N

N

Asymptotic analysis of hedging errors in models with
jumps
Peter Tankov, Ekaterina Voltchkova

» To cite this version:

Peter Tankov, Ekaterina Voltchkova. Asymptotic analysis of hedging errors in models with jumps.
2007. hal-00186373v2

HAL Id: hal-00186373
https://hal.science/hal-00186373v2

Preprint submitted on 2 Dec 2007

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00186373v2
https://hal.archives-ouvertes.fr

Asymptotic analysis of hedging errors in models
with jumps

Peter TANKOV
Laboratoire de Probabilités et
Modeles Aléatoires
Université Paris-Diderot — Paris 7

e-mail: tankov@math.jussieu.fr

Ekaterina VOLTCHKOVA

Université Toulouse 1 Sciences Sociales,
GREMAQ), 21, allée de Brienne,
31000 Toulouse, France

e-mail: ekaterina.voltchkova@Quniv-tlsel.fr

Abstract

Most authors who studied the problem of hedging an option in in-
complete markets, and, in particular, in models with jumps, focused on
finding the strategies that minimize the residual hedging error. How-
ever, the resulting strategies are usually unrealistic because they require
a continuously rebalanced portfolio, which is impossible in practice due
to transaction costs. In reality, the portfolios are rebalanced discretely,
which leads to a ’hedging error of the second type’, due to the difference
between the optimal strategy and its discretely rebalanced version. In this
paper, we analyze this second hedging error and establish a limit theorem
for the renormalized error, when the discretization step tends to zero, in
the framework of general It6 processes with jumps. Theses results are
applied to hedging options with discontinuous payoffs in jump-diffusion
models.
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1 Introduction

The problem of hedging an option in an incomplete market, and in particular,
in a market where stock prices may jump, has been studied by many authors
starting with Follmer and Schweizer [3] up to more recent works [2, 10, 13, 16].
All these authors made the assumption that the hedging portfolio is rebalanced
continuously, which may be a good approximation in very liquid markets but



cannot be satisfied completely due to the presence of transaction costs. Taking
into account the discrete nature of hedging is particularly important in illiquid
markets where transaction costs are high and it is not always possible to find a
counterparty instantaneously.

The observation that discrete hedging leads to an additional source of error
is not new (this risk is sometimes referred to as gamma risk by market prac-
titioners) but this error is not easy to quantify because the tools of stochastic
calculus are not available in discrete time. In [1], Bertsimas, Kogan and Lo
introduced an asymptotic approach allowing to tackle the error due to discrete
hedging in a continuous-time framework. Their result can be briefly summarized
as follows. Suppose that the stock price is a Markovian diffusion

dsS

? = /J/(t, St)dt + O'(t, St)th
t

and we want to hedge a European option with payoff h(St). Then it is well
known that the market is complete and the optimal strategy is the delta hedging
given by ¢; = %, where ¢; is the number of stocks to hold at time ¢ and C
is the option price as a function of time and spot price. If the portfolio were
rebalanced continuously, this strategy would yield perfect hedging, however,
in practice, the strategy ¢; is replaced with a discrete strategy ¢y := ¢n[i/],
h = T/n, resulting in a residual hedging error (the only error in this simple
setting).
This discretization error is given by

T
en = h(Sr) 7/ ordS,
0

Then clearly 7. — 0 as n — oo but the interesting question is at what rate
this convergence takes place. Bertsimas, Kogan and Lo have shown that the
renormalized error \/nel}. converges in law to a non-zero limit given by

[T [T 8*C _
5/0 waa(t,St)Qth,

where W is a Brownian motion independent of W.

Apart from its mathematical beauty, this result is very important for practi-
cal purposes: it provides a complete first-order characterization of the hedging
error and leads to a number of important insights such as

e The hedging error is proportional to the square root of the rebalancing
interval: to decrease the error by a factor of 2, one must rebalance 4 times
as often.

e Since W is independent from W, the hedging error is orthogonal to the
stock price process.

e The amplitude of the error is determined by the gamma of the option:
el
952"



Hayashi and Mykland [8] extended the work of Bertsimas, Kogan and Lo in
many directions. Among other things, they reinterpreted the discrete hedging
error as the error of approximating the “ideal” hedging portfolio fOT ¢+d S with a

feasible hedging portfolio fOT ¢pdS;. This formulation makes sense in incomplete
markets, even if the price of the continuously rebalanced hedging portfolio does
not coincide with the payoff of the option. They considered both the stock price
process and the hedging strategy as general continuous It6 processes of the form

déy = fipdt + G,dWy,
dSt = [,Ltdt + O'tth,

and proved the weak convergence in law in the Skorohod topology of the hedging

error process
n T . ~ ivva
Vne" = 7 os05dW s,
0

¢
where &} ::/ (¢ — &} )dSy.
0

The study of error from discrete hedging then reduces to that of the error
of approximating a stochastic integral with an appropriate Riemann sum. The
general problem of approximating a stochastic integral is not new and goes back
at least to [15]. More recently, Geiss [4, 5, 6] studied weak and L? approxima-
tions with non-uniform time steps, making the connection with discrete time
hedging. Another paper worth citing in this respect is [7] where the authors
study the L? discrete hedging errors for options with irregular payoffs (such as
binary).

