us with a fine estimate of the upper-edge frequency of the
first gap.

We note that if we takeV(0) = 0 instead ofV(0) = meas(4)/meas(Y \ �) = −0.5685052,
(cf our previous work on acoustic DCR [14]), we end up with the estimate

ω1d/c = ω∗

1 ∼

√
0.05

0.1

√
1

π0.32
= 1.15, (23)

which is in excellent agreement with the finite element valueω1d/c = 1.1507 for the lower-edge
of the first gap (occurring at theK point whenk = (π, π)).

We notice the presence of a second phononic band gap in the range of normalized
frequencies [3.2, 4.1] which occurs due to multiple scattering between inclusions within the
array (Bragg regime). We do not know of any asymptotic work showing how to estimate
accurately the location or the width of this gap. Interestingly, this gap remains unchanged if
one replaces the DCR by circular voids whose radius matches their outer boundary (r = 0.4d),
hence one way forward might be to use the multipole method.

2.2. Modeling of a periodic array of thin rigid bars using a chain of masses connected
by springs

Secondly, we analyze acoustic waves propagating within a doubly periodic array of elongated
thin stiff bars (see figure3(c)). We first implement the weak formulation (3) in the finite element
package FEMLAB with normalized material parametersρ = µ = 1 in the matrix material and
ρ = µ = 140 in the thin elongated vertical stiff bar of length 0.95d and thickness 0.01d, whered
is the size of the square periodic cell. The corresponding band diagram shown in figure4exhibits
a phononic band gap in the range of normalized frequencies [1.9, 3.5]. For waves propagating
in the0M-direction (horizontalx-axis), we can actually approximate the acoustic and optical
bands of figure4. Before undertaking this phenomenological analysis, it is, however, important
to note that this gap does overlap with the second dispersion curve and the second gap for an
array of DCR inclusions, as depicted in figure2. This is the principle underlying the effect of
negative refraction when combining both types of inclusions.

For waves propagating in the0M-direction, let us assume the bars to be infinite along the
vertical direction. The problem therefore reduces to the 1D Helmholtz equation

µ j
d2u j

dx2
+ω2ρ j u j = 0, x ∈ Sn

j j = 1, 2, n = 1, 2, · · · , (24)

with µ j the shear modulus andρ j the material density in layerSn
j = n(a + j (b− a)). This

equation is supplied with ideal contact conditions

u1 = u2, µ1
du1

dx
= µ2

du2

dx
(25)
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Figure 3. (a) Multilayered acoustic structure; (b) equivalent mechanical system;
(c) structure of the array; (d) band diagram for a periodic chain of masses
connected by springs as in (b), leading to a qualitatively good estimate of the
first two curves on the band diagram of figure4 along the segment0M of the
first Brillouin zone. Here, the gap lies within the normalized frequency range
[1.9, 2.7], which fits qualitatively well with the stop band [1.5, 3.2] displayed
along the segment0M on figure4.

−4 −3 −2 −1 0 1 2 3 4 5 6
0

1

2

3

4

5

6

d/c

Γ M KK

ω

Figure 4. Band diagram for an array of thin stiff bars as represented in
figure3(c), showing a phononic band gap for normalized frequencies within the
range [1.9, 3.5].

together with Floquet–Bloch conditions

u j (x + d) = eikdu j (x), j = 1, 2, (26)

wherek ∈ [ − π, π ] is the Bloch parameter.
To preserve the wave velocity (hence the impedance) in every layer, we now assume

that ρ j = µ j . For long wavelengths, if we further assume thatε = µ1/µ2 � 1, we obtain the
approximate dispersion equation (see also [19] for a derivation for thin layers)

k4
1 p1 − k2

2 p2 + 2
√

ε(1− cos(kd)) = 0, (27)

New Journal of Physics 9 (2007) 399 (http://www.njp.org/)

http://www.njp.org/


11

−4 −3 −2 −1 0 1 2 3 4 5 6
0

1

2

3

4

5

6

Γ M KK

ω d /c

Figure 5. Band diagram for an array of thin stiff bars combined with DCR as
described in figure3(c), which exhibits a tiny phononic band gap in the range
of normalized frequencies [2.4, 3.3] similar to that of figure4, as well as a
dispersionless pass band similar around the normalized frequencyωd/c = 1.1
to that of figure2.

