Ideals of Quasi-Symmetric Functions and Super-Covariant Polynomials for S_n

Abstract : The aim of this work is to study the quotient ring R_n of the ring Q[x_1,...,x_n] over the ideal J_n generated by non-constant homogeneous quasi-symmetric functions. We prove here that the dimension of R_n is given by C_n, the n-th Catalan number. This is also the dimension of the space SH_n of super-covariant polynomials, that is defined as the orthogonal complement of J_n with respect to a given scalar product. We construct a basis for R_n whose elements are naturally indexed by Dyck paths. This allows us to understand the Hilbert series of SH_n in terms of number of Dyck paths with a given number of factors.
Type de document :
Article dans une revue
Advances in Mathematics, Elsevier, 2004, 181 (2), pp.353-367
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00185495
Contributeur : Jean-Christophe Aval <>
Soumis le : mardi 6 novembre 2007 - 11:36:38
Dernière modification le : mercredi 12 octobre 2016 - 01:21:41

Identifiants

Collections

Citation

Jean-Christophe Aval, F. Bergeron, N. Bergeron. Ideals of Quasi-Symmetric Functions and Super-Covariant Polynomials for S_n. Advances in Mathematics, Elsevier, 2004, 181 (2), pp.353-367. <hal-00185495>

Partager

Métriques

Consultations de la notice

64