In parallel with the development of the theory of discrete-time hedging (and
sometimes well ahead of it), similar asymptotic results have been obtained for
the approximation error of Euler schemes for stochastic differential equations of
the form

t
Xt::cw/ F(Xoo)dY,
0

where f is a matrix of functions and Y a vector of semimartingales. The Euler
scheme is defined by

thl = Xti + f(Xti)(th+1 - Y;fz)

with respect to some partition 0 = tg < t; < --- < t, = T. The problem
of analyzing the error of this scheme is on one hand more difficult than that
of the discrete hedging error, because the integrand also involves an approxi-
mation, but on the other hand it is simpler, since the integrand is an explicit
function, whereas in the hedging problem the integrand is a hedging strategy
resulting from some optimization procedure. The rate of convergence for the
Euler scheme for a continuous diffusion was established in [14]. These results
were later extended to Lévy-driven SDE’s in [9, 11].



In this paper, we generalize the weak convergence results of Hayashi and
Mykland [8] to semimartingales with jumps using the methods developed by
Jacod and Protter [11] in the context of Euler schemes for Lévy-driven SDE’s.
We prove a limit theorem for the error arising from discrete hedging and charac-
terize the limiting law. This result takes a particular importance, because price
jumps are often a sign of low market liquidity, meaning that transaction costs
will be high and the discretization error will be important.

In presence of price jumps, the market is typically incomplete and there are
two types of hedging errors: the first one is due to market incompleteness and
the second one is due to the discrete nature of the hedging portfolio. One of
the main insights of our paper is that these two errors have a very different
behavior: while the first one is due to jumps, the second one is dominated by
the diffusion component of the price process.

The rest of our paper is structured as follows. In section 2, we define our
model, state the main hypotheses and introduce the relevant notion of conver-
gence. In section 3 we state the main result on the weak convergence of the
renormalized hedging error and provide an example which shows that our the-
ory applies to the delta-hedging of a binary option in a jump diffusion model.
The proof of the main theorem is postponed to section 4.

2 Preliminaries

First, let us recall the definition of stable convergence which is a type of weak
convergence particularly adapted for studying the renormalized error processes
and used among other authors by Rootzén [15] in the approximation of stochas-
tic integrals and by Jacod and Protter [11] to analyze the discretization error
of the Euler scheme.

Let X,, be a sequence of random variables with values in a Polish space F,
all defined on the same probability space (2, F, P). We say that X,, converges

stably in law to X, written X,, Y X if X is an E-valued random variable
defined on an extension (2, F, P) of the original space and if

lim E[U f(Xn)] = E[Uf(X)] (1)

for every bounded continuous f : F — R and all bounded measurable random
variables U.

Remark 1. As for weak convergence, the bounded continuous functions in
the above definition may be replaced with a convergence determining class; in
particular, we can suppose f to be bounded and uniformly continuous. This
implies in particular that if F is endowed with a metric p(-,-) and if (Y;,) is
another sequence of E-valued random variables defined on (€, F, P) such that

p(X,,Y,) — 0 in probability, then Y, LY X, In particular, if X,, and Y,
are cadlag processes viewed as random variables with values in D([0,T7]), and
(X, — Y,)* — 0 in probability, then X, SRBY ¥ implies Y, *2bY X, Here and



in the following, for any process X, we use the notation

X* = sup |Xy|
t€[0,T
Remark 2. Suppose that the o-field F is generated by a random variable Y.
Then (1) is equivalent to

lim Elg(¥)f(X,)] = Elg(¥)/(X)] (2)

for every bounded continuous f and every bounded measurable g. However, for
a bounded measurable g, one can find a sequence (g,,) of bounded continuous
functions such that g,,(Y) — g(Y) in L*(P). Hence, it is sufficient to show (2),
with ¢ bounded and continuous.

Remark 3. Let (©,,)m>1 be a sequence of subsets of  with lim,, P[Q,,] — 1.
If, for every m, B
lim E[U £ (X.)1a,] = BIUF(X)1g,]

for every bounded continuous f : F — R and all bounded measurable random
variables U, then X, S%y X.

We fix a time horizon T' < oo (the maturity of the option) and consider all
processes up to this horizon.

We start with a one-dimensional standard Brownian motion W and a Poisson
random measure J on [0,7] x R with intensity measure dt x v(dz) defined on
a probability space (Q,F, P), where v is a positive measure on R such that
Jo(1 A z?)v(dx) < co. J denotes the compensated version of J:

J(dt x dz) = J(dt x dz) — dt x v(dz).

Let (Fi)¢>0 stand for the natural filtration of W and J completed with null sets.
A Poisson random measure is a sum of a countable number of point masses,
and we denote by (T3, AJ;);>1 the coordinates of these point masses enumerated
in any order.
In this paper, we will work with the following class of processes

Definition 1. A Lévy-It6 process is a process X with the representation

t t t
Xt:X0+/ usder/ odeS+/ / v (2)J(ds x dz)
0 0 0 J|z|I<1

+ /Ot /Z>1’ys(z)J(ds X dz).

where coefficients p and o are cadlag (F;)-adapted processes and the jump size
« is a random function  x [0,7] x R — R such that the mapping (w, z) — Y1(2)
is F; x B(R)-measurable for every ¢ and the mapping t — v;(2) is caglad (left-
continuous with right limits) for every w and z. Furthermore, it satisfies

Ye(2)? < Aip(2)



where p is a positive deterministic function decreasing on (—o0, 0) and increasing
on (0, 00) with f 2l<1 p(2)v(dz) < oo and A is a caglad (F;)-adapted process.

Main assumptions Throughout the paper except for the example at the end
of section 3, we suppose that the asset price process S is a Lévy-Itdé process
satisfying the assumptions of definition 1, whose coefficients are denoted by u,
a, 7.