wherek j is the wave numberk j = ω
√

ρ j /µ j and

p1 =
(a3b+ ab3)(1 +ε)

6
+

√
ε(a4 + b4 + 6a2b2)

12
(28)

and

p2 =
√

ε(a2 + b2) + (1 +ε)ab. (29)

The above expression bears some resemblance with the dispersion relation accounting for
oscillations of a bi-atomic chain of massesm1 andm2 connected by massless springs of elasticity
constant (stiffness)C (see [22], chapter 4)

m1m2ω
4
− 2C(m1 + m2)ω

2 + 2C2(1− cos(kd)) = 0. (30)

Indeed, the equations (27) and (30) are identical when

p1 =
m1m2

C

µ2
1

ρ2
1

, p2 = 2(m1 + m2)
µ2

ρ2
, C =

√
ε =

√
µ1/µ2. (31)

The dispersion curves deduced from (27) are displayed in figure3. We used the geometric
parametersa = 0.01,b = 0.99,d = 1 and the small parameterε = 1/140.

2.3. Negative refraction: combining the DCR and the thin stiff elongated bars

Thirdly, we consider Floquet–Bloch waves propagating within a square array of thin vertical
bars combined with DCR inclusions. Within a basic cell, the bar of thickness 0.01d (in fact it is
a thin sheet, since the structure is invariant in the third direction) is located at a distance 0.04d
away from the right-hand side of the cell and a distance 0.05d away from the DCR as shown
in figure7. The corresponding band diagram is shown in figure5. The second dispersion curve
plotted in red color is the result of hybridization of the gap for thin bars of figure4 and the
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Figure 6. Left panel: (a) zoom on the first two dispersion curves of figure5.
The blue line represents dispersion for sound waves in a homogeneous medium
(here silica). Blue line and red curve (with negative slope for all angles lying
within 0M) intersect at a normalized frequency of 1.19. The inset shows the
isofrequency contours at 1.19 obtained from the second dispersion surface (a
red ellipse) and from the cone of sound wave (a blue circle). Right panel: (b)
Gaussian beam of frequency 1.19 incident from the left on the NRAM, making
an angle of 35◦ with the vertical axis. It is centered on the sixth thin stiff bar
(located in the sixth cell of the NRAM from the left) and its width is three cells.
The large white arrows show the direction of propagation of the barycenter of the
Gaussian beam, clearly demonstrating a refraction index close to−1 (through
application of the Snell–Descartes’ inverted law).

second dispersion curve in figure2 (associated with a local resonance of the DCR). Its slope is
negative in bothK0- and0M-directions, indicating that the wave propagates with a negative
group velocity. It is interesting to notice in figure7 that the displacement field associated with
the local resonance of the DCR atωd/c = 1.19 is not affected by the presence of the thin
bar (the corresponding eigenfrequency is nearly unchanged compared with a DCR taken on
its own). The lower acoustic band of figure6 looks actually identical to that of figure2. On
the other hand, displacement field at the frequency associated with the intersection of the free
sound wave (blue line) and the red curve in figure7 clearly shows some interaction with the
DCR, although it is maximum near the location of the thin bar, and hence seems to be driven
by the periodic array of stiff thin bars. This illustrates the hybridization of the stop band and the
second dispersion curve in figure4. We emphasize that the eigenfields displayed in figures7(a)
and (b) are of very different nature: one is localized whereas the other one is propagating. This
is the cornerstone of our route to negative refraction, which can be actually transposed to the
electromagnetic context.