We suppose that there exists a continuous-time trading strategy F' which is
the strategy that the agent would follow if continuous-time hedging was possible.
In incomplete markets, this strategy need not lead to perfect replication, and can
be chosen in many different ways; here we do not discuss the relative advantages
of different choices of F' and suppose simply that it is given by another Lévy-Ito
process satisfying the assumptions of definition 1 whose coefficients are denoted
by i, ¢ and 7.

In addition, throughout the paper, we suppose without loss of generality
that the interest rates are zero (one can always choose the bank account as
numeraire).

Reduction to the case of bounded coefficients Let

pi o= (=n)VuAn; o = (=n)VarAn; 7 (2) = (= np(n)) vV (2)AV/ np(n);

and define

St":SOJr/ ds+/adW+// ™ (2)J (ds x dz)
z|<1
+/ / Y2 (2)J(ds x dz). (3)
0 Jn>|z|>1

S™ is then a Lévy-Ito process with bounded coefficients and bounded jumps
that coincides with .S on the set

Qp i={w: OiltlngaX(“J/tl, lotl, |At]) < m; J([0, T] x ((—o0, —n) U (n, 00)) = 0}.

Since all processes are supposed cadlag, P[S2,] — 1. Exactly the same logic can
be applied to the process F. Given that in this paper we study convergence in
law of various processes, by remark 3 we can and will suppose with no loss of
generality that u, o, A, fi, &, A are bounded and the processes S and F' have
bounded jumps. Slmllarly, we will suppose f]R Jv(dz) < co. In this case, the
representation (3) can be simplified to

t

St:SO+/ M5d8+/ osdW +/ /’ys dsxdz) (4)
t

F = F0+/ Msds—i-/ GsdW, +/ /75 dsxdz) (5)



Discrete hedging Since continuously rebalancing one’s portfolio is unfeasi-
ble in practice, the portfolio is rebalanced at dates t; = iT/n and the trad-
ing strategy is therefore piecewise constant and given by F, ;) where ¢, (t) =

sup{t;,t; < t}. The value of the hedging portfolio at time ¢ is Vj + fot Fs_dSs

with continuous hedging and V; + fot Fy, (5dSs with discrete hedging. In this
paper, we study the asymptotic distribution of the difference between discrete
and continuous hedging

t t
un - / (Foe — Fy,())dS,s = / P ds, (6)
0 0

when n — oo, where for any process X we set Xi* := Xy — Xy (4).
The integral fot Fy, (5dSs is nothing but a Riemann sum for the stochastic

integral fot F,_dS;, and it is clear that U;* — 0 uniformly on compacts in prob-
ability. To obtain a nontrivial limiting distribution, this process will therefore
be suitably renormalized.

3 Asymptotic distribution of hedging error

Define the renormalized hedging error process by

t
Zp = VaUp = v [ B ds.. (7)
0

Sometimes we will also need the piecewise constant process

Zi =24 )

To describe the limiting law of Z™ and Z", let W be a standard Brownian motion
independent from W and J, and let (§)r>1 and (£}, )r>1 be two sequences
of independent standard normal random variables and ((x)x>1 a sequence of
independent uniform random variables on [0, 1], such that the three sequences
are independent from each other and all other random elements. Define the
process Z by

[T [ —
Zt = _/ Usa—de5+ﬁ Z AFT1 \/afoT1+\/T Z AST-L V 1- Cigz/‘a—Ti*a
2 Jo . )
T <t T <t
where (7;);>1 is an enumeration of the jump times of J.
Theorem 1.
(a) The process Z™ converges stably in law to Z on the Skorohod space D([0,T]).

(b) The process Z™ converges stably in finite-dimensional laws to Z.



(c¢) Suppose that the hedging strategy F and the stock price process S have no
diffusion components: 0s = 65 =0 a.s. Then (Z™)* — 0 and (Z")* — 0
in probability.

Remark 4. The Skorohod convergence fails for the “interpolated” process Z
roughly because we cannot control its behavior between the discretization dates
in a uniform fashion. This phenomenon was discovered in [11] in the context of
Euler schemes for jump processes, and we refer the reader to this reference for
more detailed explanations of its origins.

Example: discrete delta hedging in a Lévy jump-diffusion model In
this example we suppose that under the historical probability the stock price
follows an exponential Lévy model with nonzero diffusion part and a finite Lévy
measure:

Sy = SpeXt X, = bt + SW, +/ zJ(ds x dz)
[0,t] xR

t t
S =5So +/ b+ 22/2)5’st —|—/ S, dW +/ Se—(e* —1)J(ds x dz)
0

0 [0,]xR

= He = St <b+ 22/2 +/ (ez — 1)V(d2)> 5 ot = E‘S’t; Yt = St_(ez — 1)
|z

I<1

where ¥ > 0 and J is a Poisson random measure with intensity ds x v(dz) with
v(R) < oo. This shows that S is a Lévy-Itd process in the sense of definition 1
with A; = S2 and p(z) = (e* — 1)2.

We assume that the option price may be computed as the expectation of
the pay-off under the risk-neutral probability @), under which X is again a Lévy
process. For simplicity, we suppose that X has the same Lévy measure under
@ as under P.

X, =0t + W2 +/ 2J(ds x dz),
[0,t] xR

where W€ is a Q-brownian motion, b is chosen so that eX* is a martingale and
J is a Poisson random measure under ) with compensator ds x v(dz).

We study the hedging of a European option with pay-off function H using
the popular delta hedging strategy. The option price is given by

C(t,S) = E°[H(S7)|S: = S] = EQ[H(SeX7-)]

and the strategy is F; = %. This is by far the most widely used hedging
strategy and it has an additional merit of being mathematically tractable which
makes it a convenient choice for our example. It is not optimal in presence of
jumps, but if the jumps are not very violent, it is reasonably close to being
optimal.

We impose strong conditions on the Lévy measure, because we want to
illustrate the power of our main result based on weak convergence for irregular



option pay-offs. In particular, our hypotheses cover the delta hedging of a
binary option in the Merton jump-diffusion model. The notation is the same as
in theorem 1.

Proposition 1. Suppose

o The option pay-off function H is bounded and piecewise C'° with at most
a finite number of singularities;

o The diffusion coefficient is positive: ¥ > 0;

e The Lévy measure v is finite, has a C*° bounded density (also denoted
by v) with [;|z|v(z)dz < oo and such that for every k > 1, [v®)] 4s
integrable.

Then the renormalized discrete delta-hedging error as defined by (7) converges
stably in finite-dimensional laws to the process

oC ac
Zy = \/7/2253852dw+\/_ Z <0S(SS) as >\/§&25

s<t:AS;#0
0? C
+VT Y ASN1-GEES oo 55z (5 9-) (8)
s<t:AS;#0

Proof. By proposition 2 in [2], the option price C' € C*°(]0,T) x R) and one can
apply the Ito formula to show that F; has the decomposition

dF, =d

aC(t,S,) { 02C

0?C ¥293C
»?2/2 - 57
55 5195 +(b+X%/2) 55 + St}dt

052 2 083

0 C oc _oc

We now need to check that the coefficients of this decomposition satisfy the
hypotheses of theorem 1, and the essential point is to show that they do not
explose as t — T'. We will use the following lemma.

Lemma 1. Under the assumptions of Proposition 1, for all k > 0, almost
surely, the processes

okC(t, St) OF1IC(t, Sy)
o5 " " hiosh
have left limit at T .
Proof of lemma. Let h(x) := H(e*) and c(t, x) := C(t,e*), and denote by

1 _(z=bt)?
e 25:2¢




the (risk-neutral) density of X¢ := bt + XW;, by A = v(R) the jump intensity
of X and by p := v(x)/\ the density of its jump size distribution. Then, the
following representation for ¢(t, z) holds true:

T
c(t,z) = e M Ohspr_y(z) + )\/ dse M=t / dz p(z — x)ps—t * c(s,)(2)
t R

For every t < T, since the corresponding derivatives are bounded and integrable,
we have for every k,

0%c(t, x e OFpr_
@;k )76 MI=0h Ok L (x)

T
+ )\/ dse MY / dz(—=1)* ) (2 — 2)pe_y % ¢(s,)(2).  (10)
t R
The second term above satisfies

)\/t dse= 271 /R dz(—1)* ™ (2 — 2)pe_ x ¢(s,)(2) = O(T —t),

therefore we only need to study the convergence of the first term as t — T'. This
is done in several small steps:

e Since Xp has absolutely continuous density, outside a set of zero proba-
bility, h(z) is smooth for | X7 — | < ¢ for some ¢ > 0.

e Due to the almost sure convergence of X; to X1 as t — T, we can find
to < T such that | X; — Xp| < g for all ¢ > tg.

e Fix ¢ > 0. The explicit form of the gaussian density p; enables us to find
t1 with T > t1 > g such that for all t > ¢,

/ O pr_i(x)
|z|>$

Oxk
e Therefore, we can find i which is smooth, bounded with bounded deriva-
tives, coincides with h for |z — Xr| < § and satisfies

0" pr_i(x) O pri(x); £

sup h(z)dz < %

for all t > t;.
e By integration by parts we conclude
O pr_i(z)

10



Therefore, for t > t1,

aka t L OFh(X7)

To handle the convergence of the time derivative, one can use the same
method but the notation is a little heavier. Differentiating the right-hand side
of (10) term by term, we obtain

O le (t,r) —\(T— O pr_y —\(T— M pr_y
gorar = ¢ e == @)+ e T b —m = (@)

2 ' se A1) (=1 u®) (2 — 2)ps_y * (s, ) (2
[ [ a1 = 2 els.)(2)
—A(—l)ku(k)(z—x)c(t,z)dz

T
+>\/t dseMst)/Rdz(nku(k)(zx)%pst*c(s,.)(z). (11)

The convergence of the terms which do not contain the derivative of pr_; with
respect to t is easily shown either in the same way as above or using dominated
convergence. It remains then to prove the convergence of the second term and
of the last term. To get rid of the derivatives with respect to ¢, we use the
Fokker-Planck equation for the Gaussian density:

onle) 32 0ne) 5 om(a)
ot 2 Ox? oz
The second term in the RHS of (11) then becomes

8k+1p _ 22 6k+2 B o k+1

“MT—1) Tt L ZT AT br—t —X(T—-t) _ Pr—t

e h*i&c’f@t (x) = 5 ¢ ha e ()+Dbe hi ] (x)
and its convergence follows from the argument given in the first part of the
proof of this lemma. After integration by parts, the last term in the RHS of

) becomes
A / dse” A7 / dz(— { 92 (o ) 4 ) - x)} Ps—t % c(s,°)(2)
hence it converges to zero and the proof of the lemma is completed. o

Proof of proposition 1 continued. Since %(t,st) is a.s. cadlag, the same ar-
gument that was used in section 2 to reduce to the case of bounded coefficients,
can be used here to replace the strategy F' with the strategy F(™ defined by

n 0%C 0*C Y2 93C
dF ){—+( +5%/2) 53 S+ 5 oS }dt

rsfsam+ [ (a(G5see) -6 (Ggct.s)) ) s x o

11



with ¢, () := (—n) V& An. Then F is a Lévy-Ito process with coefficients

~n 820 C 22 83
oC 90
+/z§1 (C (35 (t, Se” )) —Gn (8SC(t St))) v(dz),
~ 0*C
7= Ngs S

6 =6 (Ggt5e) - 6 (Ggosi).

which satisfy the hypothesis of theorem 1 with p(z) = 4n? and A, = 1. There-
fore, the desired convergence holds for the strategy F(™) for every n and hence,
for the strategy F. O

Estimating Value at Risk of a hedged option position Finally, we would
like to illustrate, by a simple heuristic computation, how our result may be useful
for managing the risks of a hedged option position. Since we have characterized
the weak limit of the renormalized hedging error, our method allows to approx-
imate various bounded continuous functionals of the hedging error for a finite
time step. As an example, we compute an estimate for the probability that a
hedged option position exceeds a given value.