Importantly, the red curve of figure5 (and6(a)) is nearly flat in the0M-direction and it is
located within the low-frequency stop band for an array of DCR (see figure2). Indeed, it has
been shown in the electromagnetic context that the nearly flat dispersion on a PC band diagram
leads to a better coupling between a wave propagating within the PC and a wave incident on
to this composite structure [23]. Also, the fact that the negative slope occurs below the Bragg
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(a) (b)

Figure 7. Left panel: (a) eigenfields within an array of DCR and thin and stiff
straight wires: Left panel: (a) first localized mode of DCR for a Bloch vector
k = (π, π): Right panel: (b) Propagating wave along0M-direction associated
with negative group velocity as shown in figure6(a).

regime, unlike for PC, could enable some subwavelength resolution, as we shall check in the
sequel. To obtain such a focusing effect, the first requirement is to meet the conditions for
negative refraction. To check this, we considered a Gaussian beam incident from the left on
a finite slab of our NRAM, as reported in figure6(b). The Gaussian beam makes an angle of
35◦ with the vertical axis, centered on the sixth stiff bar and is three cells in width. When it
reaches the slab on NRAM, it gets reflected according to the Snell–Descartes’ law (the incident
angle being visibly equal to the reflected angle). But the beam is transmitted in the NRAM
according to inverted Snell–Descartes’ law (both incident and transmitted beams are located
on the left-hand side of the vertical axis). On leaving the NRAM, the transmitted Gaussian
beam is once again negatively refracted. Importantly, it should be noted in figure6(b) that
the barycenters of incident and doubly refracted beams are indeed parallel to each other. This
suggests that the heterogeneous slab of NRAM behaves to a certain extent as if it were made
of an effective material displaying a negative refractive index close to−1. Nevertheless, our
NRAM also exhibits some heterogeneous features at the working wavelength, due to the high
material contrast between silica and thin-stiff bars. It is actually hopeless to homogenize such
a material in a classical sense. To see this, it is enough to divide byρ all throughout in (1).
We then notice that in the stiff phase the densityρ is a small parameter sitting in front of the
higher order derivatives in the equation. Solutions to this type of problem typically involve
large derivatives and possibly highly oscillating fields inside the thin stiff inclusions and in
its immediate neighborhoods in the silica matrix. It is known that the occurrence of such large
derivatives do not preclude a satisfactory homogenization treatment of such singularly perturbed
problems [19].

We note here that the phase velocity for waves moving along the0-M-direction in this
metamaterial i.e.

√
ρeff/µeff is complex with opposite signs for the real and imaginary parts.

Since the constituent materials of the metamaterial are lossless, we will only have radiation
losses [24] or dissipation that comes in here through the numerical methods used for computing
(some dissipation is usually required in most numerical algorithms for stability by damping
out fast growing spurious modes). Hence, we expect the imaginary parts ofρeff and µeff to
contribute to a Im(k) > 0 (which will be reasonably small for propagating modes). Hence, we
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conclude that Re(k) < 0 unambiguously. On grounds of causality [25], we suggest that the
acoustic metamaterial considered here would have Re(ρeff) < 0 and Re(µeff) < 0. A rigorous
parameter retrieval procedure on the lines of those developed for electromagnetic metamaterials
[26]–[28] will be required to be implemented on this system to obtain theρeff andµeff. But
since the metamaterial structures in our case are not far subwavelength in size at the operating
frequency (λ ∼ 2.15d), such a homogenization of all properties via effective medium parameters
is difficult. Many parameter retrieval procedures rely on proper choice of the branch for multi-
valued functions and are difficult to implement once homogenization begins to breakdown and
the number of branches increases rapidly. However, we satisfy the requirements for the negative
refraction effect to make a flat lens and an open resonator as we will describe now.

To meet the next condition for superlensing described by Pendry in [8], it is necessary to
obtain a negative effective refractive index as close as−1 as possible (some imaginary part will
nevertheless be present, which is a well known fact in the effective medium theory [24]). This
will occur for the normalized frequency of 1.19 which corresponds to a point at the intersection
between the acoustic band and the free wave sound line as shown in figure7: such a point
meets the required criteria of both a negative group velocity (negative slope) and a minimized
impedance mismatch between the metamaterial and surrounding material (here silica). The inset
also shows that the 1.19 isofrequency contour of the red line is nearly that of a free wave (blue
circle surrounding the red ellipse as it should): the metamaterial indeed behaves as an effective
medium with|neff| ' 1 at this frequency (within acceptable margins for anisotropic behavior).