We place ourselves under the hypotheses of Proposition 1 and suppose, in
addition, that either the option pay-off is sufficiently regular, or the option is
sold before maturity, so that the limiting process Z; is square integrable (this,
of course, does not imply the convergence of E[(Z;*)?]). Then, for any & > 0 the
non-renormalized hedging error U;" satisfies

PIU| > €] < B [1|Un| A 1} ~F F LA 1} <L gz, a2
t1ZEl > oY c =oun t )

which leads to an upper bound for the Value at Risk at the level §:

1
ny < _—
VaR(;(Ut)N(S\/H

Using the explicit form of the limiting process, E[Z7] can be computed as follows:

E[Z}] = g/ot x5y (‘;;j)
2 [e
sl

E[Z3Y/2. (13)

ds

2
¥282e2% <g—g(s,ssez) gg(s Ss )> ] v(dz)ds

2254@502) (e* 1)2] v(dz)ds.

12



If the jumps are small, then, performing a Taylor development of C', we obtain
the following compact formula

T [* 9%C
E[Zf]wg/o 34(852)

The estimate (12)—(14) may be compared with the mean square error due to
market incompleteness given by [2]:

(Bt + 2 /(ez — 1)%(e** + 1)v(dz))ds. (14)

/ ds/ (d2)E [ s,55¢”) — C(s,8s) — Ss(€? —1)?)2)

i/o E|s? (?92‘2) /(ez — 1)*v(dz)ds. (15)

We see that the two types of error have very different behavior: while the
market incompleteness error (15) is due to jumps and disappears in a model
with continuous paths, the discretization error (12)—(14) is due mainly to the
presence of a diffusion component; if a diffusion component is absent, this error
does not disappear but converges to zero at a faster rate.

Elef]

%

4 Proof of the main result

Part (c) We can represent S; as Sy = Sy + By + My + P, where

t
B; :/ 1sds, M; = / / ds x dz)
0 | \<E
and Pf:/ osdWs +/ / J(ds x dz).
\ \>6

The hedging strategy F' is represented in a similar way:
F, = Fy + B, + M; + P£.
We can now write
Zy = ﬁ/t(f?? + M5 + P2%)d(B; + M + PY).
0
This integral may be decomposed in the following way:

Z = JUY + LY+ K+ L

13



where

t
Iy = Vn / Md(ME + Pg), (16)
0
t
s = Jm / (B 4+ PMoYaME, (17)
KM = m / (BY + PI<)aps, (18)

Ly = \/ﬁ/ FrdB,. (19)
0

We first want to show that

lim limsup E[(J]"})*] = 0, (20)
€l0 n ’

liirglimsupE[(J;f)*] 0, (21)

lim E[(L})*] = 0. (22)
n

This will be used in the proof of part (a). Then, we will make the hypothesis
os =0 and 65 = 0 and prove that in this case

lim lim sup E[(K{"¢)*] = 0. (23)
|0 n

as well. By Chebyshev’s inequality, this will imply lim, P((Z")* > n) = 0
¥n > 0 and the proof of part (c) will be completed.

Let us consider the first expectation. Applying Jensen’s and Doob’s inequal-
ities, we get

E[(J7)] < EII)2) < 2, BO)2 = 24RO, T09) e (24)

By definition of J}"%,

e = | Ly (o2 + [ 2w .

By our assumptions,

/va(z)v(dz) < At/p(z)l/(dz) <C, Wtel0,T]

and oy is also bounded. Therefore,

T
E(JE, TSy < Cn/ E(M;"%)2dt. (25)
0
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By the same reasoning, we obtain

E(M]")? / / dz)du
n(t) /] \<€

< / | Elddn /|Z|<€p<z>u<dz> <¢ /|Z|<J’(*")”<dz)'

Combining (24), (25), and (26) yields

e—0

1/2
1ir% limsup E[(J;"°)*] < lim C (/ P(Z)V(dz)) =0.
£— n |z|<e

The term with J5"° is treated in a similar way:
J;L sE < 2 /E J;L sE J;L sE
1/2
B” P52 / V2 (2)v(dz) | dt
|z|<e

<C </<E p(z)v (dz)) - (n/OT]E(Bf—f—ﬁt”vf)th)

E(By + P*°)* < 2(E(B}")? + E(P"%)?).

1/2
We have

The drift term satisfies:

t

- C ~ C

|Bi'| = |fis|ds < — and therefore E(B}')* < —
n n?

n

(27)

(28)

(29)

(30)

due to the assumption that fi is bounded. For the second expectation in (29),

we obtain

N t C
E(B¢)? =E / 5+ / 52(2)(dz) | ds < <.
én(t) |z]>e n

The estimates (28), (29), and (31) imply

e—0

1/2
1ir% limsupE[(J5°°)*] < lim C (/ p(z)l/(dz)) =0.
e— n |z|<e
Let us now consider the finite variation process Ly'. We have
T T T
B(L")) < B{[ LY = VB[ |y \wldd < OV [ EIEae
0 0 0

15
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We can write
E|F| < E|B}| + E|M;"*| + E|P""|. (34)
Putting together (26), (30), (31), we obtain

1/2
limnsupE[(L”)*] <C </| p(z)u(dz)) =%0.

z|<e
Therefore,
lim E[(L")"] = 0. (35)
This finishes the proof of (20)—(22) in the general case.
From now and until the end of proof of part (c), we suppose that the processes

S and F have no diffusion component: o, = 6, = 0. Consider now the term
K™¢ which is a finite variation process:

T T
E[(K"*)] < E| / K] < JE]| / By + PP

C T T - .
sﬁ(ﬂ | 1arel+e | |Pt;||dPt|). (36)
0 0

To bound the terms involving ]5,5"’5 and Py, let us introduce the following Poisson
process:

t
Nf = / / Jdtxdz)  with  A(e) = SENF = / v(dz).  (37)
0 Jz|>e ¢ |z|>e

We will use the following type of estimate:

aps| < /| @< )
z|>e

=¢ </> Jlrda /|z|>e V(dz)dt> = C(dNF + Ae)dt). (38)

This implies, in particular,

T
E / IdPE| < 20A(2)T < C(e). (39)
0
We also have
[P < CIN 4+ (@)t — ¢n(t))] (40)
and
Cle)

E|P"¢| < 2CA()(t — du(t))

n

16



Consider the second term in (36):

T T
B [ \P2S|dpy] < CE [ INZS 4+ MGt - on()]ANG + AN
0 0

T
<C|E / npeang + CE 1 4
0 n
The expectation in (42) may be computed explicitly. Indeed,
T T/n
E / N dNf = ZIE (Nf_ — Nf_)dN§ =nE NE dNE.  (43)
0 ti—1 0
If M denotes the (random) number of jumps in the interval [0,7'/n], then
IE/T N™dN¢ = nE f:( i~ 1) =nE M@ -1)] _ (Ae)T)? (44)
, e TR T 2 T o
We conclude that
T
~ C
B [ 1preary) < 2 ()
0 n
and
Cle)
E[(K™®)"] < 46
ey < =2 (46)
which implies
lin%) limsup E[(K™*)*] = 0. (47)
E— n

Part (a) Step 1: Removing small jumps. Fix € > 0 and define

t t
SE SO+/ Nsd5+/ Ude +/ / )j(dS XdZ),
0 \ \>€
t t B
Ff 7F0+/ usds+/ 5. dW, +/ / (2)J(ds x d=);
0 | |>€

. én(t)
7o = /n / FimdSs;  Z" =+ / FdS;;
ZE=\]= / 0sGsdW s + VT Z Las > AF5\/Gior,

T <t
+VT Z Liag, > AST /1 = GEior, —.
T <t

17



From equations (20)—(22), it follows that

hr% limsup P[(Z" — Z*™)* > n] =0, Vn>0. (48)
E— n

Then, we clearly have

lir%limsupP[(Z” —Z5™"* > =0, V¥n>O0.
E— n

If we are now able to prove that

lim P[(Z — Z°)" > 0] =0, ¥n>0; (49)
£—
Zem "2 e (50)

then, for any bounded random variable U and any bounded uniformly continu-
ous function f:D([0,T]) — R, we can write

lim B[U(f(Z") = f(2))] = lim lim BIU(f(Z") = £(Z°"))]
+ lim li E[U(F(Z°7) — F(Z9)] + li E[U(/(Z) ~ £(2))] =0,

e—0 n

and the proof of part (a) will be completed.

Proof of (49) By construction of Z and Z°,

Z—~2Z; =T Z Lias <eAFT, VG&ior,+VT Z Lias|<eAST /1 = G&lor, .

T <t T <t

We will prove the convergence for the first term in the right-hand side, denoted
by Z1¢, the second term can be treated in the same fashion. Conditionnally
on the sigma-field G, generated by J and W, Z¢ is a martingale, therefore, by
Doob’s inequality,

E[(2"%)2(0] < 4B[(Z}7)IG) = 2T 3" 1a0, <. (AFF, or,).
Further, from the boundedness of o and A,

E[(ZY4)*? < 2TCE

> lias<e(AF;)?
[

/0 : /H 52(2)(d2)

where C and C' are constants.
This finishes step 1 and it remains to prove (50).

=2TCFE

< 2C’T/ p(z)v(dz) — 0,
FES

18



Step 2. We fix € > 0 and write

S5 =Sy 4+ ST+ 55457,

S = / (- /mvs(z)u(dz))ds - / Cbads,

t
Stc:/ osdWs,
0
‘ t
S} = / vs—(2)J (ds x dz),
0 J|z|>e

and similarly Ff = Fy + F2 + Ff + th . We would like to show that

¢w()

_ én () ,
P[(Z5" — V/a / FemdSe — /n / Fingse
0 0
én () _
- \/ﬁ/ FedSh)* >n] — 0, Vn>0. (51)
0

Suppose this is proven. Then instead of Z°" it is sufficient to study the con-
vergence of the process

bn(t)

} G (t) , $n (1) ,
Z5m = /m / Fendse +y/n / Findse 1/ / Fengss
0 0 0

(see Remark 1). These three terms correspond to the three terms in the defini-
tion of the limiting process Z°¢.

Proof of (51) Write Z5" as
) G (t) 4 ‘
Ze" = \/ﬁ/ (F% 4 F¢ + FI)"d(S? + 5 + §7).
0

The different terms satisfy:

/ Fd,ndsd
0

* *

T2 8
< — sup [b] sup [b];
n

< —sup|b|sup|AS|N,

SHES!