The fact thatneff close to−1 is confirmed by the numerical experiment reported in
figure8(a) where a plane wave of that frequency is incident upon a slab of this metamaterial: it
appears that the structure is invisible at this frequency thanks to impedance matching between
the surrounding medium (silica) and the metamaterial (up to the unavoidable absorptive nature
of the composite slab). Such a phenomenon was experimentally observed in few instances in
flat super lenses in electromagnetism [29].

We can now proceed to investigate the focusing effect by a flat slab of the metamaterial.
For this, we look at the eigenfunctions associated with a finite structure consisting of 16 square
cells (slab lens) combining DCR and thin bars, embedded in an infinite outer medium made of
silica. We model the scattering problem using the weak form of the acoustic wave equation (3)
where the spectral parameter (frequency term) is now replaced by a forcing term (a line source).
Perfectly matched layers (PML) provide a reflectionless interface between the region of interest
(large middle square containing the metamaterial in figure8) and the PML (four rectangles and
four small squares) at all incident angles. PML were originally introduced by Berenger [30] in
electromagnetism, in which case the regions of PML consist of anisotropic absorptive media. In
our case, we consider some orthotropic absorptive media defined by

µ′
= µTT = µ

(
Txx 0
0 Tyy

)
and ρ ′

= ρTzz, (32)

whereT is a representation of the metric (rank two) tensor with non-zero entries in Cartesian
coordinates given by

Txx =
sysz

sx
, Tyy =

sxsz

sy
, Tzz =

sxsy

sz
. (33)

Here,sx, sy andsz represent complex stretched coordinates defined by

sx = a − ib, sy = sz = 1, (34)
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Figure 8. Left panel: (a) Plane wave incident on a slab of NRIM at normalized
frequencyωd/c = 1.19; (c) lensing effect through the NRIM slab with an
acoustic source vibrating at the same normalized frequency 1.19 which is located
one cell underneath and its image located one cell above (in a symmetric
fashion); (e) profile of magnitude of displacement field in the source plane (blue)
and the image plane (red). Right panel: (b) schematics of rays trajectories in an
open resonator with two corners of acoustic NRIM material; (d) 2D plot of the
displacement field radiated by an acoustic source at normalized frequency 1.19
located in the top right hand corner of the resonator, exhibiting three images in
the other corners: the sound waves circle around in closed trajectories; (f) 3D
plot of the field magnitude for same configuration.
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in the case of a wave propagating in thex-direction. The real parametersa andb are chosen
empirically so that the amplitude of the outgoing acoustic wave vanishes smoothly within
the PML region which was meshed with a mesh size of about a tenth of the wavelength. In
our numerical simulations reported in figure8, we took the normalized elastic parameters for
silica ρ = µ = 1 andλ = 2.3 in (32). We further chosea = b = 1 for the working normalized
frequencyωd

√
ρ/µ = 1.19, with d = 0.2 being the cell’s size of our metamaterial’s building

block. The thickness of the PML regions was taken as large as 5d to ensure convergence
towards an accurate numerical solution. In figure8(c), we plot the displacement field (shear
wave) emitted by a line source at normalized frequencyωd/c = 1.19 which is located one
cell below the slab lens. We can clearly see an image located one cell above the slab lens,
in accordance with the ray analysis originally proposed by Veselago for a homogeneous flat
lens whose refractive index is−1 [1]. An interference pattern due to reflected waves arising
from the imperfect impedance matching for waves at larger oblique incidence can be see in the
field map. In order to show the potential of this metamaterial for the super focusing effect as
discussed by Pendry [8], we plot the modulus of the displacement field in the source and image
planes, see figure8(c). We can see in figure8(e) that the full-width at half-maximum (FWHM)
of the function is significantly smaller than half the wavelength with the working wavelength
which is actually 2.15d whered is the cell’s size. Note that we do not have an infinite image
resolution. That is due to the presence of the unavoidable effective dissipation and dispersion
that are inherent in any numerical calculation [31] and any such discrepancy from the ideal
perfect lens conditions ofn = −1 is well known to severely limit the extent of subwavelength
image resolution [32].