/ Fdnds
0

where N is the number of jumps of S¢. Using Doob’s maximal inequality,

e * B T 27 2
/ Fingse < 2F / Fénqse
0 0

E

T z 3/2
=2E / (FE™202ds| <
0

sup |b| sup o.
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Further, the expression
nlt) ,
/ F"ds?
0

is different from zero only if there exists a discretization interval containing at
least two jumps of J, which is an event with probability of order %, and

onl(-) T
| FImdS?i* < —Nsup|AF|sup b,
0 n

because the integral is only nonzero on the intervals on which there is at least
one jump of J. The last vanishing term,

Gn (1) $n(t)
NG / FemdS? = \/n / F&"byds
0 0

is a little more difficult to analyze. First, let us show that b in the above
expression can be replaced with by, (). Indeed,

$n(*) * T
E \/ﬁ/o F'chn(b6 — b¢7L(S))dS < \/E/O L?[(F‘SC — an(s))Q]l/QE[(bs — b¢7L(s))2]1/2d8

T
< Tsup&/ E[(bsfb%(s))Q]l/st.
0

Since b is cadlag and bounded, by, (s) — bs in L? and almost everywhere on
[0, 7], so that the above expression converges to zero. Now, changing the order
of integration,

én(t) én(t) ~
/ F;’nb¢n(s)d5 = / b¢n(s) (l/}n(s) - S)O'SdWS
0 0
with ¢, (t) = inf{¢; : t; > t}. Therefore,

$n () YT
/ F;’nb@L(s)dS
0

E < sup |b| sup &

and we have (51).

Step 3. From now on, T; will denote the moments of jumps of J bigger than
¢ in absolute value. In this step, our goal is to prove that the process Z=™
converges to the same limit as the process

t T
ZtE,n :/ Ué&édN:—"_\/ﬁ Z AFTiUTi/ dW5+\/ﬁ Z ASTi(&T7'_)/ dWé

0 BT <t T Ty <t én(T5)

Pn(Ty)
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where N™ := \/n fo WrdWs. Let Q" denote the event “on every discretization
interval there is at most one jump of J bigger than e in absolute value”. Then
Q)™ increases to {2 and on Q"

~ ¢n(t) '¢n(Tm)
ZE" = \/n / FerdSe+\/m > AP / s dWs
0

i3 < (£) Ti
T;
+vno Y ASTi/ FsdW, (52)
T3 <n (£) én(T3)

Further, it follows from lemma 2.2 in [11] that the process in the right-hand side
of (52) converges to the same limit as

N t tn (T3) T;
Zte,n _ \/ﬁ/ FcyndSCJr\/ﬁ Z AFTi/ USdWSJr\/ﬁ Z ASTi/ osdWs.
0 iTi<t T PTi<t ¢ (T3)
(53)
To complete step 3, it remains to prove that
lim P[(Z5" — Z5™)* > 6] =0 ¥6>0
n—oo
where
. R t s
Zi"t =z = \/ﬁ/ osdW (65 — &, )dW,
0 $n(s)
Y (T3) T;
+vn Y APy, / (o7, — 0s)dWs +vn > ASp, / (67,— — 55)dW,
iTi <t T; BTy <t én(T3)
(54)

Using the boundedness of 0 and Burkholder’s inequality, we obtain, for the first
term above:

t s 2 t s 2
E(vn / oodW, (65 — G0)dW, | < Cn / E / (65 — G0)dW, | ds
0 én(s) 0 bn(s)
t s 2 t s 2
< Cn/ E (/ (5'7- — 5’¢n(5))dWT> ds + Cn/ E ((55 — 5’¢n(5))/ dW,-) ds
0 Dn(s) 0 $n(s)

t S t
< C’n/ / E(G, — 64, (o) drds + c/ [E(6s — G4,(0))*]"" ds
0 n(s) 0
t

t
=Cn / dr(ihn (r) — )E (G, — 54, ()2 +C / [E(6. — 64,)"] " ds — 0
0 0

because ¢ is cadlag and bounded. Let us now turn to the last two terms of (54).
Since we can limit the sums above to a finite number of terms and suppose that
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AFr, and ASt, are bounded by a deterministic constant, it would be sufficient
to show that for each 7, the random variables

Y (T3) T;
A" = / (o7, — 05)dW, and B =n (G7,— — G5)dW,
T; én(T3)

converge to zero in probability as n — co. Since v, (T;) is a stopping time, we

easily get
ww(Tz)
E[(AM?] =nE / (o1, — 0s)?ds

T;

and then, since lim, |7, 05 = o7, it follows, using the dominated convergence
theorem that F[(A?)?] — 0 and A? converges to 0 in probability.

With B! the situation is more complicated because ¢, (7T;) is not a stopping
time. Our argument uses the independence of the jump times from the Brownian
motion W. First, decompose B} as

BI'= B/" + B/,

T;
B! =+/n (6%@) — 05)dWs.
Using the independence of W and the jump times and the dominated conver-
gence theorem,

E[|B}") < E[n(Wr,— W, (1)1 2 E[(61,— =54, (1))*]"* < E[(61,—- =G4, (1))*]/* — 0

Next, let F;/ be the o-field generated by the trajectory of W up to time t
and by the entire trajectory of J. Then, W is a F/-Brownian motion, and
(&%(Ti) - &s)lsz%m) is an F7-adapted process. Therefore, we can apply to
B/'™ the same argument that we used for A?. This finishes step 3.

Step 4 Denote

T;

er(T%)
ap=vi [ aw, =y [ dW ai= VTG 5= VIT - G
T; ¢n(Tz)
ifT,<Tand ol =8t =a; =3;=0if T; > T.
In this step, we want to show that (N, (af);>1, (8")i>1) converges stably

n 1aW to (\/%W, (ai)i217 (ﬁz)zZl)

First, notice that the Poisson random measure J that we use can be “packed”
into a martingale pure jump Lévy process L; := fot :cj(dtx dz), that is, a random
variable in Fr can be represented as a measurable function of L and W. The
result of this step then follows from Lemma 6.2 in [11] (taking for the Lévy
process Y in this lemma the sum of a standard Brownian motion and a Poisson
process).
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Step 5 In the previous step, we proved the convergence of different quantities
which make up Z%". It remains to assemble them together and prove the
convergence of the whole process.

We will use the following obvious properties of the stable convergence.

(a) Let X, stably X, and Y be another random variable with values in a Polish

space F. Then (Y, X,) = Lably (Y, X) for the product topology on F x E.

(b) If X, stably X, and f: E — F is a continuous function, then f(X, )Sgy

f(X) for the topology of F.

First, suppose without loss of generality (Remark 3), that the number of
jump times 7T; is bounded by a finite number N on the interval [0,7]. From
stable convergence of (af');>1 and (87");>1, we can deduce the stable convergence
of (AFrp,or,al);>1 and (ASTi o1,—f")i>1 (using property (a) and property (b)
with f: (z,y) — 2y from R? to R). Further, the mapping

(ala"'7aN7b17"'7bN;t1;-~'tN)Hzai+zbi
< <

is continuous from B(R3*M) to D([0,7]) at every point such that t; <ty < --- <
ty (see example VI.1.20 in [12]). Property (b) then implies that

Z AFror,0f + Z ASrt.67,_ 3" Lably Z AFr,or, 0 + Z ASrt, o0, 53
Ti<- Ti<- Ti<- Ti<-

(55)

Second, fix an integer m and consider the function

(z,y) H/ Ty, ()dYs (56)
0

from D([0,T1])? to D([0,T]). This function can also be written as
m—1

t
/ I(bm(s)dys = Z T, (yti+1/\t - ytq,/\t)a t; = —
0 i=0 m

We recall that a sequence (zy,) of cadlag functions on [0,T] converges to x in
the Skorohod topology if there exists a sequence of time changes A,, such that
An(t) — t and z, o Ay (t) — z(t) as n — oo uniformly on t. Moreover, if
x is continuous, convergence to x in the Skorohod topology is equivalent to
convergence in the uniform topology.

Function (56) is continuous for the product topology on D([0,T])? at every
point (x,y) such that y is a continuous function and z has no jump times in the
set {t-}mfl. Indeed, let (z,,yn) — (z,y) in the product topology. Then

t
/ g, (WS — /O%m(s)dys

m—1 m—1
n
E T (Yoo nt = Ytont — Ytizant + Yeont) + E = @4, ) (Ytis i At — Ytint)-
=0 =0
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The first term above converges to 0 uniformly in ¢ because y is continuous, and
hence y™ converges to y in the uniform topology. The convergence of the second
term follows from the convergence of z}’ to xy, for every i (remark VI.2.3 in
[12]). Using again properties (a) and (b), we obtain

. ~ n stably T ' ~ __
/O T (5)Tm ()N ="\ 5 /0 T pm (5) T (5) AW s

t
Rzn ::/0(U¢m,(s)&¢m,(s)70—55—5)ng'

From Doob’s inequality it follows that

E[(R™)"] < 24/ E[(R})?],

and by Burkholder’s inequality we have

Now, let

E[(R})?| =nE

T
/ (O ()T (s) — T555) > (W )QdS]
0

T
< C/O E (0’¢m(5)5'¢m(5) — 0353)4] 1/2 ds.

Since 040, is almost everywhere continuous and bounded, we then have

lim lim sup P[(/ (05Gs = 0, ()T (s))ANS ) >n] =0, Vn>0.

m— oo n—00 0

Similarly, we obtain

m— 00

. T, . . — \x
lim P[( 5/ (0505 — 0'¢7”(5)0'¢7"(5))dWs) >nl =0, Vn>0.
0

Therefore, by an argument similar to the one used after equations (49)—(50) to

remove small jumps,
. . T
/as&stg %YN/E/ 0555 dW (57)
0 0

Finally, the function (z,y) — z + y from D([0,T])? to D([0,T]) is continuous
for the product topology on D([0,T])? at every point (z,y) such that z is con-
tinuous (proposition VI.1.23 in [12]). Therefore, since the process fo 056sdW g

)
is continuous, combining (55) and (57) we obtain that Z=" converges stably to
ZE.
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Part (b) Asin the proof of the part (a), it is sufficient to prove that Z=" — Z¢
stably in finite-dimensional distributions (see the argument in step 1). We will
prove the convergence of the random variable Z;"" to Z¢, the generalization to
m-tuples (Z;",Z)", ..., Z;") being straightforward. By the proof of part (a),
step 2, it is sufficient to study the convergence of the random variable

t t t
NG / FemdS + /n / FI™dSe + \/n / Fendsy, (58)
0 0 0

Let Q™ denote the event “on every discretization interval there is at most one
jump of J bigger than ¢ in absolute value and there are no jumps in the interval
[¢n(t),t]”. Then, since J is a Poisson random measure and has no fixed jumps,
Q™ increases to 2. On the other hand, on 2", the random variable defined by
expression (58) is equal to Z" defined by equation (53), and we have shown
that Z;™ — Z£ stably in law.
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