Indeed, in figure8(b), the domain for finite element computations excluding PML is
a square of computational size 2 and the cell’s size isd = 0.2. In figure 8(e), we plot the
modulus of the profile of the displacement field along thex-direction. It shows transverse
oscillations associated with the line source whose location is at a computational distance 1:
this represents 1/0.43= 2.33 wavelengths or 5 unit cells. The measure of the distance in terms
of the wavelength are actually added on top of the horizontal axis for convenience (note that the
wavelength corresponds to the distance between three successive maxima–minima, as we plot
the modulus of the eigenfield). We note the asymmetry of the profile which we attribute to the
anisotropic nature of the effective behavior of the metamaterial at the working frequency (the
isofrequency contour in the inset of figure7 is not perfectly circular). We checked that adding
a thin stiff bar on the left-hand side of the basic cell in a symmetric fashion makes the profile
more symmetric.

We conclude that sonic surface modes possibly enhance the evanescent modes and
contribute to subwavelength image resolution similar to the surface plasmon polariton
excitations in electromagnetism [16].

Lastly, we will demonstrate sound confinement through negative refraction in corner
reflectors, following the original idea of Notomi [11] for PC in electromagnetism. As can be
seen from the ray analysis in figure8(b), sound trajectories circle around the point of intersection
of the two corners in closed loops. We first checked that some resonances occurred for a corner
reflector surrounded by an infinite outer medium (silica) which we modeled using the spectral
formulation (3) together with PML. We observed that the larger the number of cells, the smaller
the imaginary part of the resonant eigenfrequency: eigenvalues are complex with an imaginary
part accounting for the leakage of the corresponding eigenmode in a non-dissipative medium.
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Such a checkerboard structure alternating cells withn = 1 andn = −1 is actually a perfect
lens as first shown by Pendry and Ramakrishna in [9]: the image of the source located in the
opposite corner contains both propagative and evanescent components of the field radiated by
the source, and is thus perfect. This leads to an infinite local density of states (LDOS) when the
corners fill the overall space, as numerically investigated in the electromagnetic case in [10].
This suggests the possibility to trap sound using two finite corners of the acoustic metamaterial
arranged in the same checkerboard fashion. In figure8(d), we plot the displacement field
emitted by an acoustic line source at the frequencyωd/c = 1.19 in the presence of the corner
reflector. We can clearly see three successive images, two of which are actually occurring
inside the metamaterial, as suggested by the ray picture (b). A 3D plot of the magnitude of
the displacement field on figure8(f) shows that the field is mostly confined inside the corner
reflector. We note that the confinement of sound can be improved by increasing the size of the
corner reflector in a checkerboard fashion, as investigated for light in [33, 34].

3. Conclusion

We have explained the design of an acoustic metamaterial that can be used for focusing and
confining light. The 2D NRAM consists of interleaving cylindrical double C-shaped cracks and
finite thin stiff sheets in a matrix of silica. The wave impedance was matched in all the regions.
The design involved producing a suitable band with negative slope in a range of frequencies.
This band was obtained by hybridizing the modes of a DCR with the modes of thin stiff bars.
Our calculations have shown that at these frequencies:

1. a beam of sound negatively refracts across a slab of such a medium (see figure6(b));
2. the phase vector in the medium possesses real and imaginary parts with opposite signs;
3. the medium is well impedance matched with the surrounding medium (see figure8(a));
4. a flat slab of the metamaterial can image a source across the slab like a Veselago lens (see

figure8(c));
5. the image formed by the flat slab has considerable subwavelength image resolution (see

figure8(e));
6. a double corner of the metamaterial can act as an open resonator for sound (see figure8(f )).

While the metamaterial units are not highly subwavelength in size, these phenomena occur at
frequencies within the first Bragg band. Thus, the acoustic metamaterial displays several of the
hallmark properties of a NRAM within a certain range of frequencies.

Our analysis can be further extended to in-plane (coupled shear and pressure) elastic waves.